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Quantum electrodynamics with nonrelativistic sources. III. Intermolecular interactions
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The multipolar formalism for a system of molecules developed in paper I (first preceding paper) is

applied to a molecular pair to calculate the rate of energy transfer and intermolecular potential ener-

gies. In these calculations, one of the molecules is treated as passive when placed in the Maxwell

field of the other. The electromagnetic field is calculated with the use of the Heisenberg picture as

in paper II (second preceding paper). For resonance transfer between identical molecules, it is suffi-

cient to consider the first-order fields to obtain the Forster rate. For nonidentical molecules, the

probability of excitation transfer as a function of time is found with the use of the Heisenberg fields.

A noteworthy feature of the calculations of dispersion energy is that with the use of electromagnetic

fields, correct to quadratic terms in the transition moments, the complete Casimir-Polder intermole-

cular potential energy can be obtained by the consideration of one molecule as a test polarizable body

in the field of the other.

I. INTRODUCTION

In this paper we use the equations of motion for the electron and electromagnetic fields obtained in the preceding pa-

pers I and II (Ref. 1) to study the interactions between molecules. We consider the cases where both molecules are in

their ground states or one is excited. In our development the Heisenberg picture is the natural choice, and the time evolu-

tion of the operators associated with the Maxwell fields and the electron fields are found from the equations of motion
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with a similar equation holding for b, .
To calculate the interaction between a pair of identical

molecules, one of which is excited, the classical method

has its analog in the Heisenberg picture where the unexcit-

ed molecule interacts with the electromagnetic field of the
excited molecule. The energy shift due to their interaction
is calculated in Sec. IIA. It is remarkable that an exten-

sion of this viewpoint to calculate the interaction between

two polarizable bodies gives the complete Casimir-Polder
potential energy. This energy is found by computing
——,

' ad where a is the polarizability of one of the mole-

cules, treated as a test body, and d is the displacement

vector field of the other molecule. As is shown in Sec. III,
the relevant terms involve the d' ' field which depends

quadratically on the transition moments of the source

molecule.
In Sec. IIB, we calculate the probability of excitation

transfer between two nonidentical molecules, again using

the Heisenberg fields. The result shows a complicated os-

cillatory behavior in time which for certain limiting cases

following the delay interval R/c, tends to familiar results.

These are, for times long compared with molecular fre-

quencies and nearly equal energy separation in the two

molecules, that given by the Fermi golden rule, and for
very short intervals after R /c that the growth of probabil-

ity is the square of this interval.

II. EXCITATION TRANSFER BETWEEN
TWO MOLECULES

In the study of energy transfer between molecules in a
medium, the fundamental microscopic process is the ex-

change of excitation between a molecular pair. For two
molecules with one excited and the other in its ground
state, it is well known that the coupling is fully retarded.

If the molecule at Rz is initially excited and that at Rz is
in its ground state, the probability that molecule B is

found to be excited must satisfy the causality condition

Plt)=0 0& t&
l
Rtt RA

l
Ic . (2.1)

For times greater than R/c, R =
l
Rit —R„ l, we consider

the values of P(t) for various types of systems. In Sec.
IIA we consider a pair of identical molecules and calcu-
late the rate dP/dt using the Fermi golden rule. In Sec.
II B we consider the general case where the two molecules
are nonidentical; it is found that P(t) shows oscillatory
behavior.

A. A pair of identical molecules

The leading contribution to the matrix element for the

transfer of excitation from an excited molecule A to
another molecule B of the same species but in the ground
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state can be obtained by treating the molecule B as a test
dipole in field of molecule A. The Heisenberg displace-
ment vector field due to A has already been found in paper
II (Ref. 1) to be

d;(r, t) = d; (r, t)
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The interaction energy of the test dipole B having a transi-
tion moment p ~ (B) with this field is
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For a transition
I
0)~

I p ) for molecule A, the matrix ele-
ment ofd "is

The rate of excitation transfer from A to B follows direct-
ly from the golden rule and equation (2.5),
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For randomly oriented molecules, we have

I

pI' (A)
I I

pI'0(B)
I
i[3+(kR) +(kR) ]dt 9~6

(2.7)

showing the Forster behavior in the near zone. The R
dependence in the far zone is precisely the behavior to be
expected from classical considerations. As already noted
in Sec. II of paper II, the displacement vector field is
equal to the total electric field outside the source. Thus
the use of e "'(Rs, t) which arises naturally in the
minimal-coupling formalism, instead of d(Rs, t), in (2.4)
leads to the same rate (2.7).

and the primary quantity is the probability P(t). For the
initial conditions that molecule A is in an excited state and
B in its ground state and the radiation field is the vacuum,
the probability P(t) that A has decayed and molecule B is
excited due to exchange of photons, but the final state of
the radiation field is still a vacuum, is

P (t) (i
I bg (t)bq (t)ir(t)bq (t)bg (t) Ii ) (2 8)

In (2.8)
I
i ) =

I p;g;0) where the initial state of A is
I p )

with energy E~( =Pick~ =%co& ) and that of 8 is
I g ); the

vacuum state of the radiation field is represented by I
0).

n(t) is the projection operator at time t on to the vacuum
of the composite system.

It is convenient to define the interaction representation
operators

B. Direct calculation of excitation transfer
between two nonidentical molecules

In contrast to the problem of energy exchange between
identical molecules, it is not possible to express the excita-
tion transfer in terms of a time-independent rate for a
nonidentical pair. Hence the golden rule is not applicable,

a(t)=e ' 'a(t)

and

b„(t)=e "' P„(t) .

