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Momentum-space coupled-channels optical method for electron-atom scattering
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A complete account is given of a new method for the solution of the problem of electron scattering
by a one-electron atom or ion. The method treats all relevant effects explicitly. Reaction channels
under consideration are treated by the coupled-channels method in momentum space. Other chan-
nels, including the continuum, are treated by adding complex-polarization potentials computed from
experimentally tested approximate amplitudes for the relevant reactions. Computational methods
are discussed in detail since this is the first successful application of the momentum-space solution to
the atomic multichannel problem. The effect of the inclusion of channels outside the coupled space
is demonstrated by comparison with three-state close coupling for hydrogen at 54.42 eV.

I. INTRODUCTION

Momentum-space methods in scattering theory are in-
trinsically appealing, since the basic quantities involved
are scattering amplitudes. Experiments involve momen-
turn measurements and, therefore, these quantities are
quite directly related to experimental data. The simplest
momentum-space calculation is the Born approximation.

The present paper gives the formalism, computational
detail, and evaluation of approximations for an electron-
atom scattering theory that is complete in the sense that
all relevant effects are treated explicitly. The basic
method is the coupled-channels method in rnornenturn
space, which involves the solution of a set of coupled
Lippmann-Schwinger integral equations, one for each of a
finite set of reaction channels. The driving term for each
channel is the corresponding Born amplitude. The corn-
plete problem includes target-continuum channels and the
remainder of the discrete channels. The continuum is tak-
en into account by adding the corresponding complex-
polarization potential, ' calculated explicitly as an integral
over continuum states, to the diagonal interchannel cou-
pling potentials. The remaining discrete channels that
contribute significantly are taken into account by explicit
second-order polarization potentials. The present discus-
sion is restricted to one-electron atoms, in which all but
one electron constitute a closed-shell core, assumed to be
inert for the purposes of the calculation. We have essen-

tially a three-body problem. The extension to rnany-
electron atoms will be given separately.

Momentum-space formulations of electron-atom
scattering theory have been given, for example, by Mittle-
man and Watson, Bonham, and Byron and Joachain.
Calculations have usually been based on second-order
solutions of the integral equations. The integral equation
formalism has been discussed in detail by Sloan and
Moore. Direct solutions of the integral equations for a
small set of channels using the unitarized Born approxi-
mation (UBA) in atomic hydrogen have been performed
by Burke and Seaton, who omitted exchange amplitudes.
This type of calculation can be extended by including
more channels and putting in exchange potentials. The
earliest reported solutions of the full equations for two-
and three-state close coupling followed much later in 1976

(Refs. 9 and 10) and are of limited scope.
Coupled-channels calculations for atomic scattering

have usually been done in coordinate space, where they
amount to the solution of a set of coupled integro-
differential equations in a strongly coupled internal region,
with boundary conditions given by solving a set of equa-
tions in the external region which are still coupled because
of the long range of the dipole coupling potentials. Such
calculations have been done, for example, by Kingston,
Fon, and Burke, "who coupled the 1s, 2s, and 2p channels
for atomic hydrogen.

Channels not included in the discrete physical set have
been taken into account by expansions in square-integrable
pseudostates. Pseudostates, whose purpose is to mimic the
effects of higher-energy channels, are either included in
the coupled-channels calculation, as has been done by Cal-
laway, McDowell, and Morgan, ' or in a calculation of the
corresponding polarization potential as has been done by
Scott and Bransden' and Bransden, Scott, Shingal, and
Roychoudhury. ' These examples again consider the 1s,
2s, and 2p channels for atomic hydrogen.

The present method may be summarized as follows.
The coupled integral equations are solved by matrix
methods using Gaussian quadratures to make them
discrete. The driving terms and potential factors in the
kernels consist of matrix elements of the coupling poten-
tials. These are essentially Born matrix elements (both on-
and off-shell). Target wave functions are approximated by
single-electron excitations (orbital approximation). Each
orbital is represented by a linear combination of Slater-
type orbitals. Direct matrix elements are computed from
analytic integrals for pairs of Slater-type orbitals. Ex-
change matrix elements are computed by numerical in-
tegration using the coordinate-space representation.
Polarization-potential matrix elements are computed in
momentum space with the use of the equivalent local ap-
proxirnation. They contribute only for cases which are di-
agonal in the channels. Amplitudes in the polarization-
potential calculation for the continuum are computed in
the extreme-screening (Born-Oppenheimer) approximation
with the use of the Bonham-Ochkur' approximation for
exchange amplitudes. For discrete channels they are com-
puted in the Born approximation with Bonham-Ochkur
exchange.
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The approximations involved in calculating the continu-
um polarization potentials have been discussed in Ref. 1.
Details of the calculation of discrete polarization poten-
tials have been given by McCarthy, Saha, and Stelbo-
vics 16, 17

The single-channel version of the present theory for hy-
drogen has been extremely successful, ' reproducing
entrance-channel data (elastic differential cross sections
and total reaction cross sections) essentially within experi-
mental error at 50, 100, and 200 eV. The coupled-
channels optical calculation for the 1s, 2s, and 2p channels
of hydrogen at the same energies has been equally success-
ful for differential and total cross sections for each chan-
nel. ' The angular correlation parameters A, and R are not
reproduced as well at backward angles for 54.4 eV, but
this theory works better than any other.

The scope of the present paper is to give a detailed ac-
count of the coupled-channels optical (CCO) method
which would enable it to be repeated by other workers.
The formal theory is summarized in Sec. II. Sections
III—VII give computational details for the various com-
ponents of the calculations. Section VIII discusses the
special problems in numerical analysis which occur in the
atomic problem as distinct from the momentum-space
problem with short-range two-body forces. It gives esti-
mates of the numerical accuracy obtainable with different
quadrature meshes in the three-state close-coupling prob-
lem for hydrogen at 54.42 eV. Section IX discusses the ef-
fect of the inclusion of the polarization potentials in com-
parison with three-state close coupling.

