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Transport theory for a weakly interacting condensed Bose gas
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The Landau-Khalatnikov two-fluid hydrodynamic equations are derived for a dilute, weakly interacting,
condensed Bose gas on the basis of a microscopic theory. Explicit expressions for the transport coefficients
in the linearized equations are given for very low temperatures and for moderately 1ow temperatures below
the X point.

The purpose of this paper is to report on a calculation of
the transport properties of a dilute weakly interacting Bose
gas below its A. point. We have been able to derive the non-
linear two-fluid equations of superfluid hydrodynamics as
well as explicit expressions for the transport coefficients for
this system, starting from a microscopic theory. These cal-
culations can be viewed as the extension to nonequilibrium
gases of the equilibrium calculations of Lee and Yang for a
condensed Bose gas. ' Further, our results can be used to
compute the transport properties of spin-polarized hydrogen
below its X point.

As in the transport theory for classical systems, there are
two ways to derive hydrodynamic equations and expressions
for the transport coefficients in terms of the microscopic
properties of the particles of the systems under considera-
tion here. One method —the distribution-function
method —starts from the appropriate quantum Liouville
equation and leads to a kinetic equation for the distribution
function of quasiparticles in a spatially inhornogeneous di-
lute Bose gas below its A. point. We then look for a solution
of this kinetic equation that describes a state close to local
equilibrium and, following a procedure by Chapman and
Enskog for the classical Boltzmann equation, we derive the
nonlinear Landau two-fluid equations together with expres-
sions for the transport coefficients. It should be remarked
that the kinetic equation we derive has the same formal
structure as the kinetic equation used by Khalatnikov and
Landau in their semiphenomenological description of trans-
port in helium. 3

The other method we used —the time-correlation-function
method —is based on the method first developed for a Bose
fluid below its P point by Hohenberg and Martin. 4 Here
one looks for a solution of the quantum Liouville equation
that describes the relaxation of a small, long-wavelength
fluctuation about an equilibrium state. This procedure leads
to the linearized two-fluid equations together with formal,
Green-Kubo expressions for the associated transport coeffi-
cients. We have been able to evaluate these expressions for
a dilute weakly interacting Bose gas and obtain results ident-
ical with those obtained by means of the distribution-
function method.

To be specific, we will outline here the calculation based
on the distribution-function method and indicate briefly the
connection with the time-correlation-function method. Fur-
ther details will be given in subsequent publications. 5

We consider a system of weakly interacting spinless bo-
sons with second-quantized Hamiltonian H =Ho+ V given

t' ~d Bj (r) Bj(r)
2m

V =
2 Jt d r J d r ' V( r ') p'( r + r ')

xy ( r )y( r )Q( r + r ') (1b)

where a is the s-wave scattering length for collisions
between the particles. We also introduce the thermal de
Broglie wavelength A. by h. = (2' /mks T)', where ks is
Boltzmann's constant and T the thermodynamic tempera-
ture. Since the system we consider is cooled below its A.

point, we have the inequality nA. «l. We also suppose
that the scattering length a « X, and that the gas is dilute
with respect to the scattering length, i.e., na' «1. In a
way similar to the procedure used by Lee and Yang' for the
equilibirum properties of a condensed Bose gas, we distin-
guish two regions: (a) a very-low-temperature region for
which na A.

2 ~1, and (b) a moderately-low-temperature re-
gion for which na A. « l, but with nA. «1, and tempera-
tures still below the A. point. Finally, we evaluate average
values as traces with respect to a time-dependent density
matrix p(t), so that (2 ) —= Trp(t)A, where A is an opera-
tor.

Since the system is below its X point, there is a condensed
state that is macroscopically occupied, and we take the aver-
age values of the field operators P( r ) and P ( r ) to be
nonzero and given by

(P( r )) = (P ( r ))'=n, ' ( r, t) exp[i @( r, t)] . (2)

Here n, ( r, t) is the local density of particles in the con-

Here Ho is the kinetic energy operator, V is the potential-
energy operator, P(r) and P ( r ) are boson field operators,
V( r ) is the potential-energy function, and a circumflex
denotes an operator. We consider the system to be com-
posed of particles with mass m and they are contained in a
volume Q, and we will eventually take the thermodynamic
limit 0 ~, (N ) ~, (N ) /0 = n, where (N ) denotes
the average number of particles in Q.

We consider a weakly interacting gas, for which we can
represent V( r ') in Eq. (1b) by the pseudopotential

V( r ') =5( r ')4vrt'a/m
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densed state, at time t, and P( r, t) is a phase which is tak-
en to be real. We also define a velocity V, ( r, t)
= tr/m V@( r, t), determined by the phase of the con-
densed wave function. In the two-fluid hydrodynamic equa-
tions to be discussed below, V, ( r, t) is identified as the
velocity of the superfluid. We then define the field operator
for excited particles as Q'( r, t) = P( r, t) —(P( r, t) ).

