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Three binary fluids, aniline-cyclohexane, nitrobenzene-n-hexane, and isobutyric
acid —water, have been studied by light scattering and turbidity techniques near their critical
points, both at the thermodynamic equilibrium and under a shear flow, as a function of the
variables temperature T, relative concentration M, shear rate S, and wave vector q. The
following results have been obtained: (i) Out of equilibrium. The region where a shear af-
fects the critical behavior has been determined in the plane (M, T); the crossover tempera-

ture varies as M, and the coexistence curve exhibits the classical exponent (P= —). A small

temperature change due to the shear was detected; its value is about four times lower than
that calculated by the Onuki-Kawasaki theory. The susceptibility versus T, M, S, and q is
well represented by the Onuki-Kawasaki formulation, in particular the exponent y shows
the classical value (y= l). (ii) At equilibrium The s.usceptibility and the correlation length
have been measured on the critical isochore above T„on the coexistence curve, and on the
critical isotherm. The universal amplitude ratios go /go, C+/C, Rz, and Q2 have been
obtained. The typical time taken by the system to return to equilibrium after having been
perturbed by shear has been analyzed in terms of mass diffusion.

I. INTRODUCTION

Binary fluids may exhibit a liquid-liquid critical
point at the critical concentration c =c„and near
this second-order phase transition their thermo-
dynamic and correlation properties show universal
behaviors. With respect to critical phenomena,
binary fluids belong to the same universality class as
pure fluids or the three-dimensional (3D) Ising
model, a class characterized by the dimensionality of
the physical space (0=3) and by a scalar order
parameter (N=1); here the order parameter is the
relative concentration M =c —c, . The critical
behavior of such systems seems now to be well un-
derstood at therniodynamic equilibrium. '

It is only recently that critical fluids out of equili-
brium have begun to be studied, especially binary
fluids under shear flow. Theory and experiment3
have been worked out at the same time. The main
result lies in the change of behavior near the critical
point: Mean-field theory becomes relevant, whereas
it should have been valid for the same systems at
equilibrium only in a space with dimensionality d
higher than 4.

Although the agreement between theory and ex-
periment might have been regarded as satisfac-
tory, (""' ' ' some problems "still remain, main-

ly owing to the use in the first experiments of a con-
tinuously varying shear. Moreover, the order pa-
rameter behavior was not investigated. The aim of
the present paper is therefore as follows.

(i) To check the universality of the phenomena by
considering various physical systems. Besides the
aniline-cyclohexane (A-C) mixture already studied,
we have also considered the isobutyric acid —water
(I W) and nitrobenz-ene-n-hexane (N-H) systems.

(ii) To check the order parameter influence. In
particular, does the transition under shear remain
second order? Is there any critical concentration
shift'? Obtaining the critical exponent P is of great
interest since the classical value —, is expected. We
will see below that such a study also allows us to ob-
tain some equilibrium properties which have not yet
been obtained in binary fluids, such as the correla-
tion length and the susceptibility along the critical
isotherin.

(iii) To directly determine the critical temperature
shift through the susceptibility divergence. This
was made possible only because a new cell producing
a nearly constant shear rate was built. The results
so obtained somewhat modify the interpretation of
already published works.

(iv) To investigate as a function of time the rees-
tablishment of equilibrium properties when shear is
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suddenly stopped.
This paper is orgamzed as follows: First, the

theoretical background, with emphasis on the sim-
plifications we had to make to interpret the data;
second, the experimental part, where only the new
features are reported; third, the results and their dis-
cussion. A special section will be devoted to the
properties at equilibrium, determined as a by-
product of this study. Finally, we will include in the
conclusion a rapid survey of the most significant re-
sults.

II. THEORETICAL BACKGROUND

Most of the out of equilibrium theoretical work is
owing to Onuki and Kawasaki (OK). However, be-
fore entering into the details of the OK approach,
and in order to give a comprehensive view of the
phenomenon, we present a phenomenological
description.

A. Phenomenology —generality

Let us imagine, for sake of simplicity, that the
order-parameter fluctuations at equilibrium look
like spherical droplets. These droplets represent the
correlation volumes, whose size is characterized by
the correlation length g. Let us assume that in a
given droplet an excess of concentration is found.
Let us now apply shear. Only the volume elements
of the droplet which are in the shear direction will
be shifted, so that an excess of concentration will
remain only in the plane perpendicular to the shear,
in the direction of flow. The first effect of shear is
therefore to destroy the correlations in the shear
direction, making the fluctuations anisotropic.

What is the frontier between the regime of "weak
shear, " where droplets are only slightly anisotropic,
and "strong shear, " where correlations are strongly
reduced? This crossover will occur when the life-
time (r) of fluctuations is large enough to "feel" the
shear. With S the shear rate, this will occur for a
shift (/Sr) in the shear direction greater than the
typical length g' of the droplets, i.e., "strong shear"
means

The lifetime r of a cluster of radius g moving in a
medium of viscosity g is classically

with kz the Boltzmann constant and T the absolute
temperature. g diverges near the critical tempera-
ture T, as

$=$0t

where t =(T—T, )/T„v=0.630 is the universal ex-
ponent, ' and $0 is an amplitude. The condition
Sr&1 can therefore be written as a temperature
condition:

TQT
where T, is the crossover temperature, whose value,
according to (2) and (3), is

' 1/3v

T, =T, 1+ ' S'" (4)
k~T,

In the strong shear region the concentration fluc-
tuations are anisotropic. This leads to a correspond-
ing anisotropy in the order parameter susceptibility.
The divergence of this susceptibility determines the
critical temperature under shear T,*. Since, at least
at first order, fluctuations are only weakly affected
in the direction of flow, we expect a weak change,

However, at the same distance from the critical
point, the sheared fluctuations of the order parame-
ter are greatly reduced when compared to their
equilibrium level. The Ginzburg criterion can then
be fulfilled, and mean-field behavior becomes
relevant.

A more rigorous theory by OK leads to the same
conclusions. However, quantitative predictions—
including the influence of a non-zeroth order
parameter —have been made, and these will now be
considered.

B. Coexistence curve: Strong shear region
in the plane (M, T)

In the following we will consider the same proper-
ties at equilibrium or under shear. We will then use
the same letters and denote the out-of-equilibrium
properties by an asterisk.

In the region of strong shear, the equation of state
is classical according to OK. The coexistence curve
therefore exhibits a mean-field behavior with ex-

1

ponent p~ = —,:

M* =B0( t~)~—
Here B0 is the amplitude, and M* =c —c,* with c,*
the critical composition under shear. One expects
c,*=c„t* =(T& —T,*)/T,*, where Tz is the phase
transition temperature under shear.