From (1.1) and (1.2), we find the formal solutions,

(2.9)
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An equation similar to (2.12) holds for P„(t). Using these solutions, we calculate P(t) given by (2.8), correct to order
[p(A)] and [p(8)] . Since Pz(0) I

i ) =0, we have, to order [p(A)], and setting Rz ——0,
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To proceed further, we first note that

t —i(co, +co )t t —i(co, —co )t

Pq(t) eJ f e g a'(t')dt' —e 1 f e " a' t(t')dt' P, (0) ~i )

has no terms independent of p(B). It is therefore sufficient to substitute for a'(t) and P(t) and collect terms of order

p(B) and independent of p(A). These are
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If (2.14) and its adjoint are inserted into (2.13), P(t) to order [p(A)] and [tu(B)] may be obtained by approximating all

operators by their values at t =0. For m(t), this implies the projection onto the unperturbed vacuum for both the electron

and radiation fields. Thus the last summand in (2.14) does not contribute to the process under consideration (it contri-

butes to two-photon emission). Further, the second term of (2.14) contributes only when (k ",A, ") =(k ', A,
' ). For the

first term, it is clear that the contribution is nonzero only when m =q. Hence
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which may be written as
~
cI;(t) ~, where

cI;(t)= ,—pj~(A)pt (B) g1 gq 2m' k
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The sum over polarization directions and the angular integration over the k direction are elementary. After dropping
the rapidly oscillating terms, we get
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Hence for t &R/c,
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It is of interest to examine the limiting behavior of (2.19).
For small ~=I —R/c, and for randomly oriented mole-
coles,

2 1
~

pap(A) I I p«(B) I 1

as expected. In (2.20), P is the averaged near-zone poten-
tial between the dipoles. For large ~, P(t) is oscillatory
and (2.19) leads to the Fermi-rule result (2.6) for kz-kz,
since

III. INTERACTION BETWEEN TWO
POLARIZABLE SYSTEMS

hE = ——,a d (Rg, t) . (3.1)

The interaction energy between two molecules in their
ground states, i.e., the van der Waals energy, is propor-
tional to R in the near zone (London dispersion energy)
and proportional to R in the far zone (Casimir energy).
Casimir and Polder found the complete interaction ener-

gy valid for all separations outside the overlap region. In
this section, we obtain their result in a simple manner us-
ing the Heisenberg fields of paper II. Molecule B is treat-
ed as a test polarizable body and its interaction with the
field due to molecule A is evaluated using

P(t) = I ui(A)1 glq(B)( V25V + V, V—I) 'e'"A—
—iE~, t/fi

X
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For simplicity we discuss the case where both molecules
have isotropic polarizabilities. Using the expansion of the
field of molecule A in powers of transition moments as in
paper II, we have

bE= —i a [d (R~,k)+ d (Rti, t)+d (Rs, t)+ ' ]
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e important contributions to the interaction energy arise from the fourth term of (3.2). It is clear that the first term of
(3.2) does not contribute to the mutual interaction energy as d ' ' is the free field and is independent of molecule A. The
second term also does not contribute because it changes the photon number. The third term is clearly important for in-
termolecular calculations involving molecules in their excited states, since d '" is then the classical field for real transi-
tions from the excited states of the dipoles. However, for nonresonant cases, as when both molecules are their grond
states, we can omit this term together with the resonant-type terms of d ' '.

For the calculation of the energy shift when the molecule is in its ground state
~
0) and electromagnetic field is the

vacuum state, we find the expectation value of the fourth term of (3.2) using the polarizability-dependent part of d ' ' of'

Eq. (2.30) in paper II. We have
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~ ~(2) ~(0) ~(0) ~(2)—
2 (00~a (d d +d d ) ~00)

g (0;O~a d '(Rtt, t) ~0;k, A, )(k, A, ;O~d '(Rtt, t) ~0;0)+c.c.
k, A,

' 1/2 'kR

i eje ' 'a"(co)a (ro)( —V'5;, + V;V, )

k, k. -

1/2

( )
2~k — —i k R Ia)t

I

= —
z ga"(ro)a (co) (5;J —k;k~)e

'"'
( —V 5,J+V;VJ) +c.c. ,

k

(3.3)

where R=Rz —R&.
In terms of the tensors 7 j (kR) and o.,j(kR) defined by Eqs. (3.4) and (3.5),
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this interaction energy becomes
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In terms of polarizabilities expressed as functions of imaginary frequency co =ck =icu, (3.7) is

4 ~ a —2~Ru a (icu)a (icu)e " 1+ + + 3 3+ ~ du .
vrR uR uR uR uR

(3.8)

In terms of the transition moments of molecules A and 8, (3.8) may be written as
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This is the complete expression of the Casimir-Polder po-
tential valid for all R outside the region of molecular
overlap. In the far zone, this reduces to

23m a"a~
(3.10)

4~ R7

where a" and a are now static polarizabilities, whereas in
the near zone, (3.9) gives the London energy (3.11),

y, "(A)p" (A)p, " (B)p" (B)
Pic(k„o+k, o)R

Although the asymptotic results may be obtained by other
elementary methods, the present approach of calculat-
ing the energy of a "test" molecule placed in the elec-
tromagnetic field of the other molecule gives the complete
result applicable for all intermolecular separation.
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