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Molecular field theory of phase-induced biaxiality in cholesteric liquid crystals
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The anisotropy of orientational order in cholesteric liquid crystals is investigated within a mean-field
model of the cholesteric phase. It is shown that this biaxiality emerges as a direct consequence of the heli-
cal structure of the phase and the chiral character of the intermolecular interactions. The dependence of
the biaxiality on temperature and pitch is compared with recent NMR measurements.

In the canonical uniaxial nematic- and smectic-A phases
of liquid crystals, there is one direction in space along which
the molecules preferentially orient. It is also theoretically
possible' that molecules which are not axially symmetric
will exhibit a biaxial nematic phase where the "flat faces"
of the molecules align along a second preferred direction
perpendicular to the first. No biaxial thermotropic nematics
have been observed, but Saupe' has demonstrated the ex-
istence of biaxial lyotropic liquid crystals.

It has been known for some time that cholesteric liquid
crystals could also exhibit biaxiality, 4 ~ but only recently has
this been observed in NMR experiments. The experimen-
tal observation suggests that this biaxiality is not due to the
noncylindrical nature of the molecule, but is almost entirely
a consequence of the anisotropy of the orientational distri-
bution parallel and perpendicular to the pitch axis. This
phase-induced biaxiality prompts us to consider a
molecular-field model of the Maier-Saupe type for
molecules with uniaxial symmetry and a chiral interaction
only.

We shall build upon a simple molecular model of the
I

cholesteric phase introduced by Shih, Woo, Tan, and one of
us. The model begins with prototype nematogenic rigid
molecules which are structurally cylindrically symmetric.
Superimposed on this symmetry is a chirality that gives a
sense of "handedness" to the molecules. Such a picture is
equivalent to one presented by Van der Meer. The
lowest-order contributions to the intermolecular potential
which are sufficient to induce the cholesteric phase are'

V(1, 2) =—VO(r&2) + Vj«(r&2)P2(Qt 02)

+ V„(r&2)Pt(Sl& ' &2)(r12' t11 t12)

Here Q is a unit vector, indicating the orientation of the
molecule. Terms depending on Qi r"i2 have not been in-
cluded in this lowest-order expansion, because they are not
required by the symmetry of the cholesteric phase, but are
probably more important in the smectic phases.

With this "minimal symmetry" potential, we are now in a
position to write down the standard mean-field approxima-
tion for the Helmholtz free energy,

P[f(r, A)~T p]=& (T0p)+ —p Jtf(r~, Q&)f(r2, 02) V(1, 2) dr&dQ&dr2d02

+pkT Jff( r, 0) jn4mf( r, 0) d r dQ (2)

where p = %/ V is the average number density, and the
one-particle distribution function is f( r, 0). The minimi-
zation of ~ will give the usual mean-field self-consistency
condition.

The degree of local orientational order for a given
f( r, 0) can be specified by the traceless symmetric tensor
g p(r),

change as a function of position. To describe this variation,
we will establish at each point in the phase a local Cartesian
coordinate system defined by three mutually orthogonal unit
vectors I( r ), m( r ), n( r ). These are to be chosen so
that the local order-parameter tensor is diagonal. Let S
S~, and S be these diagonal elements (constants indepen-
dent of position); then globally the order-parameter tensor
is

—= ( —,0 Qp —
—, tj p)n

3 1

g ~( r ) = S I ( r ) Ip( r ) +S~m ( r ) mp( r )

+S n ( r ) na( r ) . . (4)

Here 0 is the Cartesian component of the molecular orien-
tation vector 0 = (sing cos&jI&, sing sin&t, cosg) at position r .

In the cholesteric phase, the magnitude of the orientation-
al order is uniform, but the twist causes the local director to

The "local nematic" order parameters are now S =S and
6 = S —S~ and a nonzero 4 indicates a biaxial phase.

We now proceed to write the free-energy as an explicit
function of the order parameters. Using the definition of
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0 p( r ) given in Eq. (3), the average over Q~ and Qq of
the last two terms of the potential given in Eq. (1) is easily
carried out to yield

& (rl2 ~ ( Q& x Q&) ( Q& ~ Q&) ) n ——q p&r&& Qp&( r &) Q&8( r &),

(&)
—, (P~(Qt Q~))n=g p(r, )0 p(r~)

Using Eq. (4), the magnitude of the orientational order may
explicitly be separated from the position dependence. We
may now choose any texture by specifying the spatial depen-

dence of I, m, n, and then minimize the free energy only
with respect to the orientational order parameters.