At equilibrium,

M =BD( t)~—
with P=0.325, a universal exponent. '

The critical temperature T,* is expected to be a



NE%V DEVELOPMENTS IN THE STUDY OF BINARY FLUIDS. . . 2493

function of the crossover temperature T„defined
above in (4):

merely the order parameter susceptibility at the
same wave vector, '

U is a numerical constant; according to OK,

U=8. 32)& 1Q

The crossover temperature T, (M) can be deter-
mined through the condition Sr= l. w is related to
g' by (2). Using the approximate expression cited by
OK in Ref. 2(b),

(8)

where u* =4m. /3, the condition of strong shear be-
comes

(10)

X(t) is the q=O susceptibility, and G(qg) is the
Fourier transform of the normalized correlation
function, well described by the function, where
X =qg' (Ref. 7)

3

G(X)= g c;(1+a;X )

Here a~ ——1.040056, az ——1.Q58947, a3 ——1.053932,
b~ ——0.98425, bz ——1.554213, b3 ——1.627419, and
c) cz C3 1

From (10) both X and g can be deduced.

16zlgoS T, —T, (M)

k~T

(9)

Here the classical value —, is not related to the
strong shear regime itself, but to the M variation of
the approximation (8).

Finally, the strong shear region in the plane
(M, T) will be delimited by T, (M) and the coex-
istence curve T~(M), as shown in Fig. (1).

C. Correlation length and susceptibility

The concentration fluctuations are strongly cou-
pled to the refractive index and then give rise to an
intense light scattering phenomenon. The intensity
of light scattered at a given transfer wave vector q is

1. At equilibrium

susceptibility X= =C+ t r/kg T, ,

correlation length g =go+ t

(12)

Along the critical isotherm (t=O), whose equation is

(14)

we have

(15)

The conjugate field of the order parameter is here
the chemical potential difference p=p~ —pz of the
components. Along the critical isochore t & 0,
M =p=0, the following dependences pertain as'

CV
IP 7-

using the definition C, =1/5D'~s.
Also

Along the coexistence curve (p=O, t&0), whose
equation is (6), we have

sec
and

kgTX=C ( t)—
k=ko ( —t) ".

(17)

(18)

FIG. 1. Region of strong shear (Sw&1) in the plane

(M, T) for the N Hsystem and for -a shear S=6100 sec
The upper line corresponds to the crossover temperature
T,(M) which varies as M . The lower line is the coex-
istence curve under shear with the classical exponent
P*=—. The hatched line is the coexistence curve at

2

equilibrium with exponent 13=0.325.

(1+a,ta+ .
) (19)

must be introduced. ' They are negligible in this
study, which was carried out very close to T, .

All these formulas hold asymptotically close to the
critical point. Further away, multiplicative correc-
tive factors of the form
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The values admitted for the exponents' are
y= 1.240, v=0.630, P= 0.325, 5=4.815, and
b, =0.50.

One notes that in the usual Ornstein-Zernike ap-
proximation of G (qg), where y=2v, the q suscepti-
bility on the critical isochore exhibits the simple
form,

X~ =At ~+q (20)

with A =go and where the multiplicative constant
factor C/g'p has been omitted. The critical tempera-
ture can be therefore experimentally determined by
extrapolating at zero the values of Xz

' versus T,
provided that the experiments were performed at
very small q.

2. Out of equilibrium

Let us consider a flow in X direction, with a linear
velocity gradient in the F direction [ V( Y)] (Fig. 2).
The shear rate is S =8V/B1'=const. A laser beam
is directed along Z, perpendicularly to the flow and
the shear. Under these conditions, the susceptibility
to be measured can be described to within (20—30)%
as the sum of 4 contributions (the simplification
y=2v has been made):

(X*,)-'=A*t*1' +E+M*' '+B*q~ 4+—

The second terna is linked with the order parame-
ter dependence. E*depends on the shear,

egS1/3

with
1/3

16ri

kJ1 T,
(25)

The exponent 5*exhibits the classical value 5*=3.
The third term describes the anisotropy of the

susceptibility with respect to the flow direction. B*
is S dependent:

with

b gS 8/15 SO. 53 (26)

1

kt3 T,

8/15

(27)

We point out that in contrast to the remark about
(20), the critical temperature cannot be simply relat-
ed to the zero of (Xz ) '. One has to consider, at cri-
ticality M=O, the inverse susceptibility in the shear
direction (qz ——0) and at very small wave vector q.
With all these conditions fulfilled, a plot (linear as
far as y*=1) of (X~ )

' versus T will provide T,'.

A* is a function of the shear rate S:
u gS(y—1)/3v

with
(y—1)/3v

16'
g

—1/v

kt3 T,
(23)

The first and fourth ternis correspond to the
Ornstein-Zernike approximation at equilibrium, but
the exponent y* is expected to have the classical
value:

D. Turbidity —Transmission

Another way of gaining access to both the suscep-
tibility and the correlation length is to measure the
attenuation of the incident beam through the sam-
ple. This attenuation is due to the intense light
scattering phenomenon and gives access to a some-
what "averaged" q susceptibility at the wave vector
ICO of the incident light.

Let u be the transmission of the incident light,
and 9 the turbidity. If b is the light path in the sam-
ple, then

~ =exp( Ob) . — (28)

8 can be calculated by simply summing the scattered
light intensity —i.e., the susceptibility over a solid
angle 0=4m. :

8 J Xqdfl . (29)

Using the equilibrium or the nonequilibrium for-
mulation of X~ will give different results.

FIG. 2. Cell producing a nearly constant shear. The
Aow is along OX and the observation volume is close to a
side wall where the shear along OF is nearly constant.

g. At equilibrium

The formulation is well known; with a linearly
polarized incident beam:
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Bn S„'C'(1+t)t rG'(~2Kog'),
BM

(30)

where A,o is the wavelength of the incident light in
vacuum and n is the refractive index. S„refers to
the local field assumptions: It seems that the
Yvon-Vuks foiinulation

9n

(n +2)(2n +1}

is the more suitable one in binary fluids. '
(Bn /BM)~ T is the macroscopic derivative.

The superscript i denotes the trajectory: i= +,
—,or c. In the last case, the variable t has to be
changed in (30) by (M/Bo)'~~, which comes from
the equation (6) of the coexistence curve;

G'(~2Kop) =G'(Xo)

is the integral (29) of the q-correlation function
G (X) as defined in (11):

3

6'(Xo) =2 $ c; I [(1+2a;Xo) ' —1][1+a;Xo(2—p; )+a; Xo(2+@;+p;)]

—2p;a; Xo(1+a;Xo) I [a; Xop;(1+p; }(2+lan; }] (32)

where the a s are the same as in (11) with p; = I t —— ~(qx ) &0O. 4 (34)

We note that (i) 8 goes to infinite, or the transmis-
sion u goes to zero, for T=T, . This property is
usually used for deteriiiining the critical point. (ii)
Both C' and go can be deduced from the above ex-
pressions, the other physical parameters being easily
measured by standard methods.

where y*= 1 has been assumed. An apparent "criti-
cal" temperature T, can be deduced, and the ap-
parent shift T, —T, can be compared to T,' —T, :

T. T, =(T,*—T, ) 1+——1 16rigo

aTc

2. Out of equilibrium

Unfortunately the integral (29) of the nonequili-
brium susceptibility (21) cannot be calculated analyt-
ically, and other means have to be found to obtain
an estimate.

a. Numerical integration Asolutio. n is to numer-
ically compute the integral for all values of the ex-
perimental parameters t* and S, as perforiried by
OK at M=O in Ref. 2(c) for the A-C system.

b. Approximations. Another method consists in
making some reasonable simplifications. One can
note in (21) that the angular variation of the aniso-
tropy terixi (qx ) is weak with respect to the last
terin q, and one can consider an average value2

(q„) before integration. The turbidity 8* then ex-
hibits nearly the same functional foriri as at equili-
brium (30) provided that the following change has
been made:

X g'(q")S-'"

8(t + t„)-8*(t) (36)

(35)

With the use of typical experimental values (see
Table I) and setting (qx' ) -Ko', the second brack-
et is always greater than 1. This apparent critical
temperature change will therefore exhibit nearly the
same shear dependence, between S and S ', as
the actual dependence, but with a larger amplitude
(see below IV E 2).

