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Fast-computational approach to the evaluation of slow-motion EPR spectra in terms
of a generalized Langevin equation
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A Mori-type generalized Langevin equation is shown to be the only theoretical tool necessary for
setting up a fast-computational method of evaluating EPR spectra. The advantages of this algo-
rithrn, concerning memory storage and time consumption, are clearly illustrated by explicitly
evaluating the line shape of a nitroxide spin probe both in an isotropic liquid solution and in a
liquid-crystal mesophase. This method makes theoretical EPR spectra of an orientated system in
the slow-motion regime readily available. It is shown that the presence of an orientating potential
renders the EPR spectrum much more sensitive to the details of molecular dynamics, thereby mak-
ing this a potentially powerfu1 tool for monitoring rotational dynamics in liquid mesophases.

I. INTRODUCTION

Electronic paramagnetic resonance spectroscopy as
dealt with by the stochastic Liouville equation (SLE)
theory' has a well established theoretical background leav-
ing open only one major problem. As pointed out by
Kubo, the detailed balance requirement is not satisfied by
the standard form of the SLE theory resulting in an in-
correct equilibrium distribution. Although, in principle, it
would be possible to amend the theory from this flaw, it
is widely believed that in the standard experimental con-
ditions this does not lead to any significant discrepancy
between theory and experiment.

Within the environment of researchers currently in-
volved in experimental investigation of both base and ap-
plication nature there is a strong demand for a fast-
computational algorithm to be built up. It has been
shown, for example, that the evaluation of Ref. 5(b) in-
volves several hours of computer time. These computa-
tional difficulties are usually met when dealing with the
slow-motion regime. This regime is characterized by
the breakdown of the complete separability between the
"macroscopic" time (the spin relaxation time) and the
"microscopic" time (in our case the rotational diffusion
time of the molecule containing the resonanting magnetic
spin). A clear-cut separation between the two time scales
is the basic theoretical requirement for simplified master
equations of the Markovian type to be built up.

Attempts to solve this intriguing problem have recently
been made by a few research groups. A major purpose
of the present paper is to make readily usable by the
researchers of this area the findings of Giordano et al. ,
which are so far available only in a short and very prelimi-
nary version. This is a more detailed report which also

includes significant theoretical improvements such as
those recently arrived at in Ref. 10 and, especially, those
of Ref. 11. Our computational method will be shown to
completely rely on a generalized Langevin equation
theory. Similar theoretical developments have recently
been made by Lee' with applications to the spin van der
Waals model and two-dimensional electronic systems. To
enlighten the nature of our approach we shall apply our
computational algorithm to evaluating EPR line shapes in
the slow-motion region.

The plan of the present paper is as follows. In Sec. II
we shall make a detailed picture of the general theory on
which our algorithm is based. Rather than involving the
heavy algebra of the Hankel determinants ' we shall only
use simple physical arguments. Our theoretical approach
consists in a suitable generalization of the celebrated Mori
theory' valid also when neither Hermitian nor anti-
Hermitian properties can be invoked. This is especially
useful within the context of the standard SLE theory,
where the lack of a detailed balance mechanism prevents
us from making Hermitian the dynamical operators driv-
ing the variable of interest.

In Sec. III A we shall adapt our approach so as to make
it suitable for EPR spectroscopy. Then in Sec. IIIB this
algorithm will be applied to determining the slow-motion
line shape of a spin nitroxide radical solved in an isotropic
solution in a liquid-crystal mesophase.

II. GENERAL THEORY

It seems to us that the ultimate theoretical justification
for all the attempts so far made is virtually the
same —mathematical in nature. Dammers et al. , for ex-
ample, based their approach on the application of Pade
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C(t)=&a'(0)a(t)&y&~ "W
& . (2.1)

approximants, whose close relationship with the
continued-fraction algebra is well known. ' Still clearer is
the connection between the Lanczos algorithm and the
approach of Ref. 7: Both ultimately result in tridiagonal
matrices. Here we show a completely physical way to our
fast-computational algorithm.

According to the linear response theory, ' the problem
of determining line shapes can be traced back to determin-
ing the Laplace transform of equilibrium correlation func-
tions such as

where
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By Laplace transforming Eq. (2.6) we
continued-fraction form,

(2.7)

(2.8)

obtain, in

(2.9)

The time evolution of the variable 2 is described. by the
following equation of motion

d
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dt
(2.2)
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This scalar product allows us to build up the following
biorthogonal set of vectors:
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We are now in a position to follow the Mori method'
without having recourse to the requirement that iW of
Eq. (2.2) is Hermitian. This leads us to show that the
kth-order correlation function

@k(r)—= &fk lfk(t) &~&fk I fk & (2.5)

is related to the (k + 1)th one via hierarchy relationship

where W is a generic dynamical operator. The simplest
way of facing this problem would be to expand W over a
suitable basis set of "vectors" and diagonalize the resulting
matrix via standard procedures. This approach, however,
would imply the large computer time consumption of Ref.
5 as well as memory storage problems. We shall com-
pletely bypass these difficulties.

