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The multipolar formalism is commonly used as the starting point in chemical physics and quan-

turn optics for discussion of the interaction of radiation with atoms and molecules. The relationship

of the multipolar to the minimal-coupling formalism is examined when both the electron and the ra-

diation are second-quantized fields. Both the Lagrangian and Hamiltonian formulations are con-

sidered: in the former the transformation between the two is a point transformation on the electron

field coordinates, while in the latter it is a canonical transformation. The resulting equations of

motion are Maxwell s equations, in terms of the basic and auxiliary fields, for the electromagnetic

field and Schrodinger equations for charges in an electromagnetic field with the coupling given

through the multipole moments. That the Schrodinger equation is different from that which arises

in the minimal-coupling formalism is a natural consequence of the use of new field coordinates. The

theory is extended to a system of molecules anticipating the discussion of intermolecular energies in

paper III (the second succeeding paper).

I. INTRODUCTION

Modern quantum optics and many applications in

chemical physics that involve the interaction of radiation

with atoms and molecules require, for their theoretical

development, the framework of quantum electrodynam-

ics. ' The essential feature of the theory is that the radia-

tion field is quantized and forms part of the dynamical
system. The minimal-coupling form of the theory, al-

though a direct consequence of relativistic quantum elec-

trodynamics, is not well suited for these studies where

bound systems are usually the sources of the electromag-

netic field. Where atoms and molecules are the current

sources, it is most convenient to express the interaction be-

tween them and the radiation in terms of electric and

magnetic rnultipole moments. For this purpose, the mul-

tipolar form of the theory is the natural starting point. In

this series of papers, we develop the multipolar theory

from both Lagrangian and Hamiltonian points of view,

and discuss several applications using this formalism in

the Heisenberg picture. The time development of the field

operators is used in a direct manner in these applications:
This gives additional physical insight into these processes.

In this paper (paper I of the series), we first develop the

multipolar theory from minimal-coupling electrodynam-

ics. There have been several investigations concerning
the relationship between these theories, and in most stud-

ies the charges were treated within the framework of first
quantization. However, in the present work, the electron

field, in addition to the radiation field, is second quan-

tized. The theoretical development begins with the La-

grangian formulation. In contrast to the charged-

particle —electromagnetic-field Lagrangian where the

equations of motion for the charges are given by the
Lorentz force in Newton's equations, now the electron

fields have Schrodinger's equations in the presence of the

electromagnetic field for their equations of motion. The

electromagnetic fields themselves obey Maxwell's equa-

tions in both cases, the only difference being that the lo-

calized current densities in the particle case are replaced

by nonlocalized Schrodinger current densities in the

present treatment.
In the charged-particle —electromagnetic-field theory

the transformation from the minimal to the multipolar

form may be effected by the addition of a total time

derivative and does not involve any change in the electron

coordinates and the vector potential. The transformation

to be described in Sec. II is not effected by adding a total

time derivative but by a change in the generalized coordi-

nates which are the electron fields. Because of this, the

Schrodinger equations for the electron fields are different

in the two formulations. In Sec. III the minimal and mul-

tipolar Harniltonians are obtained and their significant
differences are discussed. The two Hamiltonians are relat-

ed in the quantum theory by a canonical transformation

which is described in Sec. IV. This transformation is in

fact a generalization of the previous approaches and this

allows a direct comparison between the new and old

Schrodinger-type equations. In Sec. V we extend the mul-

tipolar theory to molecular assemblies. This extension is

essential for studies of intermolecular interactions and the
interaction of radiation with such assemblies. A striking
feature of this formalism is that the intermolecular elec-

trostatic terms in the Hamiltonian are eliminated in favor
of couplings via the exchange of transverse photons. ' '

The multipolar formalism developed in this paper is

used in papers II and III to study one-center radiation

problems and intermolecular forces, respectively. The role

that the time-dependent electromagnetic fields takes in

these applications is examined in detail. An interesting

finding is that it is important to go beyond the quantum

analogs of the classical fields that are linearly dependent

on the multipolar sources. These applications in fact
demonstrate the necessity of including the electromagnetic
fields that are nonlinear in the source strengths.
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II. MINIMAL-COUPLING LAGRANGIAN
AND TRANSFORMATION TO

THE MULTIPOLAR FORM

L charge = f4( q ) (V'")'+V( ) y(q)d'q
2m

J

+
2 f [e(q)i(q) —e(qW(q)]d'e. (2.1)

In (2.1), V(q) is the potential due to external sources such

I

A. Minimal-coupling Lagrangian
and equations of motion

It is well known that the Lagrangian for an electron
field uncoupled from the radiation field is

as a nucleus, and self-interaction energies have been ig-
nored. The Euler-Lagrange equations for l( and l( ob-
tained by variation of (2.1) are the Schrodinger equation
(2.2) and its complex conjugate,

r

i~(q) = $2
(V"')'+V(q) q(q) .

