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Diffusion blocking in a frozen rigid-sphere fluid
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The diffusion and localization of a classical particle of diameter o.o in an environment of fixed
spherical scatterers of diameter o.

l in arbitrary dimensionality is considered by extending the self-
consistent current relaxation theory for the Lorentz gas of a point particle and overlapping spheres.
The variation of the diffusion coefficient with scatterer density n and diameter ratio 5=o.o/o. l is cal-
culated analytically. Different factorization schemes are examined and compared. The overlapping
6= oo and nonoverlapping 6=0 Lorentz gas are discussed briefly as special cases. The critical densi-

ty n, (5) in the (n, 5) phase diagram separating diffusive from localized behavior is established and
good agreement with Monte Carlo results for the percolation density of hard-core disks is obtained.

I. INTRODUCTION

In the study of classical transport phenomena in fluids
and disordered materials the Lorentz gas attracted a great
deal of attention in recent years. ' This model deals with
a particle moving in a static environment of scatterers.
One seeks an understanding and quantitative description
of various dynamical properties of the tagged particle for
a given average density n of scatterers, in particular, its
velocity-autocorrelation function, diffusion coefficient,
and Van Hove's self-correlation function.

There are several versions of the Lorentz gas' differing
by the geometrical shape of the scatterers and by allowing
the scatterers to either overlap or not. One of the models
studied most extensively by computer sixnulations, as
well as theoretically, ' is that of a point particle moving
in a random array of spherical scatterers of a certain di- .

ameter o. which interact with the tagged particle through a
hard-core potential and which are allowed to overlap oth-
erwise. This model is known as the overlapping Lorentz
gas (OVLG).

The interesting fact about this model is that it not only
exhibits the expected diffusive behavior at low scatterer
density, but the particle also may be trapped at high densi-
ty, as first suggested by computer simulation results on
two- and three-dimensional systems, and later, by further
investigation for two dimensions. ' A self-consistent
current relaxation theory' successfully explained this
diffusion-localization transition at a critical density n, of
scatterers and yielded a linearly vanishing diffusion coeffi-
cient approaching n, from below. Above n, the theory
showed that the particle was localized in a finite region of
space, the extent of which was defined to be the localiza-
tion length and found to diverge with an exponent Il/2
near n, . Moreover, the theory provided a complete
description of the system by also predicting the velocity
autocorrelation and Van Hove's scattering function which
was found to be in almost quantitative agreement with
available simulation data.

The Lorentz gas of a tagged point particle and overlap-
ping scatterers of diameter o. is equivalent to a system of
point scatterers with a tagged particle of the same diame-
ter cr.

In this work the more general situation of a tagged par-

ticle of diameter o.o and fixed hard-core scatterers of a di-
arneter o.

&
will be considered. Then the OVLG is con-

tained as the special case with o.
&
——0, while the special

case o.o——0 of a tagged point particle represents the so-
called nonoverlapping Lorentz gas' (NOVLG). Of partic-
ular interest is also the case of equal diameters of tagged
particle and scatterers. The special case of the one-
dimensional Lorentz gas, which can be solved exactly,
will not be discussed here.

For practical purposes one may imagine that the system
is prepared in a computer-simulation experiment by gen-
erating a fluid containing a tagged particle. After equili-
brium is reached the fluid particles are held fixed while
the motion of the tagged particle in this static environ-
ment, which we refer to as the frozen liquid, is studied by
solving Newton's equations of motion. The system of
static scatterers is characterized, besides the average densi-
ty n, by its static structure factor s t ~ (q) at this density
which is assumed to be known.