First of all, we shall define a suitable scalar product be-
tween the two generic variables A and 8, denoted by the
symbol &3

I
8&. In Sec. III we shall define the explicit

form of this scalar product for the present theory to be ef-
fectively applied to evaluating the EPR spectra. Note also
that @(t), Eq. (2.1), can be written in terms of this scalar
product as follows:

N

No(t) = g s
i=0

(
(o)

) (2.11)

The number X is assumed to be even. It should be made
as large as possible. Then we shall develop @&(t r)—
around t —v'=0 as follows:
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p
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Equation (2.6) with k=0 allows us to express the parame-
ters s„'" as a function of the s„' 's. After a straightfor-
ward, though tedious algebra, we obtain

(P) (O) (P)
(1) S1 Sm+1 —Sm+2 ~ (1) (p)
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—~ Sk Sm —k

($1 ) $2 k=0
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This expression allows us to express the first X —2 s"'s
in terms of the first X s„' 's. In general,

(i —1) (i —1) (i —1)
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Equation (2.9) is of basic importance within the context of
our computer algorithm. This equation will be used to ex-
press the EPR spectra without having recourse to diago-
nalization procedures.

For this property to be proven useful the parameters A,;
and b,;, Eqs. (2.7) and (2.8), have to be determined in
terms of the moments

$„=&~
I

w" Iw&y&a Iw& (2.10)

via a procedure more efficient than that suggested by the
above outlined projection algebra. Giordano et al. used
Dupuis' algorithm. ' This method, however, is redundant
in that a large amount of tedious algebra is used to
rederive the generalized Langevin equation, which can be
used" as the only starting point of our computer algo-
rithm. This can be done as follows. Note that @(t) of Eq.
(2.1) has to be identified with the zeroth order one of our
hierarchy of correlation functions. Let us develop @o(t)
into a Taylor power series:

t

dt
ek(t) =A/, ek(t) 6k+]ek+$(t r)ek(r—)dr, —

0

0&m &X 2i . (2.14)—
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The first N moments of @o(t) allow us to get information
up to
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We have thus shown that @o(z) can be expressed in a
continued-fraction form, whose expansion parameter can
be given in terms of the moments s„. The only theoretical
tool we used to arrive at this important result is the gen-
eralized version of the celebrated Mori theory. To com-
pletely solve the actual problem. of evaluating spectra we
should have available the values of the parameters s„. For
these to be evaluated in an efficient way, the peculiar
structure of the dynamical operator W of Eq. (2.2) has to
be carefully considered. In Sec. III we show in detail how
this problem can be solved by focusing our attention on
problems of interest for EPR spectroscopy.

III. APPLICATIONS TO THE EVALUATION
OF THE EPR SPECTRA

The EPR phenomenon that we shall discuss for illustra-
tive purposes concerns a nitroxide spin probe both in an
isotropic liquid solution and a liquid-crystal mesophase.
In Sec. IIIA we shall make the general theory of Sec. II
suitable for EPR spectroscopy. In Sec. III B we shall illus-
trate the corresponding results.

A. Fast-computational algorithm
for EPR spectroscopy

By using linear response theory' we can express the
EPR spectrum as follows:

1(~)=L@(I)—= L(S (0)S (I))/(S S )
= L Tr[S exp(iLt)S+/(S S+ )] . (3.1)

The symbol L [N(t)] denotes the Laplace transform of the
correlation function N(t) The variabl. e 2 of Sec. II has to
be icIentifiecI now with the spherical component
S+ ——S„+iS~ of the spin angular momentum S. The
rigorous quantum-mechanical Liouvillian L, is defined by

L ( . ) =P'"( . ) =[P' ] (3.2)

@Nn- I(S 2
{X/2 —1)

TI'ansferlllg this lllfo rill atl oil fl 0111 C&o( I ) to @~y2 I ls
proven to be an easy matter when having a computer
available, provided that Eq. (2.14) is used. From the defi-
nitions of Eqs. (2.4), (2.7), and (2.8) it is straightforward to
get

( 1)Py(&P)D(2) (Q)T(2,q)( I S)g, —p
p~@p

(3.4)

where p denotes the kind of interaction involved [for ex-
ample, throughout the applications of this section, Zee-
man (p = 1) and hyperfine interaction between electronic
and nuclear moments (@=2)]. T&'~' denotes the corre-
sponding spherical tensor and the Dq '~(Q)'s express the
signer matrices involved in the transformation from the
molecular to the laboratory framework. The orientation
of the molecule with respect to the laboratory frame is de-
fined by Q=—(a,p, y), where a, p, and y are the Euler an-
gles.

%'hen regarding 0 as being a classical stochastic vari-
able the time evolution of the corresponding distribution
of probability, p (Q;I), is given by

(3.5)

where, when making the diffusional assumption'

I (Q)= —M [D.MV(Q)] —M D M .