For the special case of a helical texture with the pitch
along the xaxis, l is constant and

m( r ) = (O, cosqx, sinqx)

n( r ) =(0, —sinqx, cosqx)

The following expression for the orientational contribution
to the free energy per molecule in the cholesteric phase it
obtained:

d r V~(r) [S~ +(S~+S„)cos~qx+2S~S sin~qx] +— d r (S —S~) xsi n2qx+kT(1 n4mf)o
N 3 ~ XX' Jg ZZ pp ZZ 9 r

The pitch of a cholesteric is much greater than the molec-
ular dimensions, and hence it is possible to treat the expres-
sion for the free energy in the long-wavelength limit when
qR )& 1 with R being a characteristic range of the potential.
Then

F Q2—= kT(ln4mf) —A S'+
N 3

where

g(8, @)= 2AS+ (S+—,6)Pp(cosO) 2C2
kT

+ 3 sin Ocos2$ 2 A~+ 2 C (S+ ~) (14)
2 kT 3 3 8

This result, with the definition of Sand 6,
+Bq S+——2qC S+—

3 3

where we have defined

S = J f(8, P)Pq(cos8) d Q

d = „ f(8, @)—, sin'8 cos2$ d Q,

(15)

A = —— Vjy( r ) d r yields a set of self-consistent equations which can be solved
for S and b, given a reduced temperature r = kT/A, and a
measure of the chiral interaction strength e = C~/BA.

Figures 1 and 2 show experimental ' and theoretical
results for the biaxial parameter" q = 6/S, as a function of
temperature in systems of different chira1 strength. We
note that the two sets of results share several qualitative
features.

(i) The biaxiality is positive. If a nematic (C =0) is
twisted mechanically, then minimizing Eq. (8) with fixed q
yields an identical mean-field potential except that e be-
comes —B/A. The resulting biaxiality is negative.

(ii) The biaxiality is a monotonically increasing function
of temperature, with a noticeably larger rate of increase just
below T, (due to part to the opposite behavior of S). This
is to be distinguished from the behavior of other order
parameters as calculated by Straley, which exhibit a max-
imum below T,.

(iii) The biaxiality increases with increasing chiral
strength, i.e., tighter pitches.

(iv) The Maier-Saupe order parameter S does not change
much when biaxiality is included. This feature is consistent
with optical data. ' We observed that the shape of S vs T
changed very little, but its value at the transition did de-
crease from the usual nematic mean-field result of S, =0.44
to the mean-field maximum supercooled result of S„=0.33
when ~ increased to 0.3-0.4.

Although the experimental agreement is encouraging, one
cannot say that this is a rigorous test of the theoretical ap-
proach presented here. Firstly, the real rnolecules are not
cylindrical in shape, so that in genera1 two more order
parameters, one biaxial and one uniaxial, should be includ-

B= ——p V~(r)x'dr
4

fO

XC= —— dr V„(r) dr
4 & " r

Within the mean-field approximation, the entropy
(In4n f) n depends only on the local order and is indepen-
dent of pitch. The optimum pitch qo can be obtained by
minimizing the potential energy with respect to q,

C 2mqo= —=
8 I'

The pitch is as expected, inversely proportional to the
strength of the chiral potential, and proportional to the twist
elastic term of the nematic (Pq) part of the interaction.

Using the equilibrium value of the pitch, the free energy
becomes

The free energy may be minimized with respect to f in the
usual fashion,

F
Sf N

f(Q) dQ =0 (12)

to yield

eg(e, y)
f(e, $) =

J dQ egt~ ~~
(13)

C2—= kT(ln4n f) —A (S'+—5 ) — (S+ b)—
N
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FIG. 1. Experimental results for the temperature dependence of
the biaxiaiity parameter (S~ —S~ l/S~ = rt for mixtures of 4-
methoxybenzylidene-4'-butylaniline (MBBA) and 4-methoxy-
benzylidene-4'-[(+)-2-methylbutyl]aniline (MBMBA) from Refs. 6
and 10: (0) 21.8 wt. % MBMBA; (6) 30 wt. % MBMBA; (b, ) 40
wt % MBMBA.

FIG. 2. Temperature dependence of the calculated biaxiality
parameter at various values of the chiral strength parameter e'. (a)
a=0.2; (b) a=0.3; (c) a=0.4; and {d) a=0.7.

ed. ' For the particular experimental system considered, the
order parameter which reflects the noncylindrical character
of the molecule was negligibly small, ' thus encouraging the
application of our model. Secondly, and possibly more im-
portantly, the experimental results are for a mixture of
chiral and nonchiral molecules, the biaxiality being mea-
sured only for the nonchiral constituent. Here we have only
conjectured that e must increase as the concentration of the
chiral component increases.

Finally, the simplicity of mean-field theory and our
minimum symmetry potential are unable to reconcile macro-
socpic observables such as elastic constants with microscopic
order parameters. Attempts to estimate e = C'/BA
= qo (B/A ) from knowledge of the pitch (3 &&10 m),
twist elastic constants [8 =@2&(V/X)S'=—2X10 " Jm'],
and the transition temperature (r, =0.22, A =10 ' J) yield
values of e far too small (e= 10 '). One may, of course,

argue that the fluctuations are collective as in swarm theory
and e should be scaled by the number of correlated
molecules. In the absence of a theoretical treatment incor-
porating such correlations, we suggest that mean-field
theory has demonstrated a mechanism for phase-induced
biaxiality in cholesterics and yields the correct qualitative
behavior of the order as a function of temperature and
pitch.
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