To proceed, we find it convenient to eliminate the phase
factor in Eq. (2) by a unitary transformation. As a conse-
quence of this we perform our calculations in a local refer-
ence frame where the superfluid is at rest. For this case the
condensed mode contains the lowest single particle energy
state and we introduce the Wigner operator corresponding
to the distribution function for particles in excited states at
point R, with velocity tk/m, by'o

F (R, k) = ' d r e'" ' "
Q

' R+—@' R —— (3a)

= ~'e ' a -„-/2a -„-/2 (3b)

where in (3b) we have used the representation
f( r ) = 0 ' 'Xa-qe'" ' ", and the prime on the summation
means that both ao and ao are excluded in the sums. The
subscript p denotes a "particle" signer operator. For the
condensed Bose gas considered here it is convenient to
make a transformation from a particle representation to an
excitation or quasiparticle representation. Since the particles
are weakly interacting, the transformation from particle
operators a -„and a -„ to excitation creation and annihilation

Af
operators b -„and 6 -„ is easily performed by a local,
position-dependent, Bogolubov transformation. " The
quasiparticle Wigner operator is defined by

F(R, k) = X'e' " ' "b-„qtzb -„+ qtz (4)
q

where the energy of the excitation with wave number k is
given by Ek= [e„'+2ekUon, (R, t) ]' ' with ek=h k'/2m, and
U0=4mt a/m.

To derive the equations of two-fluid hydrodynamics and
to determine the transport coefficients in them, we first
derive the quantum analog of the Bogoliubov-Born-Green-
Kirkwood-Yvon heirarchy equations. The first heirarchy
equation determines the distribution function for excitations
with wave vector k, at point R, at time t,

F(K, k, t) =(F(K, k)) =Trp(t)F(R, k)

in terms of higher-order distribution functions. One can
then close the hierarchy equations by means of techniques
similar to those used in classical kinetic theory to derive the
Boltzmann equation for dilute gases from the Liou ville
equation. In that case one obtains the Boltzmann equation
as the first term in the expansion of a generalized collision
operatory in powers of na-, where o- is the diameter of a
particle. In the low-temperature quantum gas considered
here, one obtains somewhat different expressions depending
on the temperature range being stuided:

(a) For very low temperatures where nakz~ 1, one can
expand the colhsion operator in powers of the small parame-
ter (n —n, )/n, For thi.s case one finds that F(R, k, t) sa-
tisfies, to lowest order, the kinetic equation"

8F(R, k, t) ~ ) 8 (E ~k V) BF(R k ) ~ ) 8 (E ~k V) 8F(R, k, t) C (F) 1+O
at 9k BR BR Bk

(Sa)

where C~2 is a collision operator that describes the process where one excitation decays into two excitations and vice versa.
C~2 is given by

Clz(F) = '
U$ dkz ' dk3o. (kz, k3,'k))5(k) —kz —k3)5(Ek +Ek —Ek )[5(k —k)) —5(k —kz) —5(k —k3)](2~)3 J J 2 3 1

[F(k3,t)F(kz, t)[1 +F(k), t)] —F(k'l, t)[1 +F(kz, t)][1+F(k3 t)])
where

lr(kz 3i 1) ( k3 Uk3) (tlk(ttkz + Uk(Ukz) + ( kz vkz) (tlk)tlk3+'Uk)Uk3) (tlk &k ) (tlk Uk + tlk Uk )

(sb)

(Sc)

tlk=[(ek+n UO)/2Ek+ z ] ' Uk=[(ek+ncUO)/2Ek (sd)

In Eqs. (Sb) —(Sd), the F's, o-, and Ek's are to be evaluated
at the point R, t.

(b) For the moderately-low-temperature region, where
na) (& 1, but n A. «1, we can expand the collision opera-
tor in powers of nab. z, or equivalently, in powers of a/A. ,
since anhz=(nh3)(a/X). We then find that the left-hand
side of Eq. (Sa) is unchanged while the right-hand side is
replaced by

[ C)z(F) + Czz(F) ] [1 + O(na X ) ]

The collision operator C~2 has the same structure as in the

very-low-temperature region, while the collision operator
Czz(F) has the form of the Uhlenbeck-Uehling operator for
bosons, and it describes processes where two excitations
"collide" and produce two different excitations. In this
temperature range, the excitations may be thought of as
particle excitations, so that CI2 describes collisions whereby
one particle in the condensate and one excited particle col-
lide to produce two excited particles and vice versa, while
C22 describes collisions involving two excited particles.