2m
(2.2)

The minimal-coupling prescription for taking into ac-
count the interaction of the electron field (charge —e)
with the transverse electromagnetic field is to replace

iA—V '«' by i AV—'«'+(e/c)a (q). Also, for consisten-

cy, when the electron-radiation interaction is included, it
is necessary to have the self-interaction energy in addition
to the external potential energy. Thus the rninimal-

coupling Lagrangian for the system is

L;„(a,ltr, l(;a, l(i, l(i) = fW;„dV

= —fg(q)
1

2

+ —a'(q) + V(q)+ —f q d'q' g(q)d'q

+—' f [t((q)p(q) —t((q)lt(q)]d'q+ f [[a (r)/c] —[curia(r)]3]d r .
2 8~

(2.3)

From (2.3) the equations of motion for the system are easily derived. The variation with respect to a ( r ) gives

a a r.,„a aw. ,„
3(3a; /3~ )

which leads to

~~min =0
Ba;

(2.4)

~ l
—[curlcurla(r)];+ f i'(q) iAV '«'+——a (q) 5J(r —q)itr(q)d q =0 .

C2 mc c .J

(2.5)

l Be (r) 4~ -.
&(

c Bt c
(2.6)

In terms of the transverse electric field

e (r)= —a (r)/c and the inagnetic field b(r)=curia(r),
Eq. (2.5) is

B. The multipolar Hamiltonian

The multipolar formalism is related to the above
through a change of the generalized coordinates describing
the system. Although the electromagnetic field coordinate
a (r), the vector potential, is unchanged, the one describ-
ing the electron field is transformed according to

where

j;(r)= —e f lt(q) iRV '«'+ ——a (q)
C

X&,'J(r —q)g(q)d'q . (2.7)

—iS( q )y(

where S(q) is given by

S(q)=—f p(r, q) a (r)d r .
Ac

(2.9)

(2.10)

iiiiP( q )= 1

2m

2

—iA'V' ' '+ —a (q) + V(q)
c

2f g(q )i'(q ')
d3 i

q( ) (2.8)

Equation (2.6) is the transverse part of the Maxwell equa-

tion for curlb(r). The equation for the electron field

g( q), the analog of (2.2), is found to be

In Eq. (2.10), p(r, q) is the polarization vector field. For
bound electrons in an atom or molecule, the polarization
field is localized and is conveniently expressed as a rnul-
tipolar expansion about a fixed point such as the inversion
center for a centrosymmetric molecule. For large mole-
cules with several chromophores, it is physically realistic
to localize the polarization field at the centers of the chro-
rnophores. Here the theory is developed for a small mole-

cule or a single chromophore located at a fixed R. The
many-center theory is given in Sec. V. For one center, the
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polarization field is
y, = —e(q —R), Q= ——(q —R)(q —R) .

2
(2.12)

p(r, q)=@5(r—R) —Q V5(r —R)+ . (2.11)

where p and Q are the electric dipole and quadrupole mo-
ments,

The multipolar Lagrangian is obtained from the
minimal-coupling Lagrangian (2.3) using the coordinate
transformation (2.9),

L;„(a,g, g; a,P, P)=L;„a,e' P,Pe 's; a ~, (—e'sP), —(Pe 's)

(2.13)

Thus

L „„=—f t)(i(q)e

2

ig—V Iei+ —a ~(q) + p'(q)+ J' v q ~ q d3 sy(-)d3

+—' f P(q)e ' —[e' P(q)] ——[P(q)e ' ]e' P(q) d q+ f1

2

a (r) —[curia(r)] d r

1

2m

2

+—a (q) +%V ' S(q) + V(q)+ —f d q' ((i(q)d q

+—f [P(q)P(q) —P(q)P(q)]d q ——f fP(q)p(r, q) a (r)P(q)d rd3q

—[curia(r)] d3r = fW „i,dV . (2.14)

Before considering the complete Lagrangian (2.14), we examine its form for a bound system in the low multipole order
approximation. First, with the electric dipole contributions alone, the spatial variation of the vector potential over the
molecule is ignored; a ~(q) is assigned the value a "(R) and it is evident that only the dipole term of the polarization field
(2.11) contributes. Within this approximation,

—a~(q)+%V' 'S(q) —a (R) ——V' If (q —R).a (R)5(r —R)d r=O.
C C C

Thus

2 I

(V' )'+V(q)+ —f ~ ~ d'q' P(q)d'q
2m 2 /q q'/

(2.15)

+—f [P(q)P(q) —P(q)P(q)]d'q+ —J P(q)(q —R) a'(R)(t(q)d'q

2

(r) 2 3—[curia(r)] d r . (2.16)

When the electric dipole approximation is relaxed, the cancellation that is shown in (2.15) no longer occurs. For exam-
ple, by retaining the electric quadrupole contribution to the polarization field and the first spatial derivative of the vector
potential, we have

—a; (q)+i)iV'; 'S(q )=—(q —R)JVja; (R)——V';e'[( q —R)k( q —R)JVka~ (R)]
C C C

=—(q —R)i[VJa; (R)—V;az (R)]
2c

= ——[(q —R) X b(R)]; .
2c (2.17)

If (2.17) is used in the Lagrangian (2.14) together with the quardupole contributions in the p a term, the multipolar La-
grangian in this higher approximation becomes



2652 E. A. POWER AND T. THIRUNAMACHANDRAN 28

'2
—iAV 's' ——[(q —R)&&b(R)] + V(q)+ —f q d q' p(q)d q2c

+—' f [((i(q)P(q}—P{q)({'i(q)]d3q+—fP(q)(q —R) a (R)P(q)d q+ f
2

J
—[curia(r)] d r .