(ii) We can also compare the nonequilibrium and
the equilibrium turbidities, making a temperature
change tb. From (33), we obtain (at criticality,
M~=0)

Atr =-A*(t*)r +E'(M*)s '+B*(qx") .
with tb ——( Tb —T, ) /T, deduced from

A (t +tb)r-A*(t*)r +B*(qx0.4) . (37)
(33)

This result calls for the following remarks.
(i) At T,*(M=O), neither Xe nor 8* goes to infini-

ty. The relationship (33) shows that the zero value
of 8*occurs for a reduced temperature t,* such that

Owing to the small difference between y and y*
and the relatively reduced temperature region where
the condition of strong shear holds, tb ——t, . Al-
though roughly in agreement with the above ap-
parent critical temperature T„and showing about
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TABLE I. Useful constants.

~0 Ho
System (sec) (cm)

13.1 7.0
8.7 10.4

8.3
7.8

Fo
(cm)

0.10
0.115
0.07
0.09

1600
6100
4350
1100

1.78'

0.78'

0.87 0.470 1.52

0.86 0.525 1.444

0.99 0.389 1.357

So P
(sec ') (10 'Po) (g/cm')

0.528 'g 0.770 'I 2.65 g

3.65g

(Bn /()y)~ r 80
S„C~

(10 " cm')

2.45 '8

'Reference 9.
Reference 10.

'Reference 11.
dMass fraction of the first component (from Ref. 7).
'At T, and for A,o

——6328 A.
Reference 14.

~Reference 7.

the same shear dependence as T,*, the temperature
T(, has 11ttle to do with the actual temperature T,*

(see below IV E2).
c. Determination of the p* exponent. Although

the form of 8* is unknown, it is nevertheless possi-
ble to infer the M dependence of X~. Indeed, let us
define the temperature t1 such that the turbidity (or
the transmission) at T,* with M&0 is equal to the
turbidity (or the transmission) at T1 with M==0:

T. T

=E*(M*)' -',

+E*(M*)'-'

8*(M*=O, t* =t*, ) =8*(M*~0,t*=O) . (38) and finally

PQ Q/($g 1 ) (40)

the knowledge of M* and of t1 as defined above al-
lows the exponent p* to be inferred, through

M* =(A*/E*)'/(' "(t*))'- (41)

From an experimental point of view, it is not easy
to determine T,* for each values of M. Therefore all
turbidity recordings are referred to T~ (or T, when
M=0), the transition temperatures at equilibrium.
However, as shown in Fig. 3, the importance of the
E*(M*) ' term is such that the limiting value
8*(M&O, t*=O) is the same at these temperatures.
One can moreover estimate the importance of the
SPPI DXIHla. t1DQ

E*M'
(42)

t~ & 10 gives the condition M &&10, when us-
ing the experimental values. This condition was al-
ways fulfilled. The relation (39) is then changed
lIltO

This is valid also for the susceptibility (21), and then

A *t(r ——E*(M*)

Using the well-known relationship'

Here we have made T,*=T, in the denominator, ow-
ing to the weak shift T, —T,'. One can see that not
only the experimental values of M* and of (T( —T, )
are needed, but also (T, —T,*), which can be ob-
tained from light scattering experiments at M=O, as
discussed above.

The amplitude (A */E*)'/' " varies weakly
with shear, since

i &/(5' —1)A*
' (v—1)/3v 1/(5~ —1)

3 i 0

kgT,

~g(v —1)/3v(5~ —1) g —0. 10

using the classical value 5*=3.
(45)

E. Dynamics of return to equilibrium

When the action of shear is stopped, the system
recovers its equilibrium level through a mass dif-
fusion process. In principle, one has access to the
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(a}
I I I I I I

(O.u.)
M— Q =-).3' X )O .aN~

+r+x"
+~+ X

~X~+f X

N~

So = 5100sec"
'&~o(SO)—+-+—+ --+——+—

( ~~(o) Ts(lv() -Tc

1 I I I I I I I l

T-Tq (K) m
'

I I I I I I I '
~ T I I I I I

{ b}
I I I I 'I I 1

0.6 —Ko (So}

So = 6100 sec ' o+~l
g 0 Tcj TQ

02 —& o (0}
0 ~

t
(s=o)

10 N

T) Tc
(8=So)

I I I I I I I I I

10
' T-Tc(K)

FIG. 3. {a)Transmission M at M&0 vs T T~, where T~ is the ph—ase separation temperature at equilibrium. The 1im-
iting values at S=O[MO{0)]and S~O[MO{SO)] can be deduced. T,{M) is the crossover temperature between the regions of
weak and strong shear. {b) Normalized transmission u vs T T, showing how —the temperature T ~

—T, can be deduced.
T, is the crossover temperature at criticality. Wo aod Mo are arbitrary.

same diffusion constants as those classically mea-
sured at equilibrium in a light scattering experiment
where the time dependence of the concentration
fluctuations is obtained.

It is in the flow direction where q„=q that the
susceptibility (21) differs the most from its equilibri-
um value (20). One expects an exponential relaxa-

tion (where r is time),

X» (r) —X~ (00) ~exp( r/~~)— (46)

with the typical time r~ is the inverse of the
linewidth I &. The transport coefficients are those
of a system out of equilibrium at the beginning of
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the process and of a system at equilibrium at the
end. For simplicity, we will consider only the
equilibrium case. I ~ varies with t according to the
classical relation':

kaT
~q

' ——I q
——R q Q(qg), (47)

where R is a dimensionless amplitude factor of order
unity and Q(qg)=Q(X) is a function which, in its
former and simpler version due to Kawasaki, can
be written as

Q(X)= —,X—'[1+X'+(X' X—')tan 'X]—.
p YoHo

So(Yo)=f- (50)

time variation of the liquid height in reservoir (A),
(ii) a calculation using a Poiseuille velocity distribu-
tion in a circular pipe, and (iii) a laser doppler velo-
cimetry determination. They are all in a relatively
good agreement. Note that a calculation of the
Poiseuille velocity distribution has been made in
Ref. 12 for the actual rectangular pipe, and that the
values of shear are in excellent agreement with the
experimental value found in case iii.

