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The electromagnetic field operators and the electron field operators for the coupled system

governed by the multipolar Hamiltonian are obtained within the Heisenberg picture. Their causal

behavior and their relationship to the minimal-coupling forms are discussed. The basic fields of the

multipolar theory, namely, the displacement vector and the magnetic field, are calculated up to

terms quadratic in the multipole moment sources. The terms linear in the transition moments are

the quantum counterparts of the classical fields and do not change the photon occupation number.

The quadratic terms have no classical analogs: they act in both the photon and electron occupation-

number spaces. It is shown that it is necessary to include these second-order terms in the calculation

of the Poynting vector for an emitting dipole, thus demonstrating their role in the transport of radia-

tive energy.

I. INTRODUCTION

In this paper, the multipolar formalism discussed in pa-
per I (Ref. 1) is applied to the calculation of the elec-
tromagnetic fields in the neighborhood of a molecule. For
many purposes it is sufficient to use the electric dipole ap-
proximated form of the complete multipolar Hamiltonian
developed previously. The extension to higher multipolar
moments is straightforward. We choose t =0 as the time
at which the Heisenberg operators are equal to the
Schrodinger operators, the Maxwell operators acting in
the photon occupation-number space only and the electron
field operators in the fermion occupation-number space.
However, for t&0, the Heisenberg operators act in the
composite space. Thus the electromagnetic field operators
are complicated functions of the annihilation and creation
operators for both electrons and photons. To express the
fields in terms of the annihilation and creation operators
at t =0, it is convenient to expand the fields in power
series involving the transition moments. The explicit
forms of the first few terms of the electric displacement
vector and the magnetic fields are given in Sec. II. The
moment-independent terms are clearly the free field opera-
tors. The terms linear in the transition moments are
shown to be the analogs of the classical fields: They
operate solely in the molecule space leading to changes in

the molecular state. Some novel features occur in the qua-
dratic term: They have no direct classical counterparts.
As for the free field they are linear in the photon creation
and annihilation operators; however, they also effect
changes of molecular states.

In Sec. III, the Maxwell fields obtained are used to cal-
culate the energy flux from a molecule in an excited state.
The use of the linear, pseudoclassical terms alone does not
give the complete result. It is shown that the quadratic
terms are essential to derive the total emission rate.

II. ELECTROMAGNETIC FIELDS NEAR A DIPOLE

A. Displacement vector field

The Hamiltonian (3.14) of paper I (Ref. 1) for an elec-

tric dipole source, ignoring self-energies, is

& .)
= ftt(q ) (&'e') + V(q ) P(q )d q

2m

+ f [d "(r )+b (r )]d'y

—fP(q)p d (R)P(q )d'q, (2.1)

1/2

Vk

+e ~ (k )at(t)e ' '],

(2.2)

where d (r ) is related to the canonical momentum by

d (r )= —4ncsy(r ), and R is the position vector of the
molecular dipole. It is advantageous to effect a mode
decomposition of the fields and hence find the equations
of motion for the creation and annihilation operators for
the modes. The standard decomposition for the vector po-
tential and its canonical momentum are, in familiar nota-
tion,
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where p™is the transition moment of the electric dipole
and is given by

(A, )

&& [e (k )a(t)e' " ' '

—e ' '( k )a (t)e ' " ' '
] . (2.3)

The equations of motion for the operators a and b follow
from (2.5) and the quantum-mechanical relations

[a,a ] =1 and [b,b )+ ——1;

ifia =[a,H „ir]

In (2.2} and (2.3) the k and t(, dependence of the creation
and annihilation operators a (t) and a (t) are implicit. For
the electron wave field, we write

1/22~k=ficta +i
V

gb b„p™e,
m, n

(2.6)

(('t(q )=gb„(&)P„(q ), (2.4)

where tI)„(q ) are the orthonormal electron field modes.