II. SUMMARY OF FORMAL THEORY
AND NOTATION

The Hamiltonian for electron scattering on a one-
electron target is

H =K&+K2+u&+V2+v3,

where K and u stand for kinetic-energy and potential
operators, respectively. We neglect the kinetic energy of
the massive core. Subscripts 1 and 2 label the electron-
core subsystems for electrons 1 and 2, respectively. V3 is
the electron-electron potential. We ignore spin-orbit cou-
pling so that electron spin plays a part only in applying
the Pauli exclusion principle. For the two-electron prob-
lem the total wave function is labeled by the total electron
spin S and a number n that denotes the three-body quan-
tum state with respect to the quantum numbers of bound
states and momenta of positive-energy electrons. This is a
discrete notation for the continuum in the cases where one
or two electrons have positive energy with momenta q &,

q2. The discrete notation involves the usual box normali-
zation and limits as the box is expanded. The Schrodinger
equation for total energy E is

I
E'+ ' [Ki +K2+Ui + U—2+—U3

+ ( —l) (H E)P, ])%'„s'——0, —(2)

where P, is the space-exchange operator and the super-
scripts (+) denote outgoing and ingoing spherical-wave
boundary conditions, respectively. Since singlet and trip-
let scattering are independent we suppress the index S to
simplify the notation and use the abbreviation

(e K2 ——v2)QJ =0 . (4)

We use an operator notation where all operators are un-
derstood to act on the wave function 4„'+ '. The
Schrodinger equation (2) is written as

E'+' —K=, (5)

where

K =K) +K2,
V =V) + V2+ V3

We use projection operators P, Q for the sets P, Q of states

P=X I((' &&4
I

Q=l —P (7)
iGP

to separate the Schrodinger equation (5) into two projected
equations

P (E'+ ' K —v)P =—Pvg,
Q(E'+' —K —v)g=gvP .

The states in P space are a finite set including the ground
state Po. Q space includes the continuum and the remain-
ing discrete states.

We formulate the coupled-channels problem for P
space, with Q space eliminated by defining an optical po-
tential V'~' given by

V =Vi+U3+(Vi+U3)g Q(Ui+U3)
Q (E'+' —K —v)g

(9)

The last term in (9) is the complex-polarization potential.
The coupled equations in P space are

P(E'+' —K —V2 —V'~')P=O . (10)

They are written in momentum space, with the use of an
expanded notation, as

g (k„(();
I

E(~+' K, —VI~'
I
p~u—j+'(kj)) =0, i EP

j E'P

where

E~+ i E(+)+g (12)

and n stands for the set of states j, kj. Note the distinc-
tion between the momenta k; which correspond to the
channel kinetic energy E; of (12), and are thus "on-shell"
and the k, which are not constrained. The corresponding
set of coupled integral equations is written in operator no-
tation as

T;, = V~J. + g &iiGiTi, , (13)
leP

or, in terms of explicit matrix elements, as

U3 —v3 +(—1 ) (H —E)P,

The reaction channels j are labeled by the one-electron
target bound-state functions PJ, which are Hartree-Fock
functions in the case of alkali metals. We choose the label
2 for the bound electron. The space-exchange operator
takes care of antisymmetry:
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(k„Pg I
T

I Pj, kj) =(k„(I(;
I

V(~'Igj, kl)+ g fd'k, (k„P; I
V(~'I/I, k,), (k, g(I TIP, , kj),

(14)

where

T~J
= ( k„,());

I

T
I p), k, ) = ( k„p;

I

V ~'
I Qj, uj~+

'( k,. ) )

is the T-matrix element for the transition from the channel state
I Pj, kj. ) to

I P;, k, ). Note that k„ is an arbitrary

momentum. The half-off-shell T-matrix element that is the solution of (14) contains the same physical information as

the wave function (k,
I
uj~+'(kj )).

The optical potential matrix element is fully expanded as

( k„p,. I

V' '
I QJ, k, ) = ( k„p; I

v(+v3
I QJ, k, )

+g X «„0; I v3
I
A)(A I

P.'-') (, )
m ll'EQ

E(+) E

(p In, l, m)

~ l 2=1
7T

where

1/2
1—gc„A„n„! Im
p p

(2'�)
(2nq)f

1/2

1
Yl (P),

(g„—ip) "
(17b)

(18)

I PJ ) =
I
n, l, rn ),

I P;) —=
I
n', I', m') .

The one-electron bound state is written in terms of a
Slater expansion which in coordinate- and momentum-
space, respectively, takes the form

(r
I
n, l, rn) =pc„A„r " exp( g„r)Y—~I(r), (17a)

III. CROSS SECTIONS AND OTHER
EXPERIMENTAL QUANTITIES

XC m ~C ~~T~ &' 'P) 1(x) (23)

The differential cross section for scattering from chan-
nel j to channel i at an angle 0 is

A.2

dQ kj.
=(2m) —~ g I

(k;;n', I', m'
I
T

I
n, l, m;kz)

I

(22)

( k;;n', I', m'
I

T
I
n, l,m; kj )

' 1/2

(4~) (L,L (
' —

I
'I ' e(M. )

L,L',I (I '+
I

M'
I

)'

Here the symbols n, 1, m have their usual meanings as
one-electron quantum numbers. No confusion should
arise with their use as formal channel indices in, for exam-
ple, Eq. (16).

For computation we make a partial-wave expansion of
the T- and V- matrix elements, defining the partial matrix
elements T LI

' '(k„,k, ) for total angular momentum
quantum number J by

(k„n', I', m'
I
T

I
n, l, m;k„)

(k, IL, ',M')C. ..'
L,M, L', M', J,K

XT„" ' '(k„,k„)CL™(L,M
I
k„),

where

1=(21+1)'

e(M') = 1, M' (0
e(M')=( 1) ', M'&0

x =cosO .

The corresponding total cross section is

(r;~ = (2~) —~ g (2J+ 1)
I

T„"L ' ' '
I

J 1 L,L',J

(24)

(25)

(20)

where

(k
I
L,M)—:YL((r(k) (21)

and CLlJ is a Clebsch-Gordan coefficient. The defi-
nition of V„"Ll

" ' is analogous to (20) with V'~' substitut-
ed for T. We suppress the superscript (Q) where this
causes no confusion.

T" ' '=Vn
nLl nLl (26)

is sufficiently accurate. One can use this fact to calculate
the differential cross section using the closed-form expres-
sion for the Born approximation by substituting in (22) to

We have omitted the on-shell momentum arguments of
the partial T-matrix elements for brevity of notation.