We will therefore report here only the basic
Poiseuille formulas for extrapolating the A-C results
to other systems:

III. EXPERIMENTAL

Most of the experimental features have already
been described in Ref. 3; we will only recall the most
important points and emphasize the new aspects
which enter in this work.

A. Shear flow production

The shear flow was produced in a rectangular
quartz pipe (C) whose dimensions in Cartesian axes
OXYZ are L~ L=15 cm——, az ——a=0.3 cm, and

bz
——b=0.5 cm. 0 is the center of symmetry and

OY is the vertical direction. During the run, the
pipe (C) is set horizontal and the liquid flows from a
reservoir A (height Ho) into another reservoir B
through the pipe (C) (Fig. 2).

Two different cells have been used. The first (1)
has been already described in Refs. 3(a)—3(b); the
cylindrical shape of the reservoir A allowed the
shear to be continuously varied with time, from a
maximum value Sp to zero. S followed the exponen-
tial variation

S(T)=Spexp( —1 l'rp)

The A-C and the N-H systems have been studied in
this cell. The second cell (2) [Ref. 3(c)] has been
designed for minimizing the variation of the liquid
height during the run, so that the shear remains
nearly constant (Fig. 2). Both the I Wand the N-H-
systems have been studied in this cell. Measure-
ments are made by analyzing the scattered light or
the transmission of a polarized laser beam
(A,p

——6328 A) sent along OZ, entering in X=0,
Y= Yp, near a side wall where the shear is nearly
constant.

B. Determination of the shear rate

A complete description can be found in Ref. 3(b)
for the A-C system, where were compared (i) the

with

f=46.8,
using the values for the A-C system reported in
Table I.

As discussed in Ref. 3(c), the uncertainty on the
absolute value of the shear rate is mainly due to the
finite dimensions of the observed volume, and
remains within 15—20%%uo.

For the systems A-C and I- W, the Reynolds num-
ber was lower than the critical Reynolds number
(=10, but not universal), showing that turbulence
was not reached. However, for the N Hsystem, tur--
bulence could occur in the beginning of the run, but
we have never been able to experimentally evidence
it. This absence of turbulence is currently explained
by the progressive entrance of the fluid into the
pipe.

C. Sampling —Thermal regulation

We prepared the mixtures at the critical composi-
tion, as reported in Table I. Components were of
the best commercial quality, always higher than
99.5% purity. Aniline was redistilled before use,
and specially treated water giving an Ohmic resis-
tivity of 18 MQ cm was used.

The cell (1) was sealed under vacuum at 77 K for
the A-C study, as was the cell (2) for the N-H study.
Owing to the presence of water in the I Wsystem, -

we pumped the cell at OC until some bubbles ap-
peared, showing that the system was at the vapor
pressure of the components. Then the cell was
sealed.

In order to study the composition dependence of
the N-H system, we sealed on the cell (1) a teflon
screwtap. The cell was also pumped until some bub-
bles appeared, as above for the I Wsystem, before-
shutting the tap. The cells with their rotary mount
were placed in water baths with theiiiial regulation
within 0.1—0.2 mK.
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The composition study of the N-H system needed
an extra setup to measure the concentration. After
each set of measurements, we removed a few cm
and filled a square quartz cell. This was used as a
prism in a water bath with theriacal regulation to
measure the refractive index of the mixture by the
method of the minimum deviation. From the re-
fractive index the volume fraction was inferred
within 0.1% using the Lorentz-Lorenz fol-inula.

D. Light scattering —Turbidity

The light-scattering study was perforined with the
same means as already described. For the I-8' sys-
tem, the refractive index did not match the refrac-
tive index of the pipe, so particular attention was
given to stray light. The transmission of the light
beam was detected using calibrated photodiodes.

IV. RESULTS

We will discuss the following points: (1) critical
compositions c, and c,', (2) cross-over temperature
T, (M,S); (3) critical temperature T,', (4) susceptibili-
ty variations with T, S, and q; (5) turbidity: calibra-
tion, apparent T,', M variation and exponent P*,
strong shear region in the plane (M, T); (6) dynamics
of return to equilibrium; (7) susceptibility and corre-
lation length at equilibrium on the critical isochore
above and below T„and on the critical isotheiixi.

A. Critical compositions c, and c, (N-H system}

Although, in principle, the action of shear does
not modify the composition and/or the critical con-
centration, we wanted to check this point.

For the turbidity behavior at equilibrium, we
make use of the remarks on 8 made in II D 1 where
it was pointed out that the zero value of the
transmission coincides with the critical point.
Therefore the asymptotical value of P when

T~T~, noted u p, will go to zero only for c =c,. A
plot of Mp vs c will thus enable c, to be determined.

Out of equilibrium, the anisotropy teini in P~ [see
(21)] prevents 8~ from diverging at t,', but 8~
presents a maximum for c,'. The plot of the limit-
ing transmission Mp for T =T~, vs c, will therefore
exhibit a minimum for c =c, .

For calibration reasons explained below in IV E 1,
we have divided all the Mp and Wp values by the
transmissions Mp i or Mp i at the same concentra-
tion, but measured at 0.1 K above T+. This fact of
course does not change the location of the minima.
The ratios Mp/Mp i and Mp/Wp i have been plot-
ted in Fig. 4. Only the experiments perforated at
the highest and lowest shears have been reported,

c,' =c, =0.526 . (51)

B. Crossover temperature T, : Variation with M and S

The transmission shows a change of behavior
when T & T, (Fig 3). It is easy to determine with
the recordings themselves a temperature T, at which
an effect is visible within the experimental sensitivi-
ty, whose order of magnitude is 2%.

I. M dependence

For the N-H system in the cell no. 1, the tempera-
tures Ts have been reported for various values of M
and plotted in Fig. 1, where only one shear has been
reported, the other shears giving the same kind of
results.

Since all recordings have been obtained as a func-
tion of T T~, we had—to add to the experimentally
detellxlin& value Ts T~, the quant—ity

I

M~/WO,

0,1—

0.6—

p, 4—

0.2—

-5 -i -3 "2 -1 0 1 2 3

y(&0-')

FIG. 4. Determination of the critical mass concentra-
tion with (c, ) or without (c, ) shear. We have used the
minimum of transmissions ratios Mo/Mpi. Moi is the
transmission at 0.1 K from the phase-separation tempera-
ture T~, and Mo is the transmission at T~. The full line
for S=O corresponds to the formula used in IV E 1.

the other shears giving rise to a quite similar
behavior. The full line in Fig. 4 is the ratio
Mp/Mp i calculated according to the foriiiulation of
Mp i elaborated below in IV E 1. The values of Wp
on the coexistence curve have been calculated from
8 as written in (30) where the variable t was changed
into (M/Bp)'~~. We have used the values of Table
I.