With these expansions, the multipolar Hamiltonian (2.1)

becomes

i fib„= [b„,H „tr ]
1/2

V
k, A.,

(2.7)

H „tt ——gb„b„E„+g a alice
n k, A,

' 1/22~k btb„(- tk R

V
k, A,

m, n

In (2.6) and (2.7) the molecular dipole is assumed to be at
the origin (R=0), and E„=Ace„. After putting
a(t)=a(t)e ' ' and b„(t)=p„(t)e ",we find

' 1/2
—ik R) 1 2m' ka(t) =—

V

I ( CO +CO )f
e

m, n

(2.5)
I

&&@ ep (r)p„(t) (2.8)

and
' 1/2

k, A,

(2.9)

whence
1/2

a(t) =a(0)+—1 2~k
V

and

P„(&)=P, (0)——„g
k, A, ,

m, n

1/2

(2.10)

(2.11)

From (2.3) the transverse displacement vector d; in the
Heisenberg picture at time t is

' 1/2

~t( ) ~ 2trtrtck

V
k, A,

t. [& &( ) irker irut—

tr trt(r)& —i k ~ r +inst] (2 12)

which we evaluate as a series in powers of the dipole tran-
sition moments as in (2.13)

d, (t)=d,' '(t)+d, '"(t)jd,' '(t)+ ~ ~ ~ (2.13)

~tpt( } ~ 2~k
V

k, A,

t[& &(0)ei k r —imt

e &t(0}e i k ~ r +inst]—

(2.14)

This is accomplished by expanding the operators a(t) and
P(t) in powers of the dipole moments. The leading term
arises from a(t) and p(t) evaluated at t =0, so that

1/2
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which is the free field operator at time t. The term linear
in the transition moment is of the form d(i)( )

i + 22rrtck

A V
k, A,

m, n

p,, "P (0)P„(0)e;e;

1/2

d(i)( ) y 21TRck

V
k, A, -

i [e;a (t)e r k r ~ i m—r
i(07 +@i))C

k ~ r —isn't eXe
mn +

e &(1)t(t}e—i k r yiurq
g + H.c. (2.17)

where, from (2.10}

' 1/2
(i) 1 2mhcka (t)=—

V g)uJ "eJp (0}p„(0)
min

(2.15)
After the polarization sum and the angular integration
over the photon wave-vector direction, we obtain

(t)= y—J2 "P (0)P„(0)(—V 5J+V;VJ)
m, n

~ eikr —ikr ' mn —ikct

r o 2i k „+k

Hence

i(Q +Q)f

X . . (2.16)
i (rr) „+cr))

+H. c. (2.18)

Noting that the replacement of k by —k in the
Hermitian-conjugate term gives essentially the same con-
tribution as the first term, we may write

d;"'(r, t)= g J2J "p (0)p„(0)(—V 5;J+V;VJ)
2~~ mn

+ k —k ~~ ik( —c~) —'k —k
f+~ —ik{ +X—

r —oo k —k„
dk . (2.19)

The k integral in (2.19) is easily 'evaluated subject to a
prescription that ensures causality. Thus the retarded
solution is found to be

0, t (roc
QP2 "P (0)P„(0)(—V 5,J +V; V, )
m, n

ik„(r—ct) '

eX, t)r/c.

(2.20)

(2.21)

The transverse displacement vector field in this order has
a simple operator behavior with no effect on the photon
field. For the transition from state P„ to state (() its
value is

It must be emphasized that this field is the transverse dis-
placement vector and not the transverse electric field.
However, outside the source, the total electric field is equal
to the transverse displacement field. This is because
d =0 for a neutral system and hence~l ~tOt tOt
d =d =e +4~p; for a point dipole at the origin, this

tot
is e +4m@5(r } In Sec. IIC. we consider this relation-
ship using the minimal-coupling formalism where the
transverse electric field is the canonical momentum.