The differential cross section converges quite slowly
with J at intermediate energies but there is a value Jo
beyond which the Born approximation



2696 I. E. McCARTHY AND A. T. STELBOVICS 28

write the T matrix in the form

(k;;n', 1',m'
I
T

I
n, l, m;kj )

=(k;;n', 1',m'
I
(T —V)

I
n, l, m;kj )

+ ( k;;n', 1',m'
I

V
I
n, l, m; k2 ) . (27)

The partial-wave expansion is used for the first term up to
Jo [in view of (26) its partial-wave expansion is essentially

I

zero for J & Jo]. For the second term we use the closed-
form expression for the Born approximation, writing the
potential as

V=u1 —(U+i W)+u3, (28)

where the term in parentheses is a local central potential
found by approximating the complex-polarization part of
the optical potential as described in Sec. VII. The ampli-
tude for u3 is given by

' 1/2

(k;;n', 1',m'I v3 In, l, m;k~)=[2m K ] 'pi~A, 1 e(p)( —I)'
(~+

I 1 I
)'

X I'
X C221 0 0 0, gg2, (a~,K) Pfw I (x)

N
(29)

N=np+np,

CN ——cpcp ApAp

ax =0„+0„
K=k —k' .

(31)

The factor in braces is the radial integral for a pair of
Slater functions, one in p; and one in p2 [see Eqs. (17)]
summed over pair indices N. The factor in parentheses is
a Wigner 3-j symbol. Here

g2, (a~,K)=C& f dr j2(Kr)r exp( azr), — (30)

where

~=
I fo I

' X I f
m'

R =Re(fof i ) g If

(35)

(36)

(29) and multiplying by —1 to take account of the attrac-
tive core-electron potential.

Since u1, u3, U, and W are all local central potentials, so
is their sum V in Eq. (28). In a practical calculation U
and W are found numerically as a function of K at a set of
predetermined points. A momentum profile for all other
points is determined by interpolation.

The angular correlation parameters A, and R for the ex-
citation of different m components of a p state, when the
ground state of the target is an s state, are given by

g~(aK)=CN
2K

(K/2)"aI (p+ v)
2+K 2)( 1+@,+v) /2I ( 1 +

Evaluating the integral (30) yields
' 1/2 where

m'

f =—(k;;n', l, m'
I
T

I
n, 0,0;ko) . (37)

2+v —p 1+v+p KXF +
+K

1+v

where

v=A+ 2
I

p =N+ —,
'

(32)

For the entrance channel we must calculate the total re-
action cross section o.z in addition to the differential cross
section. The S-matrix element is given in terms of the
phase shift 5J and the elastic T-matrix element:

SJ——exp(2i5J) =1—2m.ikpT~p' ' .

The total reaction cross section is

and 2F1 is the hypergeometric function.
The Coulomb part of the electron-core potential u1 is a

local, central potential:

( k;;n', 1',m'
I

v&
I
n, l, m;kj )

=[2m K ] '( —Z)5„„5n5 ~ . (34)

Z is the core charge which is 1 in the case of a neutral tar-
get.

The momentum representations of u& and u3 [Eqs. (29)
and (34)] indicate a singularity at K =0 in the diagonal
channels (i.e., when i =j). For neutral targets (Z = 1) this
singularity is canceled in the sum u1+u3 so that the final
potentials are nonsingular. To make this explicit we note
that one can use the alternative representation of ui which
is obtained by replacing g~(aN, K) with g~ (aN, O) in Eq.

oR ——(~/ko)g(2&+ I)g(2J+1)(1—
I
sJ I

') . (39)
S J

Since the partial-wave expansion of o.z may be slowly
convergent with J, we make use of the fact that the Born
approximation to o.z is related to the imaginary part of
the optical potential for K =0 by

o g = (2/kp )(2m ) W(0) (40)

+ Born (41)

For J& Jp the Born approximation (26) is valid. The total
reaction cross section is, therefore, calculated by

aR ('rr~ko)g(25+ 1) g (2J + 1)(
I
~J'

S J(J()
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IV. SOLUTION OF THE COUPLED INTEGRAL
EQUATIONS

T" l'[ '= T"nLl = ij

For channel j, L takes the values

IJ—1
I
&L&J+l.

(42)

(43)

A further restriction on L is imposed by parity. The only
channels that couple to the entrance channel are those
with natural parity

The partial-wave expansion of the set (14) of coupled
Lippmann-Schwinger equations results in closed sets of
coupled radial integral equations for each set of values of
the good quantum numbers J, the total angular momen-
tum, and H, the parity of the channel. We add the
partial-wave quantum numbers L',L to the sets i,j in the
channel notation (19) to abbreviate the T-matrix (and V-

matrix) elements as follows:

where, denoting the principal value by H,

G&(q )=+ — 5(k~ —q),1 ia
—,'(kl —q ) kl

(46)

kl ——2(E+ei) .

The momenta labeled by q are off shell and can take arbi-
trary values. The on-shell momenta kl are the momenta
of the external electron for the channels l.

To solve the equations numerically the q' integration is
replaced by an N-fold quadrature sum with weights w,
and coordinates q„r=1, . . . , N. The coupled equations
become a set of algebraic equations which can be written
in terms of new coordinates xln in which the on- and off-
shell notations are combined:

xln =kl, n =1

II(L +1)= II(J) . (44)
=qn —1, n=2, . . . , N+1 . (47)

)& Tlj(q', k) ), (45)

I

The coupled equations are

TJ(q, k~ ) = VJ(q, kj )+g f dq'q' V~(q, q')G~(q'2)
l

The equations involve potential matrix elements
Vl(x;„,xln ) that are typically off shell. The solution vec-
tor TJ(x;n, kj ) contains half-on-shell elements in addition
to the physical on-shell elements that we are interested in:

N+1
TJ(x;„,kj )= VJ(x;„,kj)+g g w„ i[xIn Va(xin~xin')Tlj(xnan, k&) —k~ Vn(x;„,k~)T~&(k~, k/)]

l n'=2

X [ ,' (k( x(„)] —' im—k( Vn(x—;„,k( ) T(/(k() kj ) . (48)

Here we have turned the principal-value integral into a
regular integral '

by subtracting the on-shell value of the
integrand using the identity

H f dq/(k( —q )=0, (49)

thus removing the singularity at q =kl. The final form of
the equations to be solved is

N+1 .

T,.~(x,„,k, )= V, (x;„,k, )+g g K(((x;„,x(„)
l n'=1 T=(1—E) 'V . (53)

I

where the superweights 8'l„are obtained from (48):

W~„=x~„w„&[—,(k~ —x&„)] ', n =2, . . . , N+ I

N+1
k( g w„)—[ —,'(k( —xg„)] ' i~k(, n =1—.

=2
(52)

For solving the equations we use the matrix operations
symbolized by the notation

)& T)g(xln'sk) ) .

The kernels are

+il(Xin s ln') ln Vil( in sXln') s

(50)

(51)

If the calculation is carried out at any energy for which
not all the channels are open, then the Green's functions
for the closed channels are not singular and the subtrac-
tion procedure based on (49) is confined to the open chan-
nels.