(2.18)

We remark that the electric quadrupole and magnetic dipole interactions are of the same order and the approximation
(2.18) contains the magnetic dipole interaction in the cross term of the first integral in L

The above discussion is easily generalized by using the complete multipolar expansion for the electric polarization field
of a bound electron. As shown elsewhere, ' ' "this expansion can be formally summed into a parametric integral:

p(r, q}=—e (q —R) ——(q —R)(q —R) V+ . 5(r —R)
2l

= —e(q —R)f [1—A(q —R) V+. . . ]5(r —R)di,

= —e(q —R)f 5(r —R—A(q —R)}d}t, . (2.19)

With this form of the electric polarization field, we show in the Appendix (see also Ref. 12) that

—a (q)+A'V ' 'S(q)= —a i(q)+ —V 's'f p(r, q) ai(r)d r= f n(r, q)&(b(r)der,c c c

where

n(r, q)= —e(q —R)f A5(r —R—A(q —R)}dA,

= —e[ —,(q —R) ——,(q —R)(q —R).V+ ]5(r —R) .

(2.20)

(2.21}

It is clear that using the first term of the expression for n(r, q) in (2.20), we obtain the electric-quadrupole —magnetic-
dipole result (2.17}. With the use of the identity (2.20) in its full form, the multipolar Lagrangian for the general case be-
comes

L „„=—fp(q)
1

'2

ifiV ~ '+ —f—n(r, q)&&b(r)d r + V(q)+ —f ~ q ~ q d~q' p(q)diq

+—f [P(q)((}(q)—({}(q)((}(q)]dq ——fP(q)p(r, q) a (r)P(q}d rdiq~
T

a'(r) —[curia( r )] d r .2 3
(2.22)

C. Equations of motion in multipolar form

It is instructive to derive the equations of motion in the first instance from the electric dipole Lagrangian (2.16}. We
have

"J
+——fP(q )(q R)i5&(r——R)t{)(q)d q,

j
(2.23)

a ~~ u

~& B(Ba; /BX. )

t)a;(r) Baj(r)
BXJ. BX. (2.24)

(2.25)

The Euler-Lagrange equation (2.4) becomes

a;(r) e — - i - i 1

Bt 4m-c c ' " 4m-
+—f ((}(q)(q—R).5; (r —R)(()(q)diq + [curlb(r)];=0, (2.26)
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that is,

curlb(r) =—I Bd (r)
c BE

where d( r ) is the displacement vector in the electric dipole approximation and is given by

d(r) = e(r) —4m.e fP(q)(q —R)5(r —R)$(q)d q .

The equation of motion for the electron field follows from

(2.27)

(2.28)

= ——P(q),

a BW.„„ =0,», a(apeak, )

BW „„
ay

" (V"')'+I'(q)+"f ~'" '~" 'd'q y(q)+ —'" j(q)+ —'(q —R) -"(R)$(q) .

Thus we obtain the familiar Schrodinger equation for a particle in a field in the electric dipole approximation:

(2.29)

(2.30)

(2.31)

i~(q) = (V'~I) + V(q)+e f q ' q d q'+e(q —R) e (R) P(q) .
2m

I q q'
I

(2.32)

The coupled equations (2.27) and (2.32) form the starting point for electrodynamics in this approximation.
Returning to the general case, we find from Lagrangian (2.22),

&(r) l d J 3———fP(q)p (r, q)P(q)d'q
Bt Bg,. 4~c c dE

and

(2.33)

B

B~, B(Ba, IBAD, )

Bw..l

Ba;

[curl curia( r )];
4m.

+ e I ejk2mc
ifiV~~'+ —f [—n(r ', q)Xb(r ')]Jd r' Vlnk(r, q)

+ Vlnk(r, q) iAVJ '+ ——f [n(r ', q)Xb(r ')]~d r' P(q)d q .
c

Thus the equation of motion for the electromagnetic field is

(2.34)

d
dE

where

—+

+—fP(q)p (r, q)P(q)d q = curl b(r) —4m fP(q)m(r, q)P(q)d q
4mc c 4m.

(2.35)

m(r, q) =
2mc

n(r, q) X is V '&'+ '—f n(r, q)—X b(r ')d'r'
c

2mc
—iA'V '~'+ —f n(r ', q)Xb(r ')d'r' X n(r, q)c (2.36)

In terms of auxiliary fields d(r ) and h(r ) defined by

d(r) = e(r)+4m. p(r),
h(r) = b(r) —4m'(r),

where

(2.37)

(2.38)

p(r) =fP(q)p(r, q)P(q)d'q,

m(r)= fP(q)m(r, q)P(q)d q,

Eq. (2.53) becomes

(2.39)

(2.40)
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curlh(r) =—1 Bd (r)
c Bt

(2.41)

curlH(r ) =-1 aD(r) 4~ J t-(-)+ r
c at c

(2.42)

Equation (2.41) is the transverse part of the atomic field
equation

and

a ~~.u
t()( q )

at aj
(2.43)

As we are dealing with neutral systems, there are no true
charges and currents, so that D ~~(r ) =0 and J ' '(r ) =0.