As we noted earlier, the transverse displacement vector~l
d ( r, t) has higher-order contributions; these have not been
considered hitherto, and we now evaluate the second-order
contribution that depends quadratically on the transition
moments. The contribution is of the form

(m ~d; (r, t)
~

n) =e "
J2J" ( —V 51+V;VJ)

ik~mr

X
r

(2.22)
d(2)( t)

k A,

1/2

which is the familiar classical result for the complex elec-
tric dipole field with an oscillator of circular frequency
co„. It is useful to define the tensor field

ikn~ r

Fj (k„;r ) =( —V 6;J' +V;Vj ) (2.23)
r

X
~

[ (2)(t)ei k r —iro

(2)t(t} i k r+irar]— ~

(2.25)

so that

d-'" "(r t)= "e " F(k r) . (2.24)

To evaluate a' '(t) it is necessary to use the equation of
motion (2.11) for p„(t) in addition to (2.10). From (2.10)
we find
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1/2
( 2 )( )

1 27TACk

v
mn —J' '~~mn+~~~ (p(0)t(ri)p(1)(it)+p(1)t(ri)p(01(ri))dri (2.26)

and from (2.11) we have

p))( )
1 ~ 2mfick

v
k ', A,

'

P

' 1/2

pp~P (0) ega'(0)
—l (C0 +N )t —l (N —C0 )t

e ~" —l—e„'a (0)—i (CO&„+CO ) —i (co „—co')
(2.27)

so that the second-order contribution to a(t) is

1/2

(2)( )
1 27TfÃk

g2
' 1/2

m, n k, A,
'

P

—l(N n+N )t

—i (COpn +Co')

—e ka'~(0) ' —l (N n
—N )t

Plg

—i (a)pn —CO')

+P~(0)P„(0)g
k ', A,

'

' 1/2 i (N +CO )t

pII: e '„a'(O) '.
i (cop +c'o )

i (N —C0 )t

eka'(0) . , dt' .
' (~pm

~(2)
The integrated form of (2.28) and its Hermitian conjugate when used in the expansion (2.25) for d give

' 1/2

d (r, t) =i g eka(0)P (0)P&(0)
V

k, A, ,
m, p

(2.28)

mn np mn np

X(—V 51+V;VJ) g +
np nm+

i (k +k)(r —ct)
e

mn np ik„~ (r —ct)
pj Pk e

n E„p —%CO r

mn np —ik„(r —ct)
Pk PJ e

n En +%co r
+H.c. (2.29)

~(0) ~(1) ~(0)
This operator, in contrast to d and d, operates in both the photon and the electron field spaces. d annihilates and
creates photons but does not change the electron states, d '" changes the electron states leaving the photon states un-

changed. As we see from (2.29), d 'i' changes the photon number by one and, in general, changes the electron state. It
should be noted that the first term within the square brackets has the interaction picture time dependence of the annihila-
tion and creation operators. The remaining terms do not show a similar interaction picture type of time dependence.
Matrix elements of such terms show sinusoidal time variation and in our applications they need to be considered only at
near resonance when they are almost stationary. For the case where the electron state remains unchanged, the first term
of d ' '( r, t) can be expressed in terms of dynamic polarizability ajk(co) for that state so that

1/2

d(p)( i) .~ 2vrfick

V
k, A,

ik(r —ct)

ajk(~)( ~ &'j +~'~j ) eka(0)
r

e
—ik(r —ct)—eka (0) + ~ ~ ~ (2.30)

where the ellipsis stands for resonant-type terms. We use this result in a later section to evaluate the Poynting vector,
leading to the Einstein A coefficient.
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Higher-order terms in the expansion (2.13) for d(r, t) with more powers of the dipole moments may be obtained in a

similar way. The resultant operators will, in general, act in both the photon and electron spaces and need to be con-

sidered in the study of multiphoton processes.