The present model is considerably richer than the
Lorentz gas analyzed previously because one can study the
dynamical properties of the tagged particle in their depen-
dence on the diameter ratio 5=era/0 I as a new parameter
in addition to the density n of scatterers. One can also in-
vestigate the effects of static correlations among the
scatterers. Our analysis will focus on the behavior of the
diffusion coefficient which will be calculated analytically.
In Sec. II an extension of the classical self-consistent
current relaxation theory to this model is presented. The
results are discussed in Sec. III where it is shown that
there exists a critical line n, (5) in the (n, 5) plane such that
for a given diameter ratio 5, the particle is able to diffuse
for scatterer densities n &n, (5), while it is localized for
n &n, (5). Good agreement is obtained with Monte Carlo
computer results' ' for the percolation density of hard
disks. Furthermore, various factorization schemes for the
current relaxation kernel are discussed, which, in general,
are different but turn out to be equivalent in the case of
the OVLG as well as the NOVLG.

II. SELF-CONSISTENT CURRENT
RELAXATION THEORY

The theory outlined below is a generalization of the one
presented recently' by incorporating several new effects.
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by

P„„(t)= (uo(t)uo )

D(z) = lim D(q, z) =i J dt e"'P,„(t) (Imz &0) .
q~o

' 0

(2b)

The angle brackets in Eq. (2a) denote an average over
scatterer configurations and velocity directions. Note that

I

First, the finite diameters o.0 and o.
1 of the tagged particle

and the scatterers will be taken into account. Secondly,
the pair correlation g01(r) which is proportional to the
probability of finding a scatterer at a distance r from the
tagged particle will appear explicitly in the calculation.
Third, the static correlations between the scatterers as
described by the static structure factor s11(q) will be treat-
ed.

The main points of the theory may be summarized as
follows: A forrnal, exact kinetic equation for the phase-
space density-correlation function is set up. The two in-
gredients, free-particle motion and collisions, are incor-
porated from the outset. The kinetic equation, which for
simplicity may be solved within a single relaxation-time
approximation, yields the tagged-particle density propaga-
tor P(q, z) for wave number q and frequency z. It may be
cast in the form

1
P(q, z) =-

z+q D(q, z)

where D (q,z) is a generalized diffusion coefficient which
in the single relaxation-time approximation is entirely
determined by the free-particle density-correlation func-
tion' and the single relaxation kernel C(z).

For small wave numbers D(q, z) is related to the auto-
correlation function of the velocity v0 of the tagged parti-
cle

uo=
~

vo
~

is constant due to the elastic hard-core col-
lisions. For D(z) one obtains

U0/d
D(z) =— (2c)

where d is the dimension of space. Thus, K(z) is the
velocity-relaxation kernel. It is generally frequency depen-
dent and has both an imaginary and real part which
describe friction as well as oscillation. The frequency
dependence was found to be the crucial point of the
diffusion-localization transition. ' ' ' The zero-frequency
limit of the spectrum of P„„(t)is the diffusion constant D,
or

lim D(z)=iD .
z~i0

(2d)

In general, K(z) can be separated into two parts each of
a different physical origin

K(z) =iv+m (z) .

The first part arises from uncorrelated binary collisions
between the tagged particle and a scatterer. It is frequen-

cy independent due to the nature of the instantaneous
hard-core collisions and given by the collision frequency

v=ncJ 'uogol(cr)(2n' " )/I ((d +3)/2),
where o.=(op+o1)/2 and g01(o-) are the distance of the
centers and the pair correlation at contact. As a function
of the diameter ratio 5=cr0/o-1 of tagged particle and
scatterers, g01(o.) increases from g01(o-) = 1 for 6= oo

(OVLG) to gp1 (0 ) = 1 /( 1 —g ) for 6=0 (NOVLG), where

g=nVd(o, /2) is the packing fraction of scatterers and

V~=m /I (1+(d/2)) is the volume of the unit sphere.
For arbitrary ratio 5 the solution of the Percus- Yevick in-

tegral equation' ' in three dimensions and of the scaled-
particle theory ' in two and three dimensions yields

[1—(cr, /o. )ri/2]/( I —g) (d =2)

[1+ri+g (cr, /o —) ,' g(1+r—i)+(crl/cr) ,' ri ]/(1 ——ri)' (d =3) .