V. TWO-ELECTRON POTENTIAL MATRIX ELEMENTS

The potential matrix elements (16) involved in the calculation are of three kinds: matrix elements of the core potential
v1, direct and exchange matrix elements of the first-order potential v3, and the complex-polarization-potential matrix ele-
ments. In this section we describe the details of the calculation for v3.

The partial matrix elements arise from inverting the definition (20) with T replaced by v 3.

VL~
' '(k', k)= fdk'f dk g (L',M'

I
k')CP~q (k', n', 1',m'

I v3
I
n, l, m;k)Cz~ (k

I
L,M) .

MmM'm'
(54)

For charged targets we use the representation in terms of Coulomb functions
I

X' +—'(k)), which become plane waves

I
k ) in the uncharged case. For the direct matrix elements
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(X' '(k');n', l', m'i v3 in, l,m;X'+'(k)) =fd rI fd r2X' "(k', r I)p'n I~ (r2)v3(
i rI —r2i )$«~(r2)X'+'(k, rI) . (55)

'fJn'L'I'( J) L —L'I ~ )I +I'+Ji nLI =, & (
m.k'k

I I'A L L'k I L J -- (~)
p p p p p p 'Li l, ~

'(LL'l l')Rnn'LL II (k'.k} . (56)

The symbols in parentheses and braces are, respectively, Wigner 3-j and 6-j symbols.
The radial integral is

Rnn LL II (k', k)= drI dr2uL (k', r, )unl (r2) &, unl(r2)uL(k, rI) .(A, ) l
A, +1 (57)

Here uL(k, r) is the regular Coulomb function FL (ri, kr), where ri is the Coulomb parameter

R=Z/k . (58)

u„I is the radial bound-state function. The radial integral is expressed in terms of one-dimensional quadrature sums in
Appendix A. Its computation is very fast. For a dipole transition the r2 integral behaves like r1 for large r1. Hence,
the r1 integration converges very slowly. It is necessary to integrate so far in the radial dimension that uL has its asymp-
totic form

uL (k, r) =sin(kr Ln l2} r—iln2kr +—oL), ' (59)

where crL is the Coulomb phase shift.
To generate the exchange matrix elements we apply the space-exchange operator to (55). The partial-wave reduction

gives

'L'I'( J) 2 L —L' I I' (A, )
~nLI ( —1) g p p p Q Q Q li L& g

(LL'l l')Rn'nLI'IL (k', k) .
mk'k

(6Q)

lll $

V" '' '= g (2H) 'i' (LL'l l')(l"') (l")
(2A, )![(2(l"—A, )]!

Here the r1 integration converges much more quickly for all transitions.
For uncharged targets it is possible to perform the integrations in Eq. (55) [see Eqs. (29) to (32)]. We can thus work en-

tirely in terms of momentum-space closed-form expressions. The calculation for the direct case is faster than the numeri-
cal integration involved in constructing (56) if the Slater expansion (17) of the orbitals is not too complicated.

The partial-wave direct matrix elements for a Slater pair described by (31) are
' 1/2

L'I'( J)ygl L(k tk) "ALII"I"'2. 1 (61}
N

L I" L'
ALII "I"'A, ( 1 ) I J I

L 'I'( J) J +I"+I"'+A, ,

T

L I" L' I" I' I L' I"'1"—A. L I"' A,

I"—A. l"'A, OOO O O O O 0 0 (62)

and

gI I„(k',k)=2mfdu P'I (u)(k') k K +
gI (K) .—1

(63)

n'L'I'( J)
~nLI

The Slater pair reduced matrix element gI-(K) is given by Eq. (30). The integral (63) requires a large amount of cornput-
ing time for large values of I"' (large J). It is a major determining factor of the time for the overall computation.

The exchange matrix elements for a Slater pair (31) are

(2~2) —IiI If' f, P(l )2(l ')2(l—')2$

(21)!(21')!
(2A. )!(2A,')![2(l —A, )]![2(l' —A.')]!

1/2

( 1 )I+I'+L +L'+J

L' I" I"' 5 A,
'

A, 6 I' —A,
' I"' L

0 0 0 0 0 0 0 0 0

I" 1—A, L'
X (k')'-'k'-'Z"" "+' '(k' k)0 0 0 nil" (64)
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where the symbol in braces is the Wigner 12-j symbol of the first kind and
00

Z„"ii„' ' '(k', k) = dx x "gPi (k', x)gii-(k, x) .

The reduced matrix element gii is defined from gi" (30) by

g/"(
f
k+x

f
)= /gap(k, x)(x

f
I', m'&(I', m'

f

k & .
I', m'

The expression (64) is given for completeness. Present calculations use (60).

(65)

(66)

VI. EXTENSION TO THE INDEPENDENT-PARTICLE
MODEL

H(~, ) =Z, —Xr,
- '

(68)

is the sum of the one-electron kinetic-energy operator for
coordinate r; and the potential felt by electron i from the
target nucleus. The Hamiltonian is taken to be spin in-
dependent, and the target atom is assumed uncharged.

The wave function +' + ' of the scattering problem is de-
fined by

(E —a)~'+ ' =o (69)

In order to treat real one-electron atoms more accurate-
ly we can relax the inert core approximation sufficiently to
allow electron exchange with particles in the closed-shell
core. We do not allow configurations in which core elec-
trons are promoted to excited states (core excitations).

Assuming an ¹lectron target it is convenient to parti-
tion the total Hamiltonian of the problem as follows:

N

H(x) =Hr(x, . )+H(x;)+ gr;, ' . (67)
j=0
J+1

Here x stands for the set xo, . . . , xz of coordinates. x;
represents the space and spin coordinates r; and o.;,
respectively, of one electron. The notation x; represents
the set x with the coordinate x; removed. The Hamiltoni-
an of the X-electron target is H~ and

Target wave functions 4 which are antisymmetric satisfy

(e@—Hz- )4=0 (70)

After making an antisymmetric multichannel expansion of
+' + ' as a linear combination of products of target states
and distorted waves u @+' we obtain the following set of
coupled equations for the u @+' from Eq. (69):

IlEe —H{ro))(inc, + Ver (xo)) (xo
f
ue" &

+ fdxi V~ (xo,xi)(xi
f

u~+'
& =0.

The direct potential matrix element is

Vee'( xo)=N fdxo(4
I
xo&r oi (xo

I
4 &

(71)

(72)

and the exchange potential matrix element is

V~ (xp, xi)=N fdxpi(@ fxo&[E —H{x)](xi
f

4'& .