B. Magnetic field of an oscillating electric dipole

(2.31)

The magnetic field b;(r, t) of an electric dipole can be found in the Heisenberg picture by using the expressions for a(t)
and P(t) given in the preceding section. The mode expansion for the magnetic field is

1/2

(r, t) = g &[(k X e);a(t)e~ k ' '~' —(k X e );at(t)e ' k ' '+'~'] .
V

k, A,

As for d( r, t ), b( r, t) may be expressed as a series in

powers of the electric transition moments. The first term,
b '(r, t) is obtained from (2.31) with the approximation
a(t) =a(0). The second term, linear in the dipole moment,
is easily found to be

Then, for t ) r/c,

b "(r,t)=gp "P (0)P„(0)e " GJ(k„;r) .
m, n

(2.34)

~(] )

This operator, as for d, acts only on the electron states.
~(1)

The mnth matrix element of b is, for t ) r/c,

b "(r,t) = . ik„(r —ct)
e

0, t&r/c .

, t) rlc

(2.32)

(1)mn ~ mn~ 2
bi ( r~ t) fj&'kPJ rk knm

X 1— 1

ik„r (2.35)

ik„r
G'j(k r' ) lk E' jk Vk

r
(2.33)

It is convenient to introduce a tensor field G;j(kn;r )

analogous to FJ(kn;r ) of Eq. (2.23),
which is the well-known classical result for the magnetic
field of an electric dipole.~(2)

The calculation of b (r, t) follows the same lines as
~(z)
d (r, t) and the result has a structure similar to (2.29),
namely ~

1/2

b' '( )= 'g 2mfick

V
k, A,

m, p

e&a(0)P (0)P~(0)

mn np mn np i (k +k)(r —gt)

n np nm+ r

mn, np ikg~ (» —&t) mn np —ik„(r —ct)
Pk ~i e

n E„+%CO
.+ H. c.

(2.36)

C. Comparison with the minimal-coupling approach

Before proceeding to use the above results in the calculation of the Poynting vector, it is instructive to examine how
these fields may )e obtained from the minimal-coupling Hamiltonian. In this formalistn, the canonical field momentum

II(r, t) is —4mc e ( r, t). Therefore, the mode expansion (2.3) now applies to the transverse electric field e (r, t),
' 1/2

e (r, t)=i+ [ea(t)e' " ' ea (t)e ' " ' ']—
V

k, A,

(2.37)

(2.38)

m, n

Although the structure of the expansion is similar in the two cases, it must be emphasized that the equations of motion
for the operators are different. The equations follow from the respective Hamiltonians.

In the minimal-coupling formalism, the Harniltonian is
1/2

H;„=gb„b„E„+pa afuu+ g b b„p (ea + eat),
mc Vk

k, A, k, A, ,
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where we have omitted the e terms since we confine our calculations in this section to the first-order fields. In (2.38) the
matrix element of the electron momentum is related to the transition moment by

mn jm mn

~ EmnP (2.39)

The equation of motion for a(t), analogous to (2.8), that follows from i Ra = [a,H;„] is
1/2

t

From (2.40) we obtain

i (u~„+u)t
a"'(r)= g p ep (0)p„(0)

time Vk „"i(a „+u)
If (2.41) is substituted into Eq. (2.37), we get, for t &r/c &0,

ikr —ikr ma —ikct

(r, r)= g p (0)p„(0)p, "(—V'5;, +V;V, )
— f . dk

i (k —k„)
7

ik„r
=gP (0)P„(0)p, "e ""

( —V'5,, +V, V, ) rm, n

(2.40)

(2.41)

(2.42)

=d "(r,t)+QP (0)P„(0)p~ "e
m, n T

(2.43)

gP'f (p)p (p) mn nm ~J & J

m, n r

and hence

(2.44)

e "'"(r,t)=QP (0)P„(0)pj "(—V 5~+V;V~)
m, n

where we have used (2.22) for d "(r,t) Using .the fact
that for r &0, 5,J.(r )= —(6,J —3r;r&)/4~r, the second
term of (2.43) is seen to be the transverse dipole polariza-
tion field operator —4irp;'"(r, t) The lon. gitudinal elec-
tric field to this order is