U0/d
DE(z) =-

Z+lV
(6a)

which implies an exponential-decaying velocity-
autocorrelation function and a diffusion coefficient

DE ——U0/dV . (6b)

The picture of uncorrelated binary collisions is expected
to break down as the density of scatterers is increased.
This is accounted for by the second frequency-dependent
term on the right-hand side (rhs) of Eq. (3) which de-
scribes dynamically correlated collisions. The part m (z) is
essentially a force-autocorrelation function and thus a

An exact expression for g01(cr) was also derived for arbi-
trary ratio 5 in two dimensions at close packing.

Ignoring for the moment the second term m(z) in Eq.
(3), one obtains by inserting in Eq. (2c) the result of the
Lorentz-Enskog kinetic theory

I

four-point correlation. It is approximated by factorizing
it in a product of the tagged-particle and scatterer-density
correlation functions. Thereby, the relaxation kernel is, in
turn, expressed by the unknown tagged-particle propaga-
tor and, thus, one arrives at a closed nonlinear equation
for the tagged-particle propagator.

There are several different ways of factorizations de-
pending on whether one aims at a good approximation for
short or long times. The results will generally be different
and the quality of the approximation can be judged best by
comparing with experimental results. One particular fac-
torization will be discussed here; two others at the end of
this section and their derivations are presented in the Ap-
pendix.

Employing a method similar to the one used in the
theory of classical liquids ' we obtain

uo k hol(k)
K(z) =i v+ — g P(k,z), (7)
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where g- = I d k/(2~) and hpi(k) is the Fourier
k

transform of hpi(p) =gpi(r) —l. In Eq. (7) we restrict the
selection of modes to only the tagged-particle density
propagator P(k, z) for simplicity. In general, there are also
couplings to other tagged-particle modes', but it has been
shown elsewhere' '" that it is only the density mode that
is responsible for the diffusion-localization transition.

Since at present little information is available for the
wave-number and frequency-dependent Van-Hove scatter-
ing function (t(q, z), or the velocity-correlation function
P„„(t), we will discuss here mainly the diffusion coeffi-
cient, which may be evaluated analytically by employing a
further approximation that is quite reasonable. For small
frequency z the main contribution to the wave-number in-
tegral in Eq. (7) will come from the small wave-number
regime. Therefore, the hydrodynamic approximation

P(k,z)=— 1

z +a'D (z)

which is valid at small wave numbers may be inserted in
Eq. (7}. Then, using Eqs. (2c) and (6a), Eq. (7) can be cast
into the form of a transcendental equation for D (z)

k hp](k}
D (z) /DE(z) = 1 ——gd s)i{k)

k

The question of whether this equation describes a
diffusion-localization transition can be answered by its
small frequency properties. Assuming that D is finite, Eq.
(9) reads for zero frequency,

D/DE =1——g h p, (k)/sii(k) .
d

k

The wave-number integral can be performed exactly by us-
ing the Ornstein-Zernike relations for Auid mixtures

k hpi(k)1=-
d s„(k)

k

1

k +lp
(13b)

The vanishing of the diffusion coefficient in Eq. (13a)
implies a zero-frequency pole in the tagged-particle densi-
ty propagator

P(q, z)= ———» +PE(q,z),1 1

1+q lo

where QE(q, z) denotes the regular part. Thus, the spec-
trum exhibits an elastic 5(co ) peak with form factor
f (q) = 1/(1+q lp), where the length Ip is a measure of the
size of the localization region. From Eq. (13b) one finds
that the localization length lp diverges with a square-root
behavior with logarithmic corrections in two dimensions
as the critiml density is approached from above. In Sec.
III the result for the diffusion coefficient in Eq. (12) will
be discussed in more detail, together with the results ob-
tained by employing two other factorization approxima-
tions.

Other facrorization schemes Tw.o other factorization
schemes shall be examined here. They differ from the one
leading to Eq. {7), in the way that static correlations are
approximated, and their derivation is given in the Appen-
dix. These approximations have been discussed in a simi-
lar form in the case of the velocity-autocorrelation func-
tion of a hard-sphere fluid. ' But instead of the particle
propagators of the Enskog theory used by these authors,
the self-consistent propagators will be used here since it
was found ' ' that a self-consistent theory can yield a
diffusion-lomlization transition and provide a valid
description below as well as above the critical density.