(73)

Eq, is the energy of the external electron in the reaction
channel specified by the target state 4. The integral is
taken over all coordinates except xo and x

&
~

%'ith the use of independent-particle determinants for
the states 4'+ ' and 4 the momentum-space potential ma-
trix elements are

(k
f V~

f

k'& =(2m) g fd rp f d r, e 'a;"(ri)rp, 'b;(r, )e "'(p
I
p'&(p.

I pb & (74)

p

(k
f

V~@@
f

k'&=(2m) g fd ro fd r, e 'a (ri)(E —e eb —"oi —+i'(rp)e (p f pb &(p' IV'& . (75)

Here a; and b; stand for the ith orbitals in the deter-
minants 4 and 4', respectively, e, and eb are the corre-
sponding single-particle energies, p, and pb are the corre-
sponding spin projections, and p and p are the spin pro-
jections for the external electrons with momenta k and k',
respectively.

The spin-projection overlaps may be eliminated from
(74), since they simply prohibit spin flip. The direct ma-
trix element is a sum of matrix elements for each target
electron. In our model b; =a; for all of the core electrons.
We group the exchange terms (73) into two classes. The
first one involves the active electron, for which the ex-
change potential is given in terms of the orbitals P; and PJ.
(with the use of the notation of Sec. EE) by

=( —l) (k, P; f {e;+ej+v3 E)P„
f P~, k'& . —(76)

This exchange potential is analogous to the one in the pure
three-body problem of Eq. (2). There is now an additional
exchange potential coming from the contributions of the
core electrons to Eq. (75). We have an exchange potential
for each closed shell s, so that the matrix element of the
core-exchange potential is

(k fv, fk'&

= —g(2l, +l)(k, P, f
(2e, +v, E)P,

f
P„k'&, (77)—



I. E. McCARTHY AND A. T. STELBOVICS

where the shell orbital, orbital angular momentum, and

energy are given, respectively, by P„ l„and E„and u, is

the Coulomb potential between the external electron and a

core electron.
%e can now start the coupled-channels optical formal-

ism from the analog of Eq. (2), which is

[&'"—(Ki+K2+ui +u~+u3)lq".s"=0,
where the multichannel expansion of 4'„q ' is not antisym-

metrized and

I
U& =U1+Ul

F
U3 ="3+U3

with the operators U3 and U& defined by (76) and (77).

Equation (6) is replaced by

U =U ) +Up+U3

The static core potential U& includes the Coulomb po-

tential of the nucleus.
%'ith the use of the notation (31) for a pair of Slater

functions arising from the product of two orbitals, the

static contribution to the core potential of a closed shell

with principal and orbital quantum numbers n, ( is

u„i(K) =2(2l + 1) gC~(M —1)!Im1 1

2~ K ~ (+~+i@)

Here one of the nuclear charges has been used to subtract

the singularity at K =0 in the matrix elements for the ac-

tive electron. If there are N —1 electrons in the core we

use N —1 charges to subtract the E =0 singularities in the

terms (81). Any remaining charges give an overall

Coulomb potential for a charged target

uc(K)=(Z N)l(2m K )—,
where Z is the charge of the nucleus. If the target is

charged the Coulomb representation (56) must be used for

the direct matrix elements of the interaction of the in-

cident electron with the active electron, since the closed-

form expression (61) is the plane-wave representation of
the coupling potential.

The partial-wave matrix element for a local central po-

tential is described in Appendix B. Core-exchange matrix

elements are calculated according to (60).

VII. POLARIZATION POTENTIALS

The complex-polarization potential is given exactly as

the second term of (16). This expression involves the com-

plete solution 4' of the problem for all three-body states

m. To get the polarization potential in a form useful for
calculation we must, therefore, approximate the 4" ' in

some way, otherwise we merely have a rearrangement of
the problem, not a solution. In fact the Coulomb three-

body problem is so difficult that its solution is best ap-

proached by an iterative interaction of theory and experi-

ment. It is at this point that the iterative process enters

the present theory.
Investigations have shown that the polarization poten-

tial for discrete Q-space channels converges quite rapidly

as the energy of the Q-space state becomes more and more

different from the energies of the states in I' space. For
example, in the one-channel (elastic) problem for hydrogen

at 100 eV the 6p state contributes less than 1% to the po-

larization potential. In these investigations the form

chosen for %'~ ' in the polarization potentials is just the

Horn approximation, that is, a wave function which is the

product of the target state wave function and a plane wave

for the incident electron. A study of other approximations

and their comparison with this one have been carried out

by Coulter and Garrett.
The above considerations suggest that most of the

discrete Q-space contributions are insignificant at, say, a
1'//o accuracy level in actual computation. For discrete Q-

space channels we are, therefore, interested in a finite set

of channels called R space. The remainder of the Q space

at our level of significance consists only of continuum

channels and we denote this portion of the optical poten-

tial by V'~ '. A further approximation we have made is

the equivalent local approximation (see Appendix 8). The

equivalent local approximation to the second-order polari-

zation potential for the excitation of an R-space channel

has been discussed in Ref. 16. The fact that it gives an ex-

cellent comparison with experimental data' ' is interest-

ing from the point of view of the iterative interaction of
experiment and theory. However, it is not essential to the

theory, since it can be regarded as a mathematical approx-

imation to the solution of the coupled-channels problem

for the space I'+E., and verified accordingly. ' The ap-

proximation of using the exact second-order potential for
transitions from I' space to R space and back is equivalent

to solving the coupled-channels problem for P+R with

the approximation

(83)

To model the continuum polarization potential V'

is more difficult. For the target continuum we do not

have an exact calculation to which the optical potential

provides an approximation. %e are forced to use approxi-

mations to +' '(q~, qz), where qi and q2 are the electron

momenta in the ionized state, whose justification is their

ability to reproduce experimental data. The real-

polarization potential needs off-shell ionization matrix ele-

Inents, which cannot be verified in comparison with ioni-

zation data. However, it is of second order in U3 and we

do not need great accuracy in comparison with the first-

order P-space matrix elements.
The imaginary-polarization potential is an integral over

Hermitian products of on-shell ionization amplitudes,
which are directly related to ionization experiments. The
integration over qi and q2 means that it is necessary to
have a good approximation only where the amplitudes are

large. This is the case where the greater momentum q & is

much larger in magnitude than the lesser q&. The in-

tegration averages over details so it is not necessary to
reproduce differential cross sections in detail. A good test
of the continuum optical potential is its ability to repro-

duce the total ionization cross section, which is closely re-

lated' to 8'(0). The Born-Oppenheimer approximation
(with exchange), in which the slower electron always has a
Coulomb wave orthogonalized to the relevant target states

and the faster electron has a plane wave, is quite satisfac-

tory even as low as 50 eV. This approximation crudely

describes screening, an important three-body effect. It is
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the calculation of the continuum optical potential in this

approximation that has already been successful for hydro-

gen with the P space consisting of the 1s state' and the 1s,

2s, and 2p states. ' Its calculation is summarized below.