I

from a molecule in an excited state. This application
shows the importance of the second-order field terms in
quantum electrodynamics. In fact, it will be seen that the
first-order pseudopotential terms do not give the full con-
tribution to the flux. Although the conventional classical
calculation uses the first-order fields only, it may be used
to obtain the total rate of energy emission by a quantal
system with the aid of a correspondence principle relating
the classical dipole moment with its quantum counter-
part. ' A measure of the energy flux density is given by
the Poynting vector,

S(r, t)=(clgir)[e (r, t)Xb(r, t)

ik„(r —c )
e r&0. (2.4&)

—b(r, t) && e (r, t)] . (3.1)

Thus we see that the often-quoted classical result
represents the total electric field rather than the transverse
electric field.

As noted in Sec. II, the total electric field is equal to the
transverse displacement vector field outside the source;
thus

III. POYNTING VECTOR
AND ENERGY FLUX

S;(r,t)=(clgm)e Jk[dj(r, t)bi, (r, t)

+bk(r, t)dj (r t) . (3.2)

In this section we use the Heisenberg representation for
the electromagnetic fields to calculate the energy flux

The expectation value of this vector field for the state
~
p;0), where the molecule is in the excited state

~ p ) and
the electromagnetic field is the vacuum state, is

(S(rr))=(cl8n)ejk(pp
~
(dj '+d& "+dj '+ ' )(bk +bk +bk + ' '

) lp 0)+c c.

=(cl8ir)ejk (Op
~

(d)~ "bk"+dj' 'bk '+dj 'bk '+. . . . )
~
p;0)+c.c. (3.3)

We confine our calculations to the terms of S;(r,t) that are quadratic in the transition moments. The contribution from
the first-order fields is



28 QUANTUM ELECTRODYNAMICS WITH. . . . II. 2669

,,„&o;p ~ dj "b„"'
~
p;0)+c.c.

8~ "
(3.4)

e&jk (0;p
~ gpj "e " P (0)P„(0)Fjj(k„;r ) g pk "e " P (0)P„(0)Gkk (k„;r )

~
p;0) +c.c. (3.5)

sk r

e;jk g pj "pk ( V—5jj + VjVj )

ik r
e ~"

kk'I kpp VI
r

+c.c. (3.6)

To evaluate the energy flux it is sufficient to use a large spherical surface whose center is the molecular origin. For

r »k~, the far-zone form of (3.6) is

4 pgg gyp

ejlkekk'I ~kp+pj' pk'(5jj ' —pj pj )1'(

4mr

(3.7)

The contribution of this term to the energy radiated per second is

gk&„p&~"pg~ I(51 k rj rk )dr =——,
'

cgk&„~ p~"
~

4~ „'" '
(3.g)

It is important to note that both downward and upward transitions contribute to (3.8) since (3.8) is independent of the

sign of kp„. This paradox is resolved when we take into account the contributions from the second-order fields.

The contributions to the energy flux density, quadratic in the transition moments, from the second-order fields are

~,jk&0;p ld,' 'bk '+d, 'bk 'lp'»+c c.
8~ " (3.9)

Since both d' ' and d ' ' (and b' ', b' ') are linear in the photon annihilation and creation operators, we can write (3.9) as

sikes

((Op
~
dj ~p;k, A)(k, kp

~
bk '~ p;0)+(Op

~
dj '~p;k, A)(k, Ap

~
bk ~p;0))+cc.

8~ "
k, A.

(3.10)

~(2) ~(2)
To evaluate the matrix elements of d and b, we used the expansions (2.30) and (2.36). As shown in the Appendix,

the resonant-type terms do not contribute to the Poynting vector, so that using the polarizability-dependent terms we ob-

tain

E(jk g [ejek e' " 'ak J'(k)Gk~'(k'; r )+ek (k X e )ke
' " ' 'aj k (k)Fjj (k; r )]+c.c.