This function fits the data well at S=Q provided
that c, =0.526 mass fraction (a value in agreement
with that already published, '~ 0.525). However,
the most important result is that the minima ob-
tained with experiments under shear or at equilibri-
um coincide (Fig. 4):
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T~ T—, = —T, (MIBp)' ~ (52)

(T, —T, ) —[T,(M) T, ]—
(53)

with Bp from Table I, to obtain [T,(M) T,—).
The solid line in Fig. (1) is the best fit to Eq. (53)

derived from (9):

10-1

10'—

SLOPE 0.56
-C system} .~

(N-H system }

The 3 quantities B~, (Tq —T, ), and rp are the ad-
justable parameters. We have found for the highest
shear:

I

10 10 10 S{sec ')

co =0.6+0. 1

S=6100 sec ' .Bs ——5+4

Tg —T, =(7.4+0.5) &C 10 K

1

Note the agreement of co with expected value —, .
We have also imposed co to —, in order to increase
the accuracy on Bz.

1co= —, imposed

S =6100 sec ' B,=2.15+0.04

T, —T, =( 7. 0+ 0. 3) X 1 0 2 K .

It is interesting to compare these amplitudes with
those calculated from (4) and (9), using the numeri-
cal values of Table I:

Bs "'——2.03,
in excellent agreement with the above experimental
value, and

( T, —T, )'"' "=0. 1 12 K,

FIG. 5. Crossover temperature variation with shear
from transmission data. The straight line corresponds to

1a power law. The expected exponent is —,&=0.53.

We follow the same analysis as above, but at the
critically M=Q, using (i) transmission data in N-H
and A-C at different shear rates (cell no. 1), and (ii)
transmission data in N-H and l-W at constant shear
rate (cell no. 2).

All data concerning various shear rates are report-
ed in Fig. (5). The expected variation (4) is visible.
More particularly, if one considers (S4) which comes
from (4)

T, —T, =XpS ' (54)

with Xp and op as unknown parameters, one finds

which is bigger, but of the same order of magnitude.
That both the exponent co and the amplitude Bs
agree well with the expectations, and that only
T, —T, disagree, is presumably due to the arbitrary,
but permanent, criterion we have chosen to deter-
mine T, (M).

2. S dependence

op ——0.56+0.03
A-C

Xp ——( l.3+0.2) )C 10 cgs unitsrange: 0—900 sec
Xp ——(1.5+0. 1))&10 cgs unit with op ——0.53 imposed .

The value of the amplitude Xp has to be compared with another value in the same system, obtained by
analyzing the scattered intensity at 2 angles [Ref. 3(b)], Xp-2. 3X 10 cgs units. These values are comparable
when one accounts for the uncertainties of these measurements [see Fig. 6 of Ref. 3(b)].

Using the numerical values of Table I, we can calculate the theoretical amplitude,

Xp"'"——l.58 &( 10 cgs units,

which is in close agreement with the experimental value.
For the N-H system, studied at various shear rates (Fig. 5), we find

NH-o.p ——0.47+0.QS

S range: 500 —6000 sec '
Xp —(7.9+0.4) X 1Q cgs units .

The last value was obtained with op ——0.53 imposed. If one considers the N Htransmission dat-a [Fig. 6(b)] in
the cell no. 2 (constant shear), we find
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80—

I I I I I I I

(

(A -C)
T,-T, =3.5mK
Tb"Tc =3.2FTlK

I I I I I I I
I allows also an amplitude to be deterrillned,

I-
i Xo——(4+1)X10 cgs,=1100 sec

' t
10' 103 10

.r.r'
~F

40—
S=288sec '~~0 pt

20— +

~s=o
I I I I I I I I I

which is to be compared with the expected ampli-
tude, calculated with the values of Table I:

Xo"' "——3.75&(10 cgs .

Reasonable agreement is therefore found, both for
exponent era and amplitude Xo.

C. Critical temperature T,

100—

BO—

40—

I I I I 3 3

(N-H)

T, -T, =6.1mK

Tb-T, = 6.5mK

Ts

I I I I I I ~ I I I I I 3 3 ~ I I(b) As noted above in IID2b, the transmission mea-
surements are of no use for deterirrining T,*;howev-
er T,' can be characterized by the divergence of the
scattered light in the fiow direction at very small
wave vector q (see II C2). More exactly, the inverse
susceptibility

X =A*
q y*+q —. A*

0

10 ' 103 10 1 10" T-T, (K)

I I I I I I I I} I I I I I I I II I I I I I

(55)

go - S=ll00sec

~O
S=O

30

I I I 3 I I I I 3 I I I I I I

(c)
~+~ ~O

I

(1-W)
T, =11.0rnK
T, =29.501K

plotted versus T in linear coordinates, must be extra-
polated to zero for T =T,'.

This has been done for the N Hand I-S's-ystems
in Fig. 7, studied at constant shear rate (cell no. 2).
There is a small, but noticeable, change in the criti-
cal temperature.

With A* free and y*=1 imposed, in accordance
with the results shown in Fig. 7, the fit of the data
to the exact formula (55) gives the shifts in T, :

9 —-'
10

I I ! I I I I II

1o
' T-T(K)10 2

FIR. 6. Transmission variation M vs T —T, for 5=0
(full circles) and S&0 (crosses). The open circles corre-
spond to the transmission u(S&0) translated by the
quantity ( T, —T, ). Tb is the temperature at which
u(S&0) goes to zero. (a) A-C system Tb-T„(b) N0-
system Tb —T„(c) I Wsystem: Du-e to the large
transmission even close to T„T, has been determined by
the value u (S&0)=0.5 which corresponds to the value
of M (S =0) within 0.2 mK from T, .

Xq-'
V

(a.U.)
40— (t-w)

S =1100se
tN-H j

= 4350sec '

20— Tc

1.8rnK

S =4350 sec ' T,*—T, =(1.8+1)&(10 K,
q =6600 cm

—20

, . go=(9.4+2.4) && 10 cgs units .=4 50 sec

10— f
0 I j r l

26.2100 0.2500

—10

I ( ( ~ 0
19.3400 o.oooo T ('C)

These 2 results can be compared to the theory us-
ing values of Table I:

Xz""'——11.2 & 10 cgs .

Finally, the I 8' mixture transmission o-f Fig. (6)

FICx. 7. Determination of the critical temperature
under shear T, from the zero of the inverse susceptibility
in the shear direction (g~ ). T, is the critical temperature

at equilibrium. The linear variation of Pq, moreover,

shows that the mean-field approach is relevant.
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S =1100 sec ' T,' —T, =(2.9+0.2))&10 K .
q =6600 cm

These amplitudes can be compared to the expect-
ed values according to (7). More precisely, the
universal constant v can be estimated:

N-H: v =(1.9+1)X 10

I-R'. v =(1.9+0.13)X10 '.
There is good agreement between both experimen-

tal values, but they are about 4 times lower than the
expected value

v'""'=8.32 X 10

However, this amplitude is sensitive to the kind of
flow and has been calculated only for a rigorously
constant shear rate.

