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The first explicit solutions for laser-induced autoionization by a strong, smooth pulse are reported.
Under certain "quantization conditions" for the area of the hyperbolic secant pulse, the photoelectron
spectrum exhibits a novel coherence property: a multipeak structure.

Q (cU) = Qpgyp/47r(Q) —cull + l yp) (2)

where Ace, is the energy of the autoionization resonance, pp
its width, and Qp the Rabi frequency containing 6p, the typi-
cal strength of the laser electric field.

We can substitute the state vector I p( t) &,
T

Ip(t) &
= n(t)lo& + J deep(cu, t) lcm& e ~, (3)

into the time-dependent Schrodinger equation (we put
Ep=o for convenience) and obtain the following c-number
equations:

n= —i „da Q(cu)f(t)P(o), t)

p = —i (co —coL) p(pu, t) —i Q'(o)) f'(t) n
(4)

We can eliminate the amplitude p(co, t), assuming that
P(ca, —~) =0 and lim, — f(t) =0:

fat
n = —„do)I Q(m) I'f(t) „ f(r)exp[i(ru —a I) (r —t) (,)].

(5)

Autoionization resonances are intensively investigated
both experimentally' and theoretically. Much attention
has been devoted recently to a theoretical study of the
strong-field ionization to an autoionization resonance.
However, attempting to approach physically realizable condi-
tions by inclusion of a finite width of the phase fluctuating
laser light, 4 inhomogeneous broadening, ' spontaneous emis-
sion, 6 and the existence of other atomic levels and continu-
ua, ' all these papers remain unrealistic in one important
respect: They all assume a sudden switching on of the
strong laser signal which otherwise remains time indepen-
dent.

The purpose of this Communication is to present first
results for the strong-field autoionization by smooth pulses.

Consider a model atom with only one bound state and a
single narrow autoionization resonance of the simplest,
symmetric type (Fano asymmetry parameter8 q ~). This
atom is subjected to the influence of a strong laser pulse
with the envelope E(t) = epf(t), where ep is its typical field
strength and f(t) is its dimensionless shape. The Hamil-
tonian for our system reads

0= E,lo& &ol+ dcoircol~& &~l

+ „dco[tQ(co)f(t) e"
10& (col +H.c.l, (1)

~here Ep is the bound-state energy, the cv integrals extend
from —~ to +~ (i.e. , we neglect the ionization thresh-
old), and the radiative matrix element Q(co) is given by

The simple Lorentzian form (2) of our matrix element al-
lows for converting the integral equation (5) into the follow-
ing second-order differential equation for the amplitude o..

Ba+ ( —~ a+ fn=of 4
(6)

Qp Qp (+y tanhyt +1nt =F'. 2y 2y 2y 2

where F( ) denotes the hypergeometric function. This
function reduces to a polynomial if Qp/2y = n is an integer.
This "quantization condition" translates into the 2mn area
of the pulse:

f +oo Qpm.
Qpf (r) dr = — = 27r n4 —c 'y

The polynomial in question is a Jacobi polynomial
r

g+ y tanhyt +1
5 N 2

The general formula for the probability P(~)
=lim, la(t) I' of the atom to remain in its ground state
after the pulse has passed,

[I'[(g+y)/(2y) ]}'
1[(g+y- Qp)/(2y)11[(g+y+ Q.)/(2y)]

(10)

shows that for the detuning 5=0, this probability equals
zero for the 2mn pulses with sufficiently large n.

For example, for 5 =0, y = yp, the formula (10) simpli-
fies to

sin' Q pm /2 y
( Qp~/2y)'

which is zero for all the 2mn pulses.

where

g = yp +i ( cu, —cuL ) = yp + i 6

Together with the appropriate boundary condition
n( —~) = 1, n( —~) =0, Eq. (6) is a very convenient
starting point for a numerical study.

In this paper, ho~ever, we will concentrate our attention
on an exactly soluble case of the celebrated hyperbolic
secant pulse': f(t) =1/coshyt. In this case, the solution
of Eq. (6) reads
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In Fig. 1 we have plotted the oe population of the ground

of different areas.
y=yo, d =0 case for h err yperbolic secant pulses

It is clear that our model contains as
d ~ 1 lRosen-Zener" model

d b Robi o.' 0
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ur Eq. (6), when
d B m

re uces to a very familiar one in this

r
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g pg 2

T ( tanhyt)

where T„ is the Tsschebyshev polynomial:
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a„ t =cos[narccos( —tanh )] =yt =cos ny Jl coshy7 !

W'„(ra) = lim ~P(ru, t) (2 (14)

The main feature of this sis spectrum is its multipeaked struc-
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FKJ. 3. Spectrum W„(eo) of photoelectrons emitted by the atom irradiated by the 2mn hyperbolic secant pulses. The curves are labeled
by the value of n. The number of the maxima is equal to n.

ture. In Fig. 3 this spectrum is plotted for several lowest 2mn pulses for go=a, 6=0.
Next, we comment on the dependence of the spectrum on ya/y. We quote here the formula for the 6m pulse:

W3(rd) =36m, ' 5 y'
1' +0', y,

5 +16 (rd rdL) yO
2 22'

r

t 1 r

yo + I y0 +3 y0
5 2 (rd rdL. ) 7r

(15)

The result is illustrated in Fig. 4. We show here the spec-
trum W3 for three different values of yp/y. If the pulse is
long enough (ya/y »1) it is locally too weak to produce
any splitting. Conversely, short pulses allow the mul-
tipeaked structure of our spectrum to be more easily
resolved.

This fact comes as a surprise. For a step turn-on of the
constant laser signal one gets a single-peaked spectrum for
a weak field and a two-peaked spectrum above a certain
threshold Rabi frequency. The distance between the two
peaks increases with the Rabi frequency. In the case of the
smooth pulse of the kind discussed here, an instantaneous
Rabi frequency varies between zero and its maximal value

I

denoted by Q. One could therefore expect simply a smear-
ing of the two-peak structure known from the square pulse
theory. A dramatically different result derived here is the
consequence of the coherent character of the interaction
described by our Hamiltonian (1).

The exact solution presented in this Communication,
while predicting the existence of new features of the pho-
toelectron spectrum„pertains to a very simplified model.
We ignored the existance of the sponteneous radiative de-
cay, fluctuations of the laser, and the coupling to other
atomic levels. All these complications, although present in
the realistic experiment, are expected not to alter our pic-
ture in a significant way. Their influence on the strong-field
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FIG. 4. Photoelec'. ron spectrum W3(cu) for an atom irradiated by a 6m hyperbolic secant pulse. The curves are labeled by the value of ya/y.
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autoionization by a step turn-on cw signal has been carefully
studied4 7 and proven to yield quantitative corrections only.

We conclude with a remark on possible ways of observing
the regularities described above. The most direct observa-
tion of the photoelectron spectrum will remain difficult for
some time, due to the insufficient spectral resolution of
electrons.

The properties of the photoelectron spectrum, however,
manifest themselves in a somewhat more complicated con-
figuration of the double-resonance-type experiment ~ ' or,
more directly, in the photon spectrum of the spontaneous
relaxation accompanying the ionization process.

I thank I. Bialynicki-Birula for helpful discussions.
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