One particular factorization is aimed at achieving a
good approximation of the time-dependent current relaxa-
tion kernel m (t) at short times by factorizing the normal-
ized four-point correlation function in such a way that its
value at time zero is maintained exactly as explained in
the Appendix. This leads to the equation

hkj(q) =Ckj(q) + g hk;(q)n;CJ (q),
D/DE 1 ——gpi(o ) g——h pi'(k)hpi(k),

d
k

(15a)

where the subscripts denote the tagged particle and the
fluid for i =0, 1, respectively, and np ——0, n] ——n are the
corresponding number densities. The result is quite sim-
ple,

D/DE ——1 —[—1 —Cpp(r =0)]/d, (12)

D(z)=zl,'+O (z'), (13a)

for small frequency with the constant lp determined by

expressing D/DE in terms of the tagged-particle direct
correlation function Cop(r =0) at zero separation. Notice,
incidentally, that the result of Eq. (12) is independent of
the hard-core interaction potential, and one may surmise
that it may be also valid for soft potentials.

Anticipating that the term in brackets in Eq. (12) in-
creases with density as suggested by the explicit factor n in
Eq. (10), one finds that D/DE vanishes at a critiml densi-
ty n, . Above this density the solution Eq. (12) is unphysi-
cal. Instead, as in the case of the OVLA, ' one finds for
n)n~,

to be compared with Eq. (10) where hpi'(k) is the Fourier
transform of the low-density pair-correlation function
h p~ (p') = —1 0 for p' (o. and r )o., respectively. The
wave-number integral in Eq. (15a) also can be performed
exactly and one finds instead of Eq. (12)

D/Dg = 1 ( Vd /d)no gp[((T) (15b)

D/DE = 1 — gpi(o') g [&pi (k)] s ii(k)
d

k

(16a)

For the NOVLG, the wave-number integral can be per-
formed exactly with the result

It is interesting to note in passing that because of
g- h pi'(k)hpi (k) =g-„[hpi'(k)] the static structure

factor of the scatterers does not enter Eq. (15a) for D/DF
directly.

A different approximation consists in factorizing the
time-dependent four-point correlation function directly
and this leads to
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D/DE —1—g/d (16b)
1 —g

For a tagged particle of finite diameter the wave-number
integral in Eq. (16a) is evaluated numerically in three di-
mensions by using the structure factor of the Percus-
Yevick theory2 (PY), and the results are presented in Sec.
III, along with the results of Eqs. (15b) and (12).

III. RESULTS AND DISCUSSION

In order to evaluate D/DE of Eq. (12) one needs to
know the tagged-particle direct correlation function at
zero separation. In three dimensions Coo(r) is known
analytically from the solution of the approximate PY in-
tegral equation, but for the two-dimensional system no
analytic solution is currently available. On the other
hand, analytical results for the thermodynamical proper-
ties of rigid-sphere mixtures have been obtained within the

scaled-particle theory (SP) in one, two, and three dimen-
sions and the method also can be generalized to arbitrary
dimensions. In one dimension the scaled-particle theory is
exact as is the PY theory, while in three dimensions both
the PY and SP theories' yield the same thermodynamic
properties.

By combining PY and SP theories, analytical expres-
sions can be obtained for Coo(r =0) in all dimensions. Us-
ing the Ornstein-Zernike relations, Eq. (11), and assuming
Ck(r)=0 for r &o';~ =(o;+ok)/2, which is equivalent to
the PY approximation, one can relate Coo(r =0) to the
pressure derivative with respect to density

B[Pp (np, n ) )]
Coo(r =0)= —---

where P= 1/ks T; T is the temperature and p is the pres-
sure. Using the results of the SP theory for the pressure
of a rigid-sphere fluid for no ——0 and n] ——n, one finds

Coo(r =0)= .