Anyway, assuming for the kind of flow studied
here

y* =0.98+0.09
=4350 sec

[T, —T, =(1.5+1.5) 10 K],
q =6600 cm

*=0.92+0.03

[T,' —T, =(1.9+0.2) 10 3IC] .
q =6600 cm

The classical value y*=l is obtained. Xe versus
T —T,' has been reported in Fig. (8) for the 2 re-
gimes of strong and weak shears, where y* exhibits
the classical value 1 or the usual value 1.24. The
value of T, —T,' =2.9 mK corresponds to a flt with
y»=1 imposed (see above IVC).

b. q =q. We will only discuss the data from the
A-C system. Whether the T, shift (56) or that (57)
estimated from transmission measurements is used
very much changes the behavior [see Fig. 9(a) and
9(b)]. The mean-field behavior which was visible us-
ing the shift (57) is quite normal, since, from the
definition of T, (34) and neglecting the q term:

v=2)& 10

we are able to predict the T, shift for the A-C sys-
tem. Using the values of Table I, we find

X '=A*
q

+b»g8/15( 0.4 ( 0.4) )

Z T,=3x 1—0 'S'/3"-
This value is significantly different from that

T.—T, =1.8X 10-'S'/3"

(56)

(57)

(58)

coming from the transmission measurements and
which was used in Ref. 3 to interpret the susceptibil-
ity data. In the following, we will therefore
reanalyze the A-C data for which this T, shift has
an influence.

Xq„-
(a.u.)

10
3

l I I I 1 I I

I

(I-W)
I I 1 I I I [

qI, V

q = 6660cm'

D. Susceptibility variations with T, S, and q

This study was perfornIed at criticality M=O.

I. T variations ofXe at q,s fixed: Exponent y»

We will consider the 2 limiting cases q„=O and
q„=q. According to the expected Xz variation (21),
with M=O, the interest of experiments perfox-ivied at
very small q is obvious for removing the classical q
dependence.

a. q„=0. We are concerned with the N-H and I-
8' systems at constant shear rate (cell no. 2). Figure
7 already showed that in linear coordinates, Xe

' vs
T exhibited for both systems a linear variation,
demonstrating the classical value of y».

A fit to (55) with A*, T, , and y* free allows the
following values to be obtained:

S=1100sec-' + S =0
=1 +

~ f= 1.24
L

~C C

i ~ »»ill s i i s s s I I I I I I I

T-T,"(K)

FIG. 8. Variations of the susceptibility in the shear
direction vs T —T,* showing the regular behavior when
S=O or S&0 and T & T„and the mean-field behavior
when S&0 and T & T, .
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10

Xq„
(a.u.)

3
10

(A-C)
I I I i % I I

I

q II V

q = 5200cm-'

T -T = 3 )0580.53

2. S va-riations ofXq at T and q fixed

Using the A-C data of Fig. 9(a) with the "right"
T, shift (56), it is easy to consider the values of
Xq(q =q) at constant temperature. We wanted to
make visible the shear dependence of B*,so only the
data very close to T,* has to be retained. From (21),

A g (tg)y +bsS8/15q0. 4+q2 bgcq04S8/15

(&9)

In Fig. 10 these data have been reported and fitted
to the variation:

Xq
——Xi+X2S ', (60)

10

10

10
3

10
2

I I I I I w I

10

I I I I I I

I I I I i I I

T-Tc"(K)

I I I I I I

(A-C)
qzV
q =5200cm'

S=O y=l. 24
{best fit)

S0.53

where Xi, X2, and cr2 are adjustable parameters. We
have found

cr2 ——0.6+0.1,
i.e., a value in agreement with the expected value

» —0.53. This result is interesting, since in Ref.
3(b) where the A-C data were analyzed, a value
F2-1 was found due to the use of T~ instead of T, .

3. q variations ofXq at T and Sfixed

According to (21), the variation (61) is expected:

=Xi lX2+X3qx+q'] . 6

Here X2 ——A*t*, Xz b*S ', a——nd n=Q 4 X.

i i.s .an
arbitrary factor. Obviously only the experiments
performed at the closest temperatures to T, (X2
minimum), at the highest shears (X3 maximum), and
for the smallest q (q minimum) will render the ex-
ponent of qx detectable.

The conclusions of Ref. 3(b) concerning the A-C
mixture remain valid since the temperature teiiii Xi
was left free in the analysis, together with X2, X3,

10 10

I I I

T-To (K)

FIG. 9. Variations of the susceptibility in the flow
direction, for the A-C system, vs (a) T —T,*, using the for-
mula (56) which comes from results obtained in the (XH)-
and (I-8') mixtures. (b) T —T„where T, is the apparent
critical temperature [formula (57)] obtained by transmis-
sion measurements. The following shears have been stud-
ied: (E) 903; (0) 510; (0 ) 288; (A) 163; ( && ) 92; (~) 52;
(+ ) 29 sec

Xq-

103—

I I I I I I
I

(A-C )
q II v
q =5200 crn-'

T-Tc =t.smK

One can see that the anisotropy term is reduced
when compared to the temperature term. It is only
at the strongest shears, when b*Ss/'5 becomes im-
portant, that a curvature in a double-logarithm plot
of Xq vs T —T, becomes visible [Fig. 9(b)].

10
'

10

I ~ I I I I I

102

~ ~ ~ I I I I I I

10 S (SPC )

FIG. 10. Variations of the susceptibility in the flow
direction vs shear, close to T,*, showing a power-law
dependence with an exponent whose expected value is
O.S3.
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and m. The results, with either q =est and qx vary-
ing or qx ——q, q varying, gave the same result, in
agreement with the theoretically expected value
0.40:

i m. =0.40+0.05 .

Only the I-W system has been investigated at con-
stant shear rate, in the configuration qz ——q, and q
varying. The data recorded within 3 mK and 10
mK from T, have been reported in Fig. (11). An ex-
ponent n., with value

~=0.55+0.05,
has been found. This somewhat high value is
presumably due to the ternis in q

' and q which
combine in the q range investigated, making an ef-
fective exponent slightly larger than 0.4.

E. Turbidity

Calibration of transmission data

For practical reasons, the transmission recordings
were not perfornied at temperature differences
T T~ greater t—han about 0.2 K. Since all record-
ings needed to be carefully recalibrated, we choose
as a standard the transmission Mo i at Q. l K from
T~. Indeed, at this temperature the effect of the
shear is negligible, so Mo i

——u 0 i, and the influence
of the concentration is generally much lower than
that of the temperature, making Mo i weakly depen-
dent on M.