The equation of motion for the electron field P(q) is
found from

a
ax, a(ayzax, )

1

2m
iA—V 't'+ —f n(r, q)Xb(r)d r + V(q)

c

+e f ~ ~ d q' P(q) ——'P(q)+ —f p(r, q) a (r)d rP(q) (2.44)

to be

iirni)(q) = 1

2m

'2

—iAV 't'+ —f n(r, q)Xb(r)d r + V(q)+e f ' q ' d q' —f p(r, q) e (r)d r p(q) .
c

(2.45)

Equation (2.45), which includes all multipole interactions, is the generalized version of (2.32).
To express the magnetic interactions in more familiar terms, we use expression (2.36) for the magnetization field, and

rewrite (2.45) as

'~( )= — (V")'+&(q)+ 'f ~ d'q' fp(, q) —'( )d'
2m

2
—fm(r, q).b(r)der+ f n(r, q)Xb(r)d r P(q) .

2mc
(2.46)

The leading terms of m( r, q ) and n( r, q ) are

and

m(r, q)= — (q —R) X( ifiV 't')5(r ——R) (2.47)
2mc

n(r, q)= ——(q —R)5(r —R) .
2

(2.48)

Thus in the magnetic dipole approximation, the linear
magnetic interaction in (2.46) is the familiar

field is most conveniently formulated in canonical terms.
The standard procedure begins with the defining of the
conjugate fields from the appropriate Lagrangian; these
fields are then used to construct the Hamiltonian. The
two forms of the Lagrangian discussed in Sec. II lead to
the minimal-coupling and multipolar Hamiltonians. In
this section we derive these two forms and discuss their re-
lationship.

For the minimal-coupling case, the fields canonically
conjugate to a ( r ), P( q ), and t(( q ) are

[(q —R) X ( i AV '~') ] b—(R)
2mc

and the quadratic magnetic interaction

(2.49)
e (r)
4mc

(3.1)

z [(q —R) X b(R)]
smc 2 (2.50)

the well-known diamagnetic susceptibility energy.
We conclude this section by emphasizing that the cou-

pled equations (2.41) and (2.46) that follow from the mul-
tipolar Lagrangian in its full form serve as the natural
basis for the electrodynamics of the interaction of radia-
tion with atoms and molecules.

II(q)= . =—g(q),
at(( q )

H(q)= . = ——P(q) .
ag(q )

(3.2)

(3 ' 3)

III. CANONICAL FORMALISM AND HAMILTONIANS

Quantum electrodynamics based upon quantization of
the Maxwell field and second quantization of the electron

We note that the momentum conjugate to the vector po-
tential is proportional to the transverse electric field. For
the electron fields, the canonical conjugates are essentially
the Hermitian conjugates of the fields themselves. This
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property is a consequence of the fact that their equations
of motion are first order in time. This feature, which is
well known for the uncoupled electron fields, presents no
difficulties in the development. The electron field depen-

I

dence in the Hamiltonian is best expressed in terms of ti
and f using (3.2) and (3.3). The miniinal-coupling Hamil-
tonian is

H;„=f m(r). a (r)d r+ f II(q)jb(q)d q+ f II(q)IT(q)d3q I. —
2

= fp(q) ill—' '+ —f n( rq)X b(r)d r + V(q)+ —f q q d q' p(q)d q

+ f [[4~ca(r)] .+[curia(r)] ]d r
Sm

(3.4)

Inin min min
Hmin =Hmo] +Hrad +Hint 7

where

(3.5)

which may be partitioned in the usual way according to
m.;(r)= i"" = '

2
——fP(q)p; (r, q)P(q)d q4~c2 c

R2
H ',", =fq(q) — (V'~') +V(q)

2m

+ ' f—1'( )l"( 'd q' g(q)d q,
and

d;(r),
4m.c

II(q)= . =—P(q),
2

(3.10)

(3.11)

and

H„d" —— f [[4mc~(r)] +[curia(r)] ]d r
Sm.

f [e "(r)+ b '( r )]d'r,
Sn.

H;„,'" = f f(q)[ —ikey ''i'a (q)]g(q)d'q

2

+ z fP(q)a (q)itj(q)d'q .
2mc

(3.6)

(3.7)

(3.8)

(3.9)

We now turn our attention to the multipolar develop-
ment. The analogs of (3.1)—(3.3}are

(3.12)

The momentum conjugate to the vector potential is now
proportional to the transverse component of the displace-
ment vector field d (r) of Eq. (2.37), in contrast to the
minimal-coupling case where the conjugate momentum is
proportional to the transverse component of the electric
field. This distinction is already known ' ' in the treat-
ments involving point particles interacting with radiation.
The momenta conjugate to the electron fields are also dif-
ferent in the two cases; they are related through (2.9). For
the conjugate momenta the same symbols are used in both
cases, the context being sufficient to distinguish them.
The Hamiltonian is now