1+5
1 —7l

+5 ~ (1=2)
1 —q

~p 3g(1+2g) ~p g(1+2g)2
(1 ~)2 (1 )3

(d =3)

(18a}

(18b}

where 5=o.z/o. i is the diameter ratio and g the packing
fraction. Note in passing that the results

—1/(1 —g) (oo——0)
C(g(r =0)= —[1+nV~(oo/2) ] (o'~ ——0)

(18c)

(18d)

corresponding to the NOVLG and OVLG, respectively,
are exact in all dimensions. Furthermore, the small densi-
ty expansion

density, a behavior in good agreement with the result of
Eq. (19). Moreover, it has been shown'o that the
logarithmic density term can be rederived within the
present theory by including the coupling to other tagged-
particle modes in Eq. (7). The critical density n,*=4/9m.
for three dimensions is in good agreement with experimen-
tal results, ' while n,*=2/m for two dimensions is too

co~pa~ed to the experimental resul

B. Nonoverlapping Lorentz gas

Cco(r =0)=—[1+nVgo~+O(n )] (18e) For the NOVLG (oo——0), Eqs. (18c) and (12) lead to the
simple result

D/D~ ——1 —n (oo/2) Vd/d (19)

D/Dz linearly decreases with density up to the critical re-

duced density n,*=d/V~ and above this critical density of
scatterers the particle is localized as discussed before. The
value of the critical density is in agreement with results
obtained earlier. ' ' Although it is well known that the
small density expansion of D/Dz leads to logarithmic
contributions with a leading term proportional to
n 'ln(n) for d &2, which was also confirmed by com-
puter simulations, the molecular-dynamics data show
an overall nearly linear decrease of D/DE with increasing

is in agreement with Eqs. (18a) and (18b) for 1=2 and 3.

A. Overlapping Lorentz gas

The diffusion coefficient for the OVLG (o, =0) will be
discussed first. Since, in this case there are no correlations
between the scatterers, implying that s» (k) = 1,
h (o)k=h '(o),kand go, (o)=1, the three approximations,
Eqs. (10), (15a), and (16a), are equivalent. Inserting Eq.
(18d) in Eq. (12) yields

(2o)

and the same result is also obtained by the two different
factorization schemes leading to Eqs. (15b) and (16b).
Equation (20) shows that D/DE decreases for small densi-

ty with the same slope as for the OVLG which is to be ex-
pected since for small density the difference between over-

lapping and nonoverlapping scatterers is irrelevant. But
for increasing density D/DE decreases faster than for the
OVLG. The critical packing fraction where D/DF van-
ishes linearly is q, =d/(d + 1).

While there is no restriction to the density of scatterers
for the OVLG, the upper limit in the nonoverlapping case
is the density of close packing corresponding to the pack-
ing fraction go. Since in two dimensions the critical densi-

ty g, =2/3 is smaller than the close-packing density

r)o ——(vr/6)v 3=0.907, the theory predicts a diffusion-
localization transition for a tagged point particle in a
frozen hard-disk Quid at g, /go ——0.735. It is quite satis-
fying that the value of g, is less than qo since for hard
disks diffusion clearly has to stop finally at close packing
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even for a moving point particle.
In contrast, for the three-dimensional NOVLG the criti-

cal density g, =
4 is higher than the density

go ——(m /6)W2=0. 740 of close packing. Thus, for a point
particle moving in a frozen rigid-sphere Auid, the theory
predicts a nonzero diffusion constant even at close pack-
ing. This result is also quite reasonable since even at the
close packing density there are channels through which a
point particle can move.

The same is also true in more than three dimensions as
one can see by comparing the critical density

g, =d/(d+1) with the density of close packing gp, the
former approaching unity while the latter decreases to
zero with increasing dimensionality. The fact that gp
tends to zero with increasing dimensionality shows that in
higher dimensions most of the space is not filled by hyper-

I

spheres and so localization of a point particle becomes in-
creasingly more difficult.