The theoretical value Mo i is unknown, since the
amplitudes of g and X are defined only on special
trajectories such as the critical isochore or the criti-
cal isotherm. Nevertheless, in the M range studied,

the condition

0.1))T, —T~ (62)

is always fulfilled, and this fact allows some approx-
imations to be made.

a. Susceptibility. If one considers the foririulation
of the free energy (t'I (Ref. 1) and the definition of the
susceptibility

one obtains

Bp B@
aM' ' (63)

+5D0M

This relationship remains valid for M=O. For t=O,
we have to change the amplitude go+ by another (go)
including gp. With the universal ratio, '

C+ Co

C, g'0

we obtain

The amplitudes Co and Do are known only on
special trajectories, such as t &0, M=O (Co ——C+),
and t=O (Do ——D). We will simply assume that
Co ——C+ and Do D. In t——his case, and using the
universal amplitude factor R~+ =C+DBs ' whose
theoretical value is 1.7 (Ref. 15), we can write (64) as

X '= [t&+5R+(M/B )s '].1

C+

b. Correlation length. We follow the same kind
of arguments and assume

1/P ' —v

g(i,M)=go+ t+

Xq
(Q.U.)

)0

I I I I I I

qII v

G,=0.55 & 0.05

+~

& /(2 —g)r

ko =Co+
5R~+

using go+ ——2.65 A from Table I. The relation (66) is
therefore only an approximation and is valid in the
range where the condition (62) holds.

Putting the expressions (65) and (66) in the calcu-
lation of 8 through (29), one obtains the same ex-
pression as (30), but where the following changes
have to be made:

I I I i

q{cm ')

5—1 —1

t r—+ t~g i+5Rg™0. i (67)

FIG. 11. Susceptibility in the flow direction vs q,
showing a power law with exponent m, whose theoretical
value is 0.40. Data have been obtained at T —T, =3 rnK
(+ ) and T T, =10 InK (~). —

g ~$0 to. i+
Bo

with to i
——0. 1/T, .

1/P —v

(68)
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A check of this foririulation has been performed
in Fig. (4) where the ratio of the transmission at T~
(i.e., uo) to the transmission at T++ 0.1 K (i.e.,
Mp & ) have been plotted in function of M.

N-H 0 C

S =4350 sec (T* T ),„

S =1100 sec
Ta Te

(T;—T. )th-.

(T, was determined in this weakly opalescent sys-
tem by the transmission value at 0.2 rnK f«m T, ).
The fact that this ratio is of order unity is presum-
ably a mere coincidence.

We can also deter-irIine Tb such as
M( T + Tb —T, )=M*(T —T, ) (see above II D 2 b
and Fig. 6). The above approximation is well sup-
ported by the A-C system Ref. 3; for the other mix-
tures, the comparison with (T,' —T, ),h„, gives also
ratios of order unity:

A-C Tb Tg

S range 30—900 sec (T* T
= 1.4,

2. Apparent T,*

As stressed in II D 2 b, transmission measure-
ments may lead to an apparent critical temperature
T, if the same criterion as at equilibrium is applied
for systems under shear.

In Fig. 6 the data at S=288 sec ' from Ref. 3(b)
have been reported for the A-C system, together with
the measurements performed in the N-H and I-8'
mixtures. Let us compare the apparent shift
T, —T, with the one predicted by OK ( T,*—T, ),h„,.

-C

S range 30—900 sec

be a straight line in a double-logarithmic plot and
allows, according to (44), the exponent P* to be
deterinined.

In Figs. 12(a)—12(d) the data for 4 shears ranging
from 500 to 6100 sec ' have been reported. The
values of T, —T,* have been deduced from the re-
sults of IVC:

(N H) T-,
* T, =—(2. 1+1.2) &&10 S (69)

with H* and P* as adjustable parameters. One ob-
tains a value P*=—, within 3—5%, and an ampli-
tude H* =2—2.3 close to the theoretical values
1.6—2 in the S range 6100—500 sec '. Details of
the fits are given in Table II. According to (45), H*
should vary with S '; the values found here are
in agreement with S,but the exponent accuracy
is poor.

4. Strong shear region in the plane (M, T)

It is possible to deduce the coexistence curve
under shear, which obeys Eq. (5), or, with respect to
T„Eq. (71):

The large uncertainty on this coefficient has
nevertheless only a weak influence on the results,
T,' —T, being always small compared to T

&
—T, .

Owing to the method itself, data very close to T,
(within a few mK) are useless and have been dis-
carded.

In order to check this method, we have also
analyzed the transmission at equilibrium. In Fig.
12(e) are reported the data, which are in agreement
with the equilibrium exponent P=0.325, whereas all
values obtained at S&0 agree with the classical
value P* =—.2'

According to (44), one can fit the data to

T*—T*
M* H~ (70)

C

N-H Tb Tc
S =4350 sec (T* T

(T,*—T, )+(T,—T~)
M =Bo (71)

I-W Tb Tg

S =1100 sec (T*

3. M variation

Transmission recordings for 20 different composi-
tions have been recorded with the N Hsystem, using-
the cell no. 1 where the shear was continuously vary-
ing with time. Typical recordings are shown in Fig.
3. As discussed above in (IID2c), the limiting
value u 0(M~O) can be compared to that at M=O
in order to determine the quantity T& —T, . The
plot of M vs [(T& —T, )+(T,—T,*)] is expected to

In this formula, 80, T, —T,*, and /3* are unknown.
However:

(i) The value of exponent P* has been shown to be
—, (see IV E 3).

(ii) The value of T, —T,* has been determined; for
instance, with S=6100 sec ', T, —T,*=(2.21
+1.2) && 10 K when one applies the results of IV C
and the relation (69).

(iii) Bo can be determined if one notices that the
intersection of the crossover function with the coex-
istence curve at equilibrium must coincide with the
intersection with the coexistence curve out of equili-
brium (see Fig. 1). For the shear rate S=6100
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S= 4300 sec-'

P = 0.49+-0.05
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S =1900sec '

P = 0.47+- 0.04
5= 500 sec '

P=0.46+003 ~wO
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s i s i ill
102 10'

Ti"-Tc (K)
1P 3 102 10 1
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I I 4 I I & 1