H „i,——f n(r) a (r)d r+ f II(q)$(q)d q+ f II(q}P(q)d q —L

= fp(q)
2

iAV ''i'+——f n(r, q)Xb(r)d r + V(q)+ —f q q d'q' p(q)d'q

2

f 16+ c~(r)+ fP(q)p (r, q)P(q)d q +[curia(r)] d r .
Sm

(3.13)

We partition (3.13) into three terms: The first, H, i, is independent of the electromagnetic field, the second, H„d, is
independent of the electron field, and the third, H;„„couples the two fields. Thus

Hmult Hmol +Hrad +Hint (3.14)

where

H, i' ——fP(q)
'2

(V''i'}2+ V(q)+ —f q q d3q' p(q)d q +off ((}(q.)p (r, q}p(q)d q d r,
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H„d" —— f [[4ircm(r)] +[curia(r)] ]d r8a (3.16)

f [d (r)+b (r)]d r, (3.17)

H;„,""=—fP(q)p(r, q) d (r)P(q)d rd3q

—fP(q)m(r, q) b(r)P(q)d rd q+ fP(q) f n(r, q)Xb(r)d r (()(q)d q .
2mc

(3.18)

An approximate H;„,""can be obtained by taking the first few terms in the multipola. " expansions for the polarization
fields. With the electric polarization current to the quadrupole order, and the magnetization correct to the dipole order,
H;„,""takes the familiar form

H;„,""=—fP(q)p, d (R)P(q)d q —fP(q)g Vd (R)P(q)d3q —fP(q)m. b(R)P(q)d q
2

+ 2 fP(q)[(q —R) && b(R)] P(q)d q .
8mc2 (3.19)

Both Hamiltonians can be considered as the sum of electron and electromagnetic field energies, each of which consists
of kinetic and potential energy contributions. For the electromagnetic field energy, we have

1E„
8~

2

a '(r)
+[curia(r)] d r

4~c

f(e'+b )d r,
8n (3.20)

where the electric contribution is conventionally considered as the kinetic energy and the magnetic contribution as the po-
tential energy. The difference between the minimal and multipolar forms depends on the relationship between a (r) and
the canonical momentum ~(r). In the minimal coupling case, a (r) is 4m.c n. (r), whereas for the multipolar case a (r)
is 4mc [err(r)+p (r)]. For the electron field energy, we have

E,i
——f p(q) —,'mq + V(q)+ —f + q + q d q' p(q)d3q

=fP(q) —,
'

mq + V(q)+ —f d q' P(q)d q, (3.21)

where the kinetic energy contribution depends on q, the
operator representative of which depends on the relation-

ship between q and the canonical momentum of the parti-
cle, already known in the particle —electromagnetic-field
theory. For the minimal-coupling case, this relationship is

mq=p+ —a'(q)
c

and for the multipolar case it is

mq=p+ f n(r, q)xb(r)d3r .

(3.22)

(3.23)

Thus we see that both Hamiltonians can be written in the
form of (3.24)

+ ~)electron+( + )rad ~ (3.24)

where the systems are apparently uncoupled. Despite this
superficial partitioning, they are in fact coupled, and the
interaction terms in the Hamiltonians can be explicitly
recovered when the velocities are expressed in terms of the
canonical momenta.

IV. QUANTUM CANONICAL TRANSFORMATION

The quantization of the dynamical system described by
the Hamiltonians H;„and H „l, follows the well-known
procedure of promoting the canonical variables to quan-
tum operators. The canonically conjugate pairs obey the
equal-time commutation (or anticommunication) relations

[a; (r),m.j(r ')] =iiri5,&(r —r '),
[4(q»P(q ')l+ =[(((q»4(q ')1+=@q—q ') .

(4.1)

(4.2)

a;„(r) =e ' a „l,(r )e'

;„(r)=e ' ~ „l (r)e'

(4.3)

(4.4)

All other pairs of operators commute (or anticommute).
The minimal and multipolar Hamiltonians quantized in
this way are related by a quantum canonical transforma-
tion which is a generalization of the classical coordinate
transformation of the Lagrangian discussed in Sec. II.
Under this canonical transformation, the conjugate pairs
transform according to
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1((q)=e ' P(q)e'

II; („q) =—f(q) =e ' —P(q)e '

=e ' 11m.ii(q)e'

(4.5) Clearly, the commutation and anticommunication rela-

tions (4.1) and (4.2) remain unaltered under this transfor-
mation. To obtain the transformed Hamiltonian we sub-

stitute (4.3)—(4.6) in H;„. Thus
(4.6)

I

H;„(a;„(r) ir;„(r) P(q) f(q))=H;„(e ' a zi(r)e', e ' ir „ii(r)e';e ' (()(q)e', e ' P(q)e' )

=e '~H;„(a „i,(r), vr „i,(r);P(q), P(q))e'~ .

The resultant expression is the multipolar Hamiltonian, i.e.,

H „„(a „i,(r), ir „i,(r);P(q), P(q))=e ' H;„(a „„(r),~ „i,(r);P(q), P(q))e'~ .