The diffusion coefficient of the two- and three-
dimensional Lorentz gas is shown in Figs. 1 and 2(a),
respectively, as indicated by 5=0. For two dimensions
D/DE may be compared with the results of computer
simulations. Although the scattering in the data is con-
siderable, the data seem to indicate that the critical density
is somewhat higher than predicted.

C. Scatterers and particle of finite diameter

In the general case of a tagged particle and scatterers of
diameter o.

p and a~, respectively, the result for the dif-
fusion constant, Eq. (12), together with Eqs. (18a) and
(18b), is

D/DF ——

(d =2)

1 — 1+5 +5' , +571/3 3,3(1+2'), (1+2')'
(d =3)

(21a)

(21b)

in two and three dimensions with 5=o.p/o. y. As one ex-
pects, for a given density of scatterers, diffusion becomes
more and more difficult with increasing size of the tagged
particle. This is shown in Figs. 1, 2(a), and 2(b) for vari-
ous diameter ratios 5. In Fig. 1, for the two-dimensional
system, the result, Eq. (1Sb) for 5= 1, also indicates the ef-
fect of the different approximations at intermediate values
of 5.

The system of a tagged particle moving in a frozen fluid
may be considered as the limiting case of zero mass ratio
Ul =ol p /I &

of a solvent fluid of mass m
&

and a solute
tagged particle of mass mp. For a three-dimensional
hard-sphere system, computer simulations ' have been
performed for various mass and diameter ratios at several

I.O

D/OE

0.5

0.2 04
'9

0.6

I.O

1.0 (b)

D/DE

0.5

D/DE

0.5

8-0.25

0.2 0.4
I

0.8
0.4

I

0.6

FIG. 1. Diffusion constant D divided by Enskog value DE vs
packing fraction g in two dimensions for diameter ratios 5=0
and 5=1. Solid curves, result of Eq. (21a); dash-dotted curve,
Eq. (15b); open circles, molecular-dynamics data for NOVLV
(Ref. 5); full circle, Monte Carlo result (Ref. 17).

FICjl. 2. (a) and (b) Diffusion constant D divided by Enskog
value DE vs packing fraction g in three dimensions for various
diameter ratios 5. Solid curves, result of Eq. (21b); dashed
curves, Eq. (16a); full circles, molecular-dynamics results extra-
polated from data in Ref. 31 to zero mass ratio are shown for
5=0.25; triangles, 5=0.5; squares, 5=0.75; open circles, 5= 1.
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0.8— (a)

0.4

densities. Figures 2(a) and 2(b) show results obtained by
extrapolating the data for mass ratios m =1, —,0, ,~, and

to m =0. The combined statistical error of the data
and of the extrapolation is difficult to estimate, but the
simulation results seem to indicate that the diffusion coef-
ficient is larger than predicted. The diffusion coefficient
resulting from Eq. (16a), also shown in Figs. 2(a) and 2(b),
is generally larger than that predicted by Eq. (21b) for in-
termediate values of 5. The result of Eq. (15b) which lies
between the curves corresponding to Eqs. (16a) and (21b)
is not shown.

Since D/DE decreases with increasing tagged-particle
size, the critical density where diffusion is blocked will de-
crease also. The variation of the critical density g, (5)
with the diameter ratio 5 resulting from Eqs. (21a) and
(21b), is shown in Figs. 3(a) and 3(b) together with the re-
sults of Eqs. (15b) and (16a). In the region below the criti-
cal line q, (5), the diffusion coefficient of the tagged parti-
cle is finite; in the region above this line the particle is lo-
calized. The small and large 5 limits corresponding to the
NOVLG with g, =d/(d+1) —5d /(d+1)+0(5 ) for
5~0 and the OVLG with g, =d/5"+O(5' ) for 5~0o
have been mentioned above. There is a qualitative change
in increasing the dimension from d =2 to d &2. While
for d =2 the particle at high density above q, is localized
for all size ratios 5, for d )3 there is a critical size ratio

5„below which the particle can diffuse at all densities.
It may be accidental that 5, at close packing is smaller
than the smallest cross-section diameter (2/v 3 —1) of
channels in a close-packed array of spheres, as indicated
by an arrow in Fig. 3(b), but the contrary would obviously
be wrong.