P =0.335+ 0.015 ~.e~
~~~O

~~O

102—
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I ~ I I I I I I

10-2

I s i t k l

10 1
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FIG. 12. (a)—(e) Variations of the order parameter M vs the temperature difference T~ T,* (see text), allowing —the ex-
1

ponent P* to be measured. Its value is expected to be —, when S&0, and 0.325 when S=O.

sec ', one finds

So=3 9 .

The calculation of the uncertainty is not easy, but
we estimate it to within 20—30%.

Therefore the region of strong shear, delimited by
the cross-over temperature T, (M) and the phase-
separation temperature T~(M), can be detei-nlined.
It has been drawn for S=6100 sec ' in Fig. 1

(hatched region).
It is interesting to note that the phase separation

shift due to the shear is maximum not at criticality,
but for values of M of order 0.02, where it is about
three times larger than at M=0.

F. Dynamics of return to equilibrium

In the I-R' mixture at criticality we have studied
how a system perturbed by a shear recovers equili-
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TABLE II. Fit of M vs T& —T, in the N-H system ac-
cording to M =H*(T~ —T,*/T, )~ with H* and P* as ad-

justable parameters. The theoretical value is P*=—when

S&0, and 0.325 when S=O. H* is expected to be about 2
when S&0. The quantities in brackets have been imposed
in the fit.
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brium when this shear is suddenly stopped.
From the susceptibility under shear (Eq. (21), it is

clear that the intensity scattered in the X direction
(q~ ——q) will give rise to the larger effect. In Fig.
13(a) are shown typical recordings. The scattered
intensity, once corrected for the transmission, is seen
to exhibit the expected experimental behavior (see
IIE) with characteristic time re [Fig. 13(b)]. This
typical time, deterniined for 3 wave vectors
q =32500, 16500, and 6660 cm ' and in the tem-
perature range 5)&10 4 K to 3)&10 K, has been
reported in Fig. (14) versus T —T, . The full line is
I z

' from foiinula (47), using the numerical values
of Table I, and letting free the amplitude ratio R.
The values found are very small and depend on the
value of q, whereas the temperature variation agrees
relatively well with the foririulation of re. The
reason why very low values of R have been obtained
is certainly related to the simplification made when
we considered the system to be at equilibrium.

G. Susceptibility and correlation length
at equilibrium: Amplitude combinations

We have also analyzed the turbidity data of the
N-H system when S=Q and M varying. These data
are reported in Fig. 15, together with others from
Ref. 14, where can be found the numerical values.

I I I I I I I I I I I I I2
30 60

+
I i I I I i I I I I I I I ~ I 5

90 120 & (~)

FIG. 13. (a) Transmission (u ) and rough scattered in-

tensity (M P~ ) vs time, showing how the system per-

turbed by the shear recovers the equilibrium. (b) Semilog-
arithm plot of M and Pq vs time showing an exponential
behavior with characteristic times 31 sec for M and 80 sec
for yq .

~ ~ I ~ ~ I ~ I I I I I I I
I

q =66
)p2 ( R = 0.225)

-q =16500cml
(R =0.050)

q=32 500 &

(R = 0.015)

S„C~ =(2 45+0.04) X 10 cm

go ——(2.65+0.07))& 10 cm .

The subscript y means that the variable volume
fraction y has been used as an order parameter in
the estimation of (Bn /BM)z T.

~ I I I I l I I I I Ia I I I ~ ~ ~ ~ ~ ~

10 1P' 1p

Critical isochore above T~

The transmission recording for M=O has been
analyzed according to foiiiiula (30), and gives

FIG. 14. Typical time 7q vs T —T, . The solid lines are
the usual variations according to formula (47), where the
amplitude R was adjustable.
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e::
= 1.1+0.3 [1.21(Ref. 13)] .

1-..-10

The agreement is fairly good with the theoretical
combinations. For more details, see Refs. 7 and 14.

0.1 —;1 V. CONCI. USION

0-2
l

I

10

I

10

This work, initially devoted to the study of non-
equilibrium critical fluids, has also allowed some in-
teresting equilibrium properties to be obtained. We
will summarize the main results obtained in these
different fields.

FICz. 15. Turbidity along the critical isochore above T,
(~ this work, U from Ref. 14), along the coexistence
curve (~ this work, o from Ref. 11), and along the criti-
cal isotherm ( X this work). The M and t scales are relat-
ed by M=8

~

t
~

~ with 8=0.77. Inner scales are con-
cerned with the critical isotherm.

2. Coexistence curve below T,

The asymptotic values of the transmission corre-
spond to the transmission on the coexistence curve,
very close to the criticality. An analysis according
to (30), changing t in (M/B&)' ~, gives

S„C+ ——(0.57+0.Q2) X 10 cm

go ——(1.4+0. 1)X 10 cm .

A. Equilibrium properties

Both the susceptibility and the correlation length
have been obtained above and below T, at criticality
and on the critical isotherm. These measurements
have made possible the estimation of the universal
combinations C+/C, go+/g'0, Ri+, and Q2. The
values are in good agreement with the theoretical ex-
pectations.

The time taken by the system to recover equilibri-
um after having been perturbed by a shear is seen to
roughly behave with temperature as the diffusion
time. However, there subsists an unexplained factor
of 4 to 50 discrepancy with the amplitude calculated
by the standard critical dynamics at equilibrium.

3. Critical isotherm

If we apply the coexistence curve equation (6), we
deternline the quantity T, —T+ ——T, (M/Bo)'~~ and
the transmission at T~ can be measured on the
recordings. Again replacing t by (M/Bo)'~~ in (30),
the analysis of the data allows go and S„C& to be
measured:

S„C' =S„(&DB ') —'=(0.29+0.05) X 10 cm

g()
—=g()(BD' s) " ~=(0.93+0.10)X 10 cm .

4. Universal amplitude combinations

Combining the results from IV Cx 1 to IV G 3
makes possible the estimation of the following ra-
tios, whose theoretical value is in brackets (from the
renormalization group or high temperature series
approaches, respectively):

C+/C =4.3+0.3 [4.5(Ref. 15), 5.03(Ref. 16)],
go+/go —1.9+Q.2 [1.91(Ref. 15), 1.96(Ref. 16)],
R+ =C+DBs '=1.75+0.30 [1.7(Ref. 15)]

B. Out of equilibrium properties

The main object of this work was to clarify some
misunderstood situations [see Ref. 3(c)]. After hav-
ing studied under shear three different systems, at
criticality or versus M, we can conclude that

(i) The shear affects the critical behavior of binary
fluids in a region of M and T delimited by a cross-
over temperature T, (M), which varies as M, and a
coexistence curve with the mean-field exponent

1

2

This region corresponds to the condition Sr& 1,
where the fluctuations have a lifetime r large
enough to "feel" the shear S. The amplitudes exper-
imentally found are in fair agreement with the OK
calculation.

(ii) There is a small but detectable change in the
critical temperature, which is indirectly seen to vary
with shear as S'~ "=S . The amplitude of this
change is however 4 times smaller than expected
from OK. This discrepancy could be attributed to
the kind of shear which was experimentally pro-
duced, not strictly constant in direction.

(iii) The susceptibility at given wave vector q,
shear S, order parameter M, and reduced tempera-
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ture t* =(T—'1,')/T, is well represented by the OK
approximation:

Xq —a*S '(t ) +b*S qx+e*S M~ ~ +q
The exponents o ~

——(2v —1)/3v=0. 14, cr3 ———,

have been determined indirectly and are in agree-
8

ment with the above values. The exponents o2 ——»
and qr=0.4 have been directly checked and experi-
ments agree well with theory. The exponents y* and
P* exhibit the mean-field values 1 and —,. Moreover
the amplitudes a*, b*, and e* are in reasonable
agreement with the OK theory.

Finally the mean-field behavior was always seen
to be relevant when the strong shear regime was
reached.

It would be interesting to extend this study to oth-
er kinds of flow, such as the elongational flow where
the effect should be more pronounced and where the
absence of a mean velocity would allow the dynam-
ics to be studied. Also the study of the phase
separation process under shear could provide some
new and unexpected phenomena. Experiments are
in progress concerning this point.
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