(4.7)

(4.8)

Thus the transformation can also be viewed as a unitary rotation on the operator H;„. This was the point of view

adopted in our earlier work. ' The choice of the generator P' corresponding to the previous canonical transformation is,
in terms of S( q ) defined by (2.10),

P'= f(()(q)S(q)P(q)d q= fP(q)p(r, q) a (r)P(q)d3qd3r
Ac

(4.9)

with p(r, q) given by (2.19). For this W, it is easily seen that the vector potential remains unaltered and we can therefore
omit the suffix on a ( r ). However, the momentum conjugate to the vector potential does change. From (4.4) we have

;„(r)=ir „i,(r) —i[&,m. „„(r)]

„i,(r) — fP(q)p;(r, q)P(q)d q[a;(r '), n. (r)] d3r' (4.10)

mult( r ) +—
p ( r ),

C
(4.11)

where p(r) is the polarization field. The series (4.10) terminates at the second term. We emphasize that although ir;„ is

proportional to the transverse electric field, the presence of p (r) in (4.11) results in ir „i, being proportional to the
transverse displacement field.

For the operator electron field, we have from (4.5)

|((q)=0(q) —i [~,4(q)] ——,l~ [~,4(q)] ] +

= P(q) —' f [P(q ')S(q ')P(q '),P(q)] d q'

,
' f [4—(q—')S(q')Plq'), [klq")S(q")4(q"),4(q)] ] d'e'd'e" —. .

P(q=)+i f S(q ')P(q) 5(q —q ')d'q'

(4.12)

——,
' fS(q ')S(q ")5(q —q ')5(q —q ")P(q)d q'd q" — =e' 'q'(()(q) . (4.13)

In contrast to (4.10), all terms in the series (4.12) contribute to (4.13). Similarly, Eq. (4.6) leads to the Hermitian conju-

gate equation g(q) =P(q)e ' ' '. We note that the second-quantized operator transformation (4.5) leading to (4.13) is
the quantum analog of (2.9) for the first-quantized fields. The fact that the electron fields change in this way under the
transformation requires concomitant changes in the equations of motion. In the minimal-coupling case, we have

ilia(q) =[/(q), H;„]
2

1

2m
—&&' '+ — '(q) +I'(q)+ 'f ~ q ~ q d'q' g(q) .

I q —q
'

I

(4.14)

On the other hand, for the multipolar coupling case,

ie(q)=[4(q), H .i, ]

1

2m
iAV ' '+ —f—n(r, q)xb(r)d r + V(q)+e f q q d q'+4mc f p(r, q). m „1,(r)d r

C
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which, with the use of the relationship connecting the electric field e ( r ) and the field n(r.), conjugate to a ( r ), gives
'2

6j(-)= —AV' '+ —f-(-,-)Xb(-)d' +V( )+ 'f ~ d' ' —f-(-,-) -'(-)d' P(-) .

(4.16)

The operator equations (4.14) and (4.16) are the second-quantized equivalents of the first-quantized equations (2.8) and
(2.45), respectively. That the two Schrodinger-type equations are different in form is not surprising since they are equa-
tions of motion for different fields. ' An alternative route to (4.16) is to begin with the equation of motion for f(q) and
to use the transformation (4.13). We have

is(q)y(~)] —is(qi. g P+~y(
at ='a~' ' =' '

at
'2

—is(q)
2m

ifiV—'q'+ —a (q) +V(q)+e'f ' ' ' 'd q' e ' 'q'p(q)

(4.17)

1

2m
iAV' '+——a'(q) +V'' 'f p(r, q) a'(r)d'r

C

+V(-)+ 'f ~' '~' d'q' —fp(, q) ( )d' (()(q). (4.18)

With the aid of the identity (2.20), this equation is seen to be the same as (4.16), the equation in multipolar form.

V. EXTENSION TO A MOLECULAR ASSEMBLY

In the application of radiation theory to the study of intermolecular interactions, the multipolar formalism has distinct
advantages over the minimal-coupling method. In this section, we extend the one-center theory developed in the earlier
sections to a molecular assembly and draw attention to some of the salient features. To make this extension, it is con-
venient to introduce several electron fields, one associated with each molecule, and to assume kinematic independence of
these fields. For molecules with weakly coupled chromophores, it is better to assume that the electron fields of the dif-
ferent chromophores are distinct. In the many-body theory, this corresponds to the imposition of the Pauli principle for
the electrons associated with each molecule or chromophore and to the neglect of electron exchange between different
centers. Let the electron wave field associated with center a be denoted by P, (q). Then the multipolar Lagrangian for
the complete system, obtained by generalizing (2.22) and ignoring nuclear kinetic energy contributions, is

2

L „„=—g f(t, (q) ifiV' ' '+ —f—n, (r, q)X b(r)d r
c

+ V, (q)+ —f d q' iI), (q)d q

I q —Rb
I(a&b)

Z Zbe+
IR, —Rb

I(a&b)

+—'Z f [O.(q)k. (q) —k(q)0. (q)]d'~
a

——g f (t, (q)p, (r, q) a (r)P, (q)d qd r+ f
a 8n.