To derive hydrodynamic equations from our kinetic equa-
tions, we follow Khalatnikov and solve them by a generali-
zation of the Chapman-Enskog procedure used in the theory
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xy('&(K, k, t) + . ] (6)

where FI(R, k, t) is the local equilibrium distribution func-
tion given by

F, (K, k, t) = (exp(P(R, t) [ E„(R,t)

+tk A(R, t)]]—1)

where A(R, t) is a space- and time-dependent vector, which
is eventually identified with V, (R, t) —V„(R,t) in the two-
fluid equations, with V„(K,t) the local velocity of the nor-
mal component of the fluid. The correction term
g"'(R, k, t) is proportional to the gradients of the local
thermodynamic variables. As in the theory for the
Boltzmann equation, one first derives conservation laws by
taking moments of the kinetic equations with respect to the
dynamically conserved variables of mass, momentum, and
energy. For the case of interest here, the conservation
equations do not arise solely from the kinetic equation,
which describes only excitations of the system, but in order
to obtain conservation laws one has to supplement those
moments by equations we have derived for the condensed
state. ' If one then evaluates the expressions in the conser-
vation laws using only the local equilibrium distribution
function, one obtains the ideal two-fluid equations, together
with expressions for the local thermodynamic functions.
For a superfluid at rest the derived thermodynamic func-
tions are identical to those calculated by Lee and Yang' in
the appropriate temperature regions, and for V„—V, &0
the thermodynamic functions satisfy the usual phenomeno-
logical superfluid thermodynamic relations. The ideal two-
fluid equations are needed to derermine P~'~(R, k, t) in Eq.
(6). This function is then used to compute the first correc-
tion to the expressions in the conservation laws beyond the
local equilibrium result. This procedure then leads to the
dissipative Landau-Khalatnikov two-fluid equations, with
expressions for the transport coefficients in terms of Pt'i.

As mentioned above, one can use the time-correlation-
function method expressions for the transport coefficients
that appear in the linearized, dissipative two-fluid equations.
However, these expressions are given in terms of the quan-
tum Liouville operator for the system. We have been able
to obtain explicit expressions for these transport coefficients
for the case of interest here by showing that the time corre-
lation functions can be evaluated in terms of the solutions
of kinetic equations that are the linearized versions of the
kinetic equations discussed above. We find that, for the
transport coefficients appearing in the linearized two-fluid
equations, both the kinetic equation method and the time-
correlation-function method give identical results.

Here we present the explicit values for the transport coef-
ficients appearing in the linearized equations. The addition-
al coefficients appearing in the nonlinear equations will be
discussed in a subsequent publication. There are six coeffi-

of the classical Boltzmann equation. That is, we look for
solutions F(R, k, t) of our kinetic equations that have the
form

F(K, k, t) =FI(R, k, t) (1+[1+FI(R,k, t)]

cients: the shear viscosity g, the thermal conductivity K, and
four bulk viscosities (1, g2, (3, and (4, where we use the no-
tation as given by Khalatnikov. We find that kinetic theory
predicts (1=$4, in accord with the Onsager symmetry princi-
ple. To evaluate these quantities we had to solve an integral
equation for p~'i, and we here present values obtained by
keeping only the first nonzero term in the solution of this
equation in terms of orthogonal polynomials. This corre-
sponds to the first Enskog approximation in the classical
theory. Higher terms in the polynomial expansion will
modify the numerical values in the expressions given below,
probably by a few percent, but we have not yet pursued this
point.

For very low temperatures, where na A. )) 1, we find

q = (1.2 x10 ) m(nab. ) [a 7r (2pm)'t nb )

K =0 24ks[a2rr3t2(2pm)'t2n g3]

(, = (4
——1.3 x10

g2 =4.4 x10 mnA

(3 =4 x10 2A/mn

with

6= [7r (2pm)' a (nX )(nak )]

For moderate temperatures (nab. «1) we find that all
four bulk viscosities (;=0, i =1, . . . , 4, as expected for a
dilute gas, and that q and ~ are given by

fn (0.02)
era (2Pm)' 1+(0.32) n, X

(7a)

ka 0.06
rra (2Pm)'t2 1+(0.11)n, d
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where n, is the superfluid number density. It is worth not-
ing that while g and K have the same temperature depen-
dence in the moderately-low-temperature region, for very
low temperatures q is proportional to T while v is propor-
tional to T . The difference is due to the fact that the
processes contributing to Ci2 lead to differing mean free
paths for energy transport and for momentum transport.
The mean free path for the transport of momentum needed
for a shear viscosity becomes infinite as T 0. This as well
as other related points will be discussed else~here. '
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