The system of a tagged particle in a frozen fluid is relat-
ed to percolation theory. One can define that two
scatterers of hard-core diameter o.

&
belong to the same

cluster if the distance of their centers is smaller than
R =cr~+o.o. For the two-dimensional system this implies
that the tagged particle of diameter o.o cannot pass be-
tween them. The percolation density, defined as the densi-
ty where the mean cluster size becomes infinite, will de-
pend on 5=a.o/cr&. Clearly, for d =2, diffusion is impos-
sible above this percolation density and one may probably
identify it as the critical density where D vanishes. Note
that the above definition of a cluster contains the more
familiar one of overlapping spheres for the special case
o.

&
——0. Results of two different Monte Carlo computer

simulations' ' for the percolation density of a hard-disk
system are shown in Fig. 3(a). Agreement with the predic-
tion g, (5), especially Eq. (21a), appears to be quite good.
For large ratio 5 our results are somewhat too high, which
we have already noted in the case of the OVLG, the
5—+ Oo limit. Monte Carlo results for the three-
dimensional system would be quite helpful.

For completeness we mention that the critical densities
for equal sizes of tagged particle and scatterers resulting
from Eqs. (2la) and (21b) are g, =0.253 and 0.177 in two
and three dimensions, respectively, which are 0.279 and
0.239 of close-packed densities. These critical densities
should not be misinterpreted as the glass-transition densi-
ties of a rigid-sphere fluid since we consider here the
model with fixed fluid particles. If the fluid particles are
allowed to move they can be pushed away by a tagged par-
ticle, so one expects that its diffusion coefficient will be
larger and, therefore, the glass-transition density should be
larger than the one calculated for the present model. This
is indeed the case as shown in Fig. 3(b).

IV. SUMMARY

(b)

FIG. 3. Critical-packing fraction g, vs diameter ratio
5=era/o~. Solid curves, result of Eq. (21); dash-dotted curves,
Eq. (15b). (a) Two dimensions: Monte Carlo results for the per-
colation density; open circles (Ref. 16); full circle (Ref. 17); (b)
Three dimensions: dashed curve, result of Eq. (16a); the bar in-
dicates the glass-transition density of a hard-sphere fluid (Ref.
34).

An extension of the self-consistent current relaxation
theory of the OVLG, to the more general model of a parti-
cle of diameter o.o moving in an environment of fixed
hard-core scatterers of diameter o.~, is accomplished by in-
corporating the static correlations among the scatterers.
The diffusion constant is evaluated analytically and it is
found that with increasing density it decreases faster than
in the absence of correlations between the scatterers. The
variation of the diffusion-localization transition with the
diameter ratio 5=o.o/o &

is evaluated and good agreement
with Monte Carlo results for the percolation density of a
hard-disk system is obtained.

Various factorization schemes of the current relaxation
kernel are examined. The close agreement of the results of
these approximations [see Figs. 3(a) and 3(b)] suggests that
the treatment of the static correlations is reasonable.
Thus, the remaining discrepancies in comparison with ex-
perimental data are probably caused by the simple factori-
zation of the dynamical four-point correlation function.
In terms of collisional processes this factorization corre-
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sponds to considering only ring collisions. The inclusion
of repeated ring collisions is expected to make diffusion
more difficult. Moreover, it was shown elsewhere' that
still other collision sequences, which may be called rattling
collisions, since in the simplest case the particle collides
several times with two scatterers, play an important role
for the Lorentz gas. Further simulation results for the
three-dimensional system are desirable. Also further
molecular-dynamic experiments, especially for the
NOVLCs in two and three dimensions, would enable a
more detailed analysis of dynamical correlations.
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G(12,34;z)=(Fq(12)
~
(QL Q z) —' ~Fq(34))