The polarization potential is the second term on the
right-hand side of (16). The Born-Oppenheimer approxi-
mation to the channel i diagonal matrix element is, in the
equivalent local approximation (Appendix B),

&k, I(U+iW)
I k, )=——,

' f du fd3q, fd3q2ft(k„—k, +k;, q~, q2)[E'+' ——,'(q, +qq)] 'f(k;, q~, q2), (84)

where

u =k; (k, —k, )/(k,
I
k„.—k,

I
), (85)

I

and D; ( k, p ) is obtained for each term in the Slater expan-

sion (17) of P; by the appropriate differentiations of the

function Do( k, p ),

f(k, q„q2)=fn(k, q, , q2)+( —1) f~(k, q~, q2) . (86)

The direct and exchange amplitudes are, respectively,

Do(k, p)=( 2m) fd r exp( i k r—)

Xexp( —ar)X'+'(p, r)
fg) & q), g' '(q () I

U3
I
$' k),

fE=&4' '(q(), q) IU3 lt)1;, k&

(87)
I (1 )

m/2 +(I +la) B
~2 a A

Because the continuum-state momenta q~ and q2 are

just integration variables we need to consider only two

types of numerator for the integrand of (84), denoted Dn
and DE in obvious notation. We divide the integration
into two parts and make the Bonham-Ockhur peaking ap-
proximation where the plane waves occur with different
coordinates. The first part has q&)q2. For the second

part we redefine q& and qz so that again q» q2. We now
have

—IV
a

X 2 B
(93)

v=z/k,
A =k —(p+ia)

8=
I

k —pl'+a

(94)

where, for an attractive Coulomb potential for charge Z,

where

x(
I
k. —q i I

+
I
k. —q2 I

Dn=(2+) 'F(k„,k, , q, , q, )

x(lk, —q) I
'Ik, —q) I

+ Ik.—q21

Ds =(2&) F(k„k, , q„q, )
(88)

The method we have adopted for the integration (84) is
the direct Diophantine multidimensional integration.
This method makes computation of the integrand very

easy, since one can use Cartesian coordinates and partial-
wave expansions are unnecessary. The principal-value in-

tegral for the real potential is again transformed to a regu-
lar integral by the subtraction (49).

VIII. NUMERICAL SOLUTION
OF THE INTEGRAL EQUATIONS

F(k„k, , q, , q, ) =5', ( k„—q „q,}b„(k„—q, , q, ), (89)

5;(k, p)= fd q&P; I
q)&q+k

I

x Ix'+'(p) &
—g I P, &&&; II'+'(p))

where

FJ(k)= fd q&P; I q) & q+k
I PJ ) (92)

(90)

Here X'+'(p) is a Coulomb wave for an incident particle
with momentum p and the magnetic degeneracies of the
bound state PJ are denoted by rn (other quantum numbers
for j are the same as for i).

The orthogonalized Coulomb-plane-wave overlap 6; is
expressed in terms of functions that are easily computed:

b,;(k, p)= D;(k, p) —QDJ(o, p)FJ(k), (91)

The numerical methods involved in the solution of the
coupled integro-differential equations for the close-

coupling approximation in coordinate space are very well

known. ' ' Since the present methods were developed
with no previous experience of the difficulties peculiar to
the atomic problem it is worth describing these difficulties
and our solution of them. We also investigate the relative
accuracy of the present method in comparison with the
coordinate-space method.

The chief characteristic of the atomic problem is the
electron-electron Coulomb potential, which introduces dif-
ficulties not present in nuclear physics where short-range
forces are used. One of the major manifestations of the
difficulty in coordinate space is the long range of the di-
pole coupling potentials, which means that the equations
are coupled even in the external region. Since the boun-

dary conditions are built into the integral equations this
difficulty is overcome. However, the kernels for dipole
and related transitions have more complicated structure
than for monopole transitions.

The structure of the kernels is illustrated by Fig. 1,
which shows profiles of the factors k VJ(k, k') for the
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uj and weights wj defined on the interval [0,1]. A stand-
ard conformal transformation for points z defined in the
interval [0,1] to points k defined on the interval [0, ao ] is

k=
1 —z

(95)

Here, half the k points have values less than a. For
z=0.5, k =a. To cluster the points near b] and bq given
by

z =bi ——0.5+b,
z =bz ——0.5 —b,

we transform u C [0,1] to z by

(u —bi) +(u —bp) +b]+by
(1 b)) +—(1 b~) —+b)+by

(96)

(97)

Tij (ki kj)

= V~J(k;, k~)+ f dqq'g V~(k;, q)G~(q')VIJ(q, k, )

(99)

(a) with the use of the quadrature mesh, (b) performing the
integral (99) by adaptive Romberg integration to a speci-
fied relative accuracy of 10 . All the integrals over non-
dipole transitions are very convergent and one or two or-
ders of magnitude more accurate than those involving di-
pole transitions. For the most difficult case, J=0, 2% or
3% accuracy is obtained at 54 and 100 eV with a 16-point
mesh. 1% accuracy requires 24 points.

At energies in the range 50—200 eV, exchange matrix
elements are negligible for J& 13. They are not calculated
for these J values. The unitarized Born approximation, in
which the real part of the Green's function G~(q ) is
neglected, is sufficiently accurate for J& 23. For the 1s-2p
excitation the Born approximation to the T-matrix ele-
ment is accurate to about 1% for J greater than about 25.
Here the monopole potential matrix elements are less than
10, but the coupling to the dipole channel results in
monopole T-matrix elements that are not negligible. The
Born approximation for monopole excitations is, there-
fore, invalid at the 1% level until J reaches quite large

The parameter a is chosen to be close to the on-shell value
of k for dipole excitations. Values of b less than 1 cluster
the points near a. Because of the rapid variation of some
of the matrix elements in Fig. 1, the optimum value of b
for the calculation is found to be in the vicinity of 0.1.
The transformation (97) is only one of many possible.
This form is chosen for its relative simplicity and ease of
programming. In the integration the weights wj are mul-
tiplied by the Jacobian dk/duj,

dk a 3(u —b)) +3(u —bz)

du (1—z) (1 bi) +(1—bq) +b—i+bed

In the present calculation of coupling in the 1s,2s, 2p-
channel space of hydrogen, potential matrix elements are
calculated to an absolute accuracy of 10 and a relative
accuracy of at least 10 . The quality of the integration
mesh and the solution of the integral equations for a par-
ticular value of J is judged by comparing calculations of
the second-order on-shell T-matrix elements

values. We have used J=80 as the last value for which
the UBA calculation is performed.