'2
a '(r) —[curia(r)] d r .3

c
(5.1)

In (5.1) it is assumed that the total nuclear charge for
assembly a is Z, e and R, is a conveniently chosen center.
V(q ) is the Coulombic potential energy between the nuclei
of assembly a and between the electron field P, and these
nuclei. The second and third terms of (5.1) are the inter-
molecular Coulombic contributions. Both the intra- and

' f I-~~(-)I'd r
8m

(5.2)

inter-Coulombic terms can be expressed in terms of the
longitudinal components of the total polarization field.
We first note that these Coulombic terms are
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where e ii(r) is the electrostatic field of all the charges.
With the assumption that there are no net free charges, '

i.e., no ions or charged chromophores,
dive ii(r) = —4n divp ii(r), and the Coulomb terms (5.2)
are given by

2n f I p II( r )
I

2d 3r,

pl (r q)= V
4~ (5.5)

= —e(q —R )J f Pl((r —R —A(q —R ))dP

(5.6)

where

p ll(r) yp
a

=g fP, (q)p, '(r, q)P, (q)d'q

with p,lI(r, q) given bI

(5.4)
fP, (q)P, (q)d q=Z, (5.7)

a consequence of neutrality, we obtain the intra- and
inter-Coulombic terms of (5.1):

which is the longitudinal component of (2.19). Substitut-
ing (5.4) and (5.5) in (5.3) together with the normalization
(5.7),

V;„„,=2m+ f p ll(r). p ll(r)d r

=g fP(q, ) V(q)+ —f ' ' d'q' P, (q)d'q (5.8)

and

V;„„,=2ir g f p, (r) pI(r)d'r

—Zbe 2

I q Rb I—

2

Zz 2

= g fp. (q) (5.9)
a, b

(a&b) (a~b)

Using (5.8) and (5.9) and completing the square in the last two terms of (5.1), we obtain the expression (5.10) for the mul-

tipolar Lagrangian. Thus

L „„=—gfp, (q) iAV ii'+——)n, (r, q)Xb(r)d r P, (q)d q

—V;„t —2' g p ll(r). p II( r)d3r — g f [P (q)P (q) —P (q)P (q)]d3q
a, b a

(a~b)

2
—+ J —4irp (r) —[curia(r)] d r 2nfI p (r—)

I
d. r .

C
(5.10)

As for the longitudinal term (5.3), we can also partition 2' f I p (r)
I

d r into intra- and intermolecular contributions.
The intermolecular parts of both integrals are then combined according to '

2nfI p (r)
I

. d r+2n g f p ll(r) pII(r)d r=2ng f I p, (r)
I

d r+2m. g f p, (r) pb(r)d r .
a, b

(a+b)

(5.11)

The fields p, (r ) in the last term of (5.11) are the total polarization fields and are localized at their respective centers.
Thus for nonoverlapping systems this intermolecular term is zero. The field-independent one-center contribution of
(5.11) can be added to the other one-center term of (5.8) to give an effective intramolecular potential energy

V, =2mf Ip, (r)I dr

,(q '), (q ')
+ fP, (q) V, (q)+ —f d'q' P, (q)d'q .

q —q'
Thus the multipolar Lagrangian can be written as

(5.12)
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L . = —X f0.(q)
1 —iAV ' '+ —f n, (r, q)Xb(r)d r

c

2

P, (q)d q+ V,

+—y f [((~.(q)4. (q) —0.(q)0. (q)]d'q+ f
2

J —4mp (r) —[curia(r)] d r .
c

(5.13)

An important feature of this Lagrangian is that there are no explicit contributions depending on pairs of molecules. All
intermolecular interactions are mediated by the transverse electromagnetic field. This is in contrast to the minimal-
coupling case where the electrostatic interaction terms between molecules explicitly appear in the Lagrangian and need to
be considered in addition to the electromagnetic couplings.

The Hamiltonian is obtained in a straightforward manner following essentially the same lines as those described in Sec.
III; the many-center analog of (3.14) is

(5.14)

In the minimal-coupling case, the Hamiltonian as well as the Lagrangian cannot be expressed in this simple additive
form. 0;„has interactions which are nonlocal involving pairs of molecules. The many-center analog of (3.5) is

H;„=gH ',"~(a)+H„d"+gH;„I"(a)+ g V;„„,(a,b),
a a a, b

(a&b)

(5.15)

where V;„„„is given by the expression (5.9) with the p's replaced by the corresponding 1('s. In the electric dipole approxi-
mation, the interaction terms of (5.15) become

2

H;„,'"(a)= f1(,(q)[ ifiV ~—~~ a (R, )] (,1(q)d q+ a~ (R, ),mc 2mc

e (5; —3R;RJ)
V;„«,(a,b)= fg, (q) 1~(t(q ')(q —R. );(q ' —Rs), 1'.(q)t(~(q ')d'qd'q',

R

(5.16)

(5.17)

where R=Rb —R, . In contrast, the corresponding in-
teraction energy in the multipolar Hamiltonian (5.14)
takes the simpler form,

i~(q) = ( —iAV '&') +e(q —R) e (R)
2m

H;„,""(a)=e f (t, (q)(q —R, ) d ~(R, )P, (q)d3q . (5.18) + V(q) P(q), (6.2)

Applications illustrating the use of the two formalisms
with their differing interaction terms are given in papers
II and III.