8~ "
k, k

After the polarization sum and the angular integration over the direction of the wave vector, (3.11) becomes

(3.11)

oo

E,~k Accxj k (k) ( V 5jk +Vj Vk )
8m

' o 2ai r

e
—Ikr

X —l E'k 'I VI r

ikr

+ ( —V 5JJ +VjVj )

ikr —ikr

~ Ek'kI V I r
+c.c. (3.12)

Using the j',k' symmetry of the polarizability tensor, and doing the k integral, we get

and

—ik„r
e;jk g j &'"j,k k„p ( V5ii'+ Vi V—1 )8~" „ r

—ik„r
e

Ekk'I V I r
+c.c., k„p )0 (3.13a)

«jkgVg"Vk'knI, ( —V"5jj+VjV,')8~'„ r

In the far zone, these reduce to

k4,
cg(+ ) ~ p~. pk e(jkekk (( 5jjp~jrj )p(

4mr

ik„ r
e—«kk'I VI r

+C.C. ) k~p &0 . (3.13b)

(3.14)

the plus sign holding for k„p &0 and the minus sign for k„p &0. The contribution of (3.14) to the energy radiated per

second can be calculated in a manner similar to that leading to (3.8). We get

—,
' cg ( sgnk~„) k~„~ p I'"

~

(3.15)



2670 E. A. POWER AND T. THIRUNAMACHANDRAN 28

The total rate of energy loss P is found by adding (3.15) to (3.8):

P= —', c g k~„~ p, t'"~'.
n (kpn)0)

(3.16)

Thus as expected, we find that only the spontaneously allowed transitions contribute to this total power. It is clear that
(3.16) leads directly to the Einstein A coefficient, (4/3iri)kz„~ p t'" ~, for the spontaneous transition rate. This method of
obtaining the power may be contrasted with the conventional approach employing the Fermi rate. Despite the some-
what lengthy manipulation, our method has direct physical appeal and shows the role of the Maxwell fields in the trans-
port of energy emitted by a molecule.

APPENDIX
~(2) ~(2)

We show that theresonant-type terms, independent of the polarizability of the molecule, in d and b do not contri-
bute to the time-averaged Poynting vector. Using these terms from (2.29) and (2.36) in

e,ik (0;p
~ dj 'bq" +dj "bk '

~
p;0) (A1)

we have

c ~ 2rrfick

8 ljk y
k, A, ,

n

gn np pn np

e e e'"''e ' ' G (k r)e " ~ G (k r )eeje)e e k „p,r e + k p, r e
pn+ pn

gn np pn np

(A2)

In (A2) only one pair of terms will contribute to the time average depending on the sign of kz„. For example, with

kp„& 0, the relevant pair of terms in (A2), after polarization sum and angular integration, is

ijk

L)n np

( V26 )
sin(kr) tk„Pf Pm — ik „ct

pn np

ike V
sin(kr) e,k, ) I t F (k „;r) k" dk .

7Tr pn—
(A3)

The time dependence of the integrand of (A3) shows that the important contribution to the k integration comes from the
pole at k =kpn and hence the integration limits can be extended to cover the full range —00 to oo. The pole contribution
is evaluated subject to the causality condition, namely that for r & ct the integral must vanish. Thus for r & ct, (A3) gives

ik „(r—ct) ik „(r—ct)pn

epgpf"p~ —(V 5jt+VJVt) Gk (ky„, r )e e" ik~„ek „V„—8~" „ T T

8~" „
e Jk g pf p" [FJ't (kp„, r )Gk~ (kn; r ) + Gk~ ( k„~; r )F~t (k~„;r )]=0, (A4)

where we have used Gk (kp„., r ) = —Gk (k„;r ).
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