The accuracy of the present numerical methods is
checked by a detailed comparison of the 1s,2s, 2p close-
coupling calculation with the coordinate-space calcula-
tions of Burke, Schey, and Smith and Kingston, Fon,
and Burke" at 54.4 eV. Table I compares the contribu-
tions of the lower partial waves to the total cross section
for each channel. Table II compares differential and total
cross sections and angular correlation parameters for both
16- and 24-point meshes. Except for very small numbers
in Table I for J= 1, where there are clearly sensitive can-
cellations, the general estimate of 1% accuracy for 24
points and a few percent accuracy for 16 points is verified.
The same is true for Table II except at large angles, where

again there are severe cancellations of partial-wave contri-
butions. A difference between the present calculation and
the coordinate-space ones is that in the latter" exchange
amplitudes are not calculated for J& 8, where the present
calculation retains them up to J=13. We expect the
resultant effect on the calculations of this difference in
procedure to be small. Where the cross section is small at
backward angles it may lead to a difference of a few per-
cent.

Table I is useful for assessing the number of quadrature
points necessary in the solution of the integral equations.
For monopole transitions the partial-wave contributions
are small for J& 10 in relation to the sum. Therefore, the
greater error in the 16-point calculation is tolerable and 16
points are adequate. In any case, the 16-point contribu-
tions are identical to the 24-point contributions to the level
of accuracy considered here. For the dipole transition the
contributions for J&10 are not negligible, but they are
close to the Born approximation (given in parentheses in
the column headed BSS). The small differences in accura-
cy are, therefore, again minimal and the use of 16-point
quadratures is adequate. For J (10 it is necessary to use
24 points for —1% accuracy.

The computation reported here was done on the Prime
750 computer with double precision (64-bit words). (1 bit
is a binary digit. ) For comparable precision, execution
times are roughly equal to those of the Control Data Cor-
poration Cyber 173 computer or the Digital Equipment
Corporation VAX 11/780 computer. The time is essen-

tially proportional to the number of potential matrix ele-

ments to be calculated. For the pure three-state close-
coupling calculation without polarization potentials, with
the use of the coordinate-space methods of Eqs. (56), (57),
and (60) and 24-point quadratures, the calculation takes
300 sec for each value of the total angular momentum J
for the direct matrix elements and the same time, in addi-
tion, for the exchange matrix elements. Here the accuracy
is about four figures. In order to obtain an accuracy of
eight decimal places for the direct matrix elements we
have used the momentum-space method (62) which for the
24-point calculation increases in time from 600 sec for
J=1 to 2000 sec for J=20. The dimension of the poten-
tial matrix VJ. of (50) is in this case 100. Since the matrix
is symmetric there are 5050 matrix elements to be calcu-
lated for each J value. The time is, therefore, roughly —,

'

sec per matrix element for each J value. Note that for
J& 10 we can halve the computation time by reducing the
number of quadrature points from 24 to 16. The UBA re-
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TABLE I. Contributions of the partial waves J to the total cross sections in the singlet (S) and triplet (T) states for 54.42-eV elec-
trons in the 1s,2s, 2p close-coupling approximation for hydrogen. Numbers in parentheses are obtained in the Born approximation.
Column headings are as follows: 16, present 16-point calculation; 24, present 24-point calculation; BSS, Burke, Schey, and Smith
(Ref. 32). Units are 10 mao.

0
1

2
3
4
5

6
7
8

9
10
11
12

13
14
15

16

589
93
16
9
7
5

4
3
2
1

1

1

0
0
0
0

ls (S)
24

598
93
15
9
7
6
4
3
2
1

1

1

0

0
0
0

BSS

579
89
14

8
7
5
4
2

16

3993
2420

652
152
43
19
11

8

5

4
3
2
1

1

1

1

ls (T)
24

3983
2432

646
152
43
19
12

8

5

4
3
2
1

1

1

1

BSS

3979
2412
631
140
40
18
11
7

51
157
73
24
12
10
10
9
8

6
4
3
2

2
1

1

2s (S)
24

50
153
67
21
10
10
10
9
7
6
4
3
2

2
1

1

BSS

49
153
68
21
10
10
10
9

quires only ten matrix elements for each J value and the
time is correspondingly shorter. The time to solve 100
complex linear equations for each J value is about 100 sec.
The total time for the close-coupling calculation illustrat-
ed in Figs. 2—4 was roughly 7 h. The addition of nine po-
larization potentials representing Q space approximately
doubles the computation time. The extra time is propor-
tional to the number of polarization potentials.

IX. THE EFFECT OF Q SPACE

The coupled-channels optical method includes the effect
of all channels outside P space by explicitly calculated po-
larization potentials, which are added to the first-order po-

10

tentials of the close-coupling approximation. The dif-
ferential cross sections for the 1s,2s, 2p channels of hydro-
gen at 54.42 eV are compared for the two methods in Figs.
2—4.

The inclusion of Q space has a large effect on inelastic
differential cross sections (Fig. 2) where it raises the for-
ward cross section and lowers it at backward angles. All
the entrance-channel phenomena are related. This in-
cludes the total reaction cross section, which is, of course,
underestimated in the three-state close-coupling method
since reactions to only two channels are taken into ac-
count.
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FIG. 2. 1s,2s, 2p coupled-channels optical method (solid line)
compared with three-state close coupling (dashed line) for the
Is- Is differential cross section at 54.42 eV.