VI. DISCUSSION

ilgwu(q) = 1

2m

2

—ih'V '~'+ —a'(R) + V(q) 1((q)
c

(6.1)

and

In this paper we have made the transformation from the
minimal-coupling formalism to the multipolar formalism
by changing the generalized coordinates describing the
electron fields. This contrasts with the procedure used in
the particle —radiation-field theory where a total time
derivative is added to the minimal-coupling Lagrangian,
the generalized coordinates q and a remaining un-
changed. In the latter case, the equation of motion for the
particle is the Lorentz force law which is invariant to the
transformation. However with the electron field as coor-
dinates, the equations of motion are different because the
fields themselves have changed under the transformation.
In the electric dipole approximation, these Schrodinger-
type equations are

m. ;„(r)=- e (r)
4m.c

e (r)
m. „),(r)= — —p (r)

4m.c

d '(r)
4n.c

(6.3)

(6.4)

Thus in the development of the Hamiltonian formalism, it
is essential to recognize the changes in both the general-
ized coordinates and their conjugate fields. A conse-
quence of this is that, within the canonical formalism, the
electron field appearing in the equation of motion (6.2)
must be expressed in terms of the displacement vector us-
ing (6.4). The equations of motion for the electromagnetic
field are the Maxwell equations. When expressed in terms
of the canonical variables appropriate to the two theories,
they take different forms as given by Eqs. (2.6) and (2.41).

A significant feature of the multipolar formalism aris-
ing from the changes in the canonical variables is, as
developed in Sec. V, that the electrostatic interactions be-
tween neutral molecules are not explicitly present in the
Hamiltonian. All intermolecular interactions are mediat-
ed through the transverse radiation field.

where self-interactions have been omitted. As in the
particle —radiation-field theory, the field canonically con-
jugate to the vector potential changes under the transfor-
mation:
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APPENDIX: DERIVATION OF IDENTITY (2.20)

We begin by showing that e ' f n( r ', r ) X b( r ')d r' is a vector potential for the magnetic field b( r ):

curl e ' f n(r ', r) X b(r ')d'r' =e ' f V X [n(r ', r) X b(r ')]d'~'

= —e ' f b(r ') di vn(r ', r) d'r'+e ' f [b(r ') V]n(r ', r)d'r'

using (2.21) for n(r ', r), the ith component of (Al), is

fb;(r ') div (r —R)f A5(r ' —R —A(r —R))dA, d r' —f [bj(r ')VJ](r —R);f A5(r ' —R—A(r —R))dk, d r'

= 3fb;(r ') f A5(r ' —R —A(r —R))dkd3r' fb;(r ')(r——R)~ f A~V~5(r ' —R —}(r —R))dl, d r'

—fbj(r')5J J A5(r ' —R—A(r R)—)dl, d r'+ f bj(r ')(r —R);f A, VJ5(r ' —R—A(r —R))dl, d3r'

(A1)

=2fb;(r ') f A5{r ' —R —A(r —R)}dk. dr'+ fb;(r ') f A, 5(r ' —R —A(r —R))dk, d r'

= f b;(r ') f [A.'5(r ' —R —k(r —R))]dkd'r'=b;(r) . (A2)

We note, however, that this vector potential, in contrast to a (r), is not entirely transverse. The difference between the
two potentials is the gradient of a scalar field. We have

e 'f [n(r, r')Xb(r')];d'r' —a (r)

= —E&kit k f (r —R)J[VI a ( r ')]f A5( r ' —R —A( r —R))dl. d r' —a; (r )

= —f (r —R)&[V,'aj (r ')]f A5{r ' —R —A(r —R))dl, d r'

+ f (r —R)~[V~a; (r ')]f k5(r ' —R —A(r —R))dl, d3r' —a, (r)

= f (r —R)jaj(r ')V,' f A5(r ' —R —k(r R))dkd —r'

—f (r —R)ja; (r ')VJ. f A5(r ' —R —A(r —R))dkd r' —a; (r)

= —f (r —R)jaj(r ')V; f 5(r ' —R —A(r —R))dA, d r'

+ fa; (r ') f A, 5(r ' —R —A(r —R))dkd r' —a; (r)
dA,

= —V; f ( r —R)ja~ ( r ') f 5( r ' —R —}.( r R))dldr'— .

+ fa; (r ') f I+X 5{r ' —R —A(r —R)}dk,d r' —a; (r)
dA.

=e 'V; —e(r —R)z J aj(r ') f 5(r ' —R —}(r R))dkdr'— ,

+ fa; ( r ') f [X5(r ' —R —k( r —R) )]dk. d r' —a; ( r )
o dk

=e —'V; f p(r ', r).a '(r ')d'r', (A3)

where we have used (2.19) for the polarization field p(r, r). Thus the scalar field whose gradient is the difference be-
tween two vector potentials is

e 'f p(r', r) a (r')d'r'.

For r = q, Eq. (A3) leads to the required identity

—a (q)+ —V' '«'f p(r ', q) a (r ')d r'= f n(r ', q) X b(r ')d r' .
C C

(A4)
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