(A4a)

Its value at time zero is denoted by

G(12,34)={Fz(12)
~

Fz(34)}, (A4b)

(QW'+f(1)
~
PzR~(z)Pq

~

QW' f(2)), (A5a)

m (12,z) = (QW'+f (1)
~
PqR~(z)

~

QW' f(2)}, (A5b)

(Q~'+f(1)
~

Rg(z)
~

Q~' f(2)) . (A5c)

The approximation of factorizing the four-point correla-
tions in Eq. {A5) by

which can be expressed by static two- and three-particle
correlation functions. Its inverse 6 is defined by
G (12,34)G(34,56) =5(15)5(26). Also, a new projector
Pz may be defined by Pq ——~Fz)G (Fz ~. Abbreviating
the resolvent in Eq. (Alb) by Rg(z)=(QL Q —z) ' and
using Eq. (A3) one finds that m ( 12,z) can be cast into
three equivalent forms

APPENDIX: VARIOUS FACTORIZATION SCHEMES

The formal expression for the current relaxation kernel

G ( 12,34;t)=P( 13,t)s
& & (24),

G(12, 34)=5(13)sI I (24),

(A6a)

{A6b)
1s

m(z)= —f dr~q f dul f duqu~m(12, z)vq,
Q

m (12,z)

{Ala)

where /(13, t) is the tagged-particle phase-space correla-
tion function and s I &

(24) is the static scatterer-structure
factor, leads to three different results.

From Eq. (A5a) one finds with the notations

=(QW'+f(1)
~
(QW Q —z) '

~

QW' f(2)), (Alb)

where u = v/
~

v
~

is a unit vector and II is the surface of
the d-dimensional unit sphere. The tagged-particle
phase-space distribution function is denoted by
f (1)=5(1—0) =5(r, —r0)5(vl —v0) and the projector Q
projects onto the space orthogonal to f(1). The two parts
of the "pseudo"-Liouville operator L+ ——L0+L + with

LD —— i v0 V0 an—d L'+ ——g„&0T+(On), where

and

(12,3)=(Fz(12)
~
QL

' f(3)}

V+ (1,23) =(QL+f(1)
~
F~(23))

the result

m (12,z)= V+ {1,3 4)P(3 6,z)s I I (4 7) V (67,z) .

(A7a)

T+ (On ) =i f dF( var )6(+var )

~ 5(r o-0I —r0„)(b —1), (A2)

describe free-streaming and binary collisions. In Eq. (A2)
the operator b replaces the particle velocity v 0 by
v0-——bv0 ——v0 —2(v0-r)r. The parentheses in Eq. (Alb)
denote an ensemble average with (A ~B)=(A*8} over
scatterers and particle configurations with fixed velocity

U0 of the particle. Observing that

L' f(1)=v NT {12)f(12),
where

(A3)

f (12)= g 5(1—0)5(r, —r„)/v N
n&0

is a tagged-particle scatterer phase-space distribution, and
integration over variables with a bar is implied, one is led
to define Fz(12)=Qf (12) and the four-point correlation
function

m (12,z)=gai (o )T+ (13)P(12,z)

Xsii(34)T (24) . (A7c)

In Eqs. (A7b) and (A7c) the fact that the collisions take
place in a dense system is taken care of by an explicit fac-
tor of g0I(o. ) for each collision operator T. This leads to
the formulas (15a) and (16a), respectively. In the case that
the static correlations are trivial, i.e., at low density or for
the OVLCy, all three approximations in Eqs. (A7a)—(A7c)
are equivalent. With respect to the static correlations the
three approximations are, in general, different, but with
respect to dynamical correlations, they have in common
the fact that only ring collisions are considered.

Evaluating the static correlations V+ exactly, which in
general also requires the knowledge of the three-particle
correlation function, leads to Eq. (7).

Equation (A5b) is approximated by this factorization by

m (12,z)—goI(o') V+(1 34)p(32,z)T (24), (A7b)

while from Eq. (A5c) one finds
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