10 3
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FIG. 3. 1s,2s, 2p coupled-channels optical method (solid line)
compared with three-state close coupling (dashed line) for the
1s-2s differential cross section at 54.42 eV. Experimental data
are due to Williams (Ref. 34)~ Of his two estimates at each angle
we have shown the one with the smaller statistical error.
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TABLE I. (Continued. )

16

32
160
186
111
53
30
24
21
19
15
12
9
7
5

4
3

2s (T)
24

31
157
173
101
45
25
21
20
17
15
12
9
7
5

4
3

BSS

30
154
175
100
45
25
21
20

16

34
5

164
296
341
324
282
234
191
154
124
101
81
65
53
43

2p (S)
24

36
6

168
301
345
328
284
236
191
156
126
102
82
66
53
43

BSS

35
24

169
302
347
329
286
237

(185)
(154)
(127)
(104)

(84)
(66)
(54)
(44)

16

54
28

130
380
609
715
708
637
545
452
370
299
242
196
159
128

2p (T)
24

53
31

138
392
621
725
716
643
545
457
374
303
245
198
160
130

BSS

52
38

139
394
624
728
719
647

(556)
(463)
(381)
(311)
(252)
(199)
(162)
(131)
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FIG. 4. 1s,2s, 2p coupled-channels optical method (solid line)

compared with three-state close coupling (dashed line) for the
1s-2p differential cross section at 54.42 eV. Experimental data
are due to Williams (Ref. 34).

10
0

In the spirit of the close-coupling approximation,
square-integrable pseudostates may be added to the real
states of P space to simulate the absorption of flux into Q
space. The most comprehensive calculation of this type to
date is that of Bransden et al. ' where the pseudostate
basis contained four l =0 states and three with l =1. They
were included in second-order polarization potentials cal-
culated without taking account of exchange. Table III
shows the total reaction cross section at 54.42 eV obtained
by the various methods. This is a test of the adequacy of
the description of Q space (which is not described at all in
the close-coupling approximation, of course). The experi-

mental estimate of de Heer et al. has been extrapolated
from 50 to 54.42 eV by decreasing it in the same ratio as
the total reaction cross sections for the present method at
50 and 54.42 eV.

The effect of Q space on the inelastic channels is a
third-order effect in terms of the expansion of the T rna-
trix in the electron-electron potential. It is quite small
(Figs. 3 and 4), being of the order of 30'f/o at backward an-
gles and relatively much smaller at forward angles.

X. CONCLUSIONS

The momentum-space coupled-channels optical method
takes into account all relevant effects in electron-atom
scattering explicitly. Use of the momentum representation
facilitates calculation of the polarization potentials
representing Q-space effects. The numerical methods ex-
plained here enable the coupled-channels calculation to be
done with sufficient accuracy.

The inclusion of Q-space effects in the coupled-channels
calculation has a large effect on the results for the en-
trance channel, providing the increased forward scattering
characteristic of polarization and enabling the total reac-
tion cross section to be correctly calculated. It is impor-
tant also in the details of inelastic phenomena.

Since the momentum-space calculation involves the in-
version of a matrix, whose elements are essentially on- and
off-shell Born amplitudes, it lends itself to very good ap-
proxirnations for discrete channels outside the basic P
space within which scattering results are required in de-
tail. This set of channels is projected by the operator R.
It may be included, for example, by performing a
coupled-channels calculation for the space P+R with the
omission of matrix elements of the operator RV'~ "'R.
This is the essential approximation involved in represent-
ing R space by second-order optical potentials, but it does
not make the equivalent-local approximation. Further
matrix elements may be omitted, for example those for
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TABLE III. Total reaction cross sections (crR) for hydrogen
at 54.42 eV. MS, present calculation; BSSR, Bransden et al.
(Ref. 14); CC, three-state close coupling; Expt. , extrapolation of
de Heer et al. (Ref. 35).

Method

MS
BSSR
CC
Expt.

&R «o)
6.69

10.92
3.15
6.31+0.63

nondipole excitations, which are small.
Furthermore, the calculation time may be reduced by

making relaxed approximations to T matrices for larger
values of the total angular momentum quantum numbers
J. We have shown, for example, that fewer quadrature
points are needed for larger J. The method will enable a
very large space of discrete channels to be included.
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APPENDIX A: RADIAL INTEGRATION
FOR EXCHANGE MATRIX ELEMENTS

The radial integral (57) has the form

R = f dr~ f dr2f(r&)g(r&)r /r +' . (A l)

It is calculated as a sum over functions at quadrature
points labeled by i with weights w;,

R = g w f;(T;Ir; +'+S;r; ), (A2)

where T; and S; are given by the following recurrence re-
lations:

~i =Ti —l+%giI'i ~ To=0 ~ (A3)

S;=S; ~ w;g;Ir; ', —So ——g w;g;/r;
A, +1 A, +1

i=1
(A4)

APPENDIX B: LOCAL, CENTRAL POTENTIALS
IN THE ATOMIC CENTER-OF-MASS SYSTEM

The potential matrix elements coupling the various
channels are, in general, a sum of local and nonlocal po-
tentials ( k'

I
V

I
k), whose form depends on the channel

indices. The momentum-space equivalent of a local po-
tential which is central in the atomic center-of-mass sys-
tem is one that depends only on the magnitude E of the
momentum transfer K, given by

K=k —k' . (B1)

The polarization potentials (16) are nonlocal, i.e., they
cannot be written only as a function of K. Nevertheless, it
has proven' useful to make a simplifying equivalent-local

The sums T; and So are rapidly convergent because they
contain at least one exponentially decaying radial bound-
state function.
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approximation as follows. We define

Uq(K)+i WJ (K)

= ——,5,J. f, du ((K+kj ),p; ~

V(~'
~ QJ, kj ) . (B2)

Here kz is the on-shell momentum for channel j. The
spherical averaging is over angles defined by

u =Ã.kj. . (B3)

We keep only the diagonal terms (B2). This is based on

the observation that the off-diagonal terms are much
smaller than the diagonal ones. They can certainly be
neglected. If the orbital angular momentum I of the
bound state in channel j is not zero, we average over the m

components of 1. Thus the polarization-potential matrix
elements we use are labeled by n and l and are diagonal in
the channel indices.

The partial-wave matrix element of the most general
form of the local central potential occurring in this prob-
lem is, therefore, of the form (54),

U„"t.t
' '(k', ")=5„„5„.f dk ' f dk

M, m, M', m'
(I ', M'

~

k ')Ct. t J U„t(K)CttJ (k ~L,M) . (B4)

We make a multipole expansion of U„l(E),

U.t(K) = g (k '
~
&,p)u„g((k', k)(A, ,(tt

~

k ) (B5)

1

unt t(k', k) =2rr dx U„t(K)Pt (x),—1

x=k '.k .

(B7)

(B8)

and substitute it into (B4) to obtain

U~gl '(k'~ k ) =5gg'5LL, '5ll'~gL, l(k's k

where „ut(tk', k ) is obtained by inverting (B5):

(B6)

Note that the partial-wave matrix element of a local, cen-
tral potential depends on the total angular momentum
quantum number J only through the continuum-state orbi-
tal angular momentum L, which is related to J by (43) and
(44).
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