D is the molecular diffusion tensor and M is the generator
of rotations. The explicit form of V to be used in this sec-
tion is

V(Q)=AP2(cosP) . (3.7)

Recall that p denotes the second Euler angle and P2(cosp)
is the second-order Legendre polynomial.

As is well known, the SLE theory consists of replacing
the rigorous operator iL defined by Eq. (3.2) with the
dynamical operator

Y =i% s+iA I(Q)+1 (Q) . (3.8)

Let us consider two variables, A(Q, I,S) and B(Q, I,S),
which, for the sake of generality, are assumed to depend
on molecular orientation and nuclear and electronic angu-
lar momentum. As a consequence of replacing iI with W
we are naturally led to define their corresponding scalar
product (B ~A ) as follows:

(B ~A)—:Tr J dQB(Q, I,S)A(Q, I,S)p,q(I, S)w,q(Q),
Is, rI

(3.9)
where p,q( I,S) and w, q(Q) denote the equilibrium distri-
bution of the spin system and molecular orientation,
respectively. This means that

A, in turn, is given by

s+A ]+A g o (3.3)

I (Q)w, q(Q) =0, (3.10)

w, (Q)=exp[ —V(P)/kT] J dQ exp[ —V(P)/kT] .

A, is the purely electronic ancI nuclear spin part of the to-
tal Hamiltonian; that is, the part of A which does not de-
pend on the molecular orientation. A z is the part of the
total Hamiltonian which involves all the freedom degrees
of the system except for the spin (electronic and nuclear)
ones. ' A

&
denotes the interaction between these two

parts. By using standard symbols, we can relate our case
to the following expression for A &.

@(I)=&folfo(I)&/&fo
l fo&

where

(3.1 1)

lfo&=—S+Ix . (3.12)

(3.10')

The correlation function &&(r) of Eq. (3.1) can be writ-
ten in terms of the scalar product of Eq. (3.9) as
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IN is the identity operator of the nuclear space.
We have now to face the problem of evaluating the pa-

rameters s„. is caTh's can be done as follows. First of all, let
us define the nth-order state

I
~. &—=~"Ifo& .

As usual in the slow-motion regime, we shall disregard the
nonsecular terms. Then the general expression for

~
a„&

1eads 21

(3.13)

~
I2, & —= g [C(It )]I mjI'2I, (&)~~JS+

I,m, i,j
%'e also assumed the splitting g, the hyperfine A and the
diffusion D tensors to be axial symmetric tensors w'ors with the
same symmetry axis. The nuclear-spin operators are ex-
panded over the set of the 3 X 3 matrices 3;J defined via

(3.14)

(A;j)l =5;I5J
3

IN $~ii

(3.15)

(3.16)

We are now in a position to easily teach the computer to
evaluate the multidimensional array C(n), the terms of
which are involved in Eq. (3.14), by the following iteration
expressions:

where the P2I's are the order parameters defined by

P2I= f dQw, q(Q)P2I(cosp) . (3.24)

P cosp) is the lth-order Legendre polynomial. To get the
results of Sec. III B these parameters were evaluated by us-
ing a suitable integration routine. The numerical accura-
c of this rocedure was then checked by comparison wit
Zannoni's recursion method. It was assesse a e23 that the ac-
curacy dominion o ed

' ' f the former method is wider than that
of the latter one, where both methods are in a good agree-
ment.

Note that Eq. (3.21) suggest the alternative approach to
the EPR spectrum consisting of expressing the line shape

h t'on of three continued fractions, one for
o E . 3.21).each of the three contributions to the s„'s of Eq.

This means that
3

I( n)i= g I;(rgJ), (3.25)

where I;(co) is the real part of the Laplace transform of
the correlation function of Eq. (3.11) with the scalar pro-
uct of Eq. (3.9) being replaced by

(& ~&&"'= g f dna(Q, I,S)A(Q, I,S)
fS,IJ
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which leads to
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The corresponding explicit expressions can be found in
dix A. 8 mmetry constraints can signi icantly

d the actual numbers of components [C(n)]I,J o ere uce e ac
of ourevaluated (see Appendix B). The startmg point o

iteration procedure is

(3.19)[C(0) ]ImiJ 5Io5m o5;I . ——
The parameters s„can then simply be obtained from
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~
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By using Eq. (3.16) we arrive at

s„=s„(1)+s„(2)+s„(3),
where
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I
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If we take into account that weq(Q) of Eq. (. (3.10') only de-
pends on the P-Euler angle, we can express the s„(i)'s as

3330 3270 3300 33303P~ 3300
MAGNETIC FIELD (6 )

FIG. 1. Absorption spectra simulations for a nitrox~de probe
with axially symmetric g tensor an yph erfine tensor.
D=D =Di~, r= 3 g~~

—gi o,=D~~, = —,
~

—g, PH /D: P is the Bohr magneton,

Ho ——33006, the static magnetic field. Magnetic parameters are
=2.0027, gz ——2.0075, A

~~

——326, and Aq ——66. P2, is the most
~ ch air of curves involves thesignificant order parameter. ach pa'

same area, whereas for graphical reasons different pairs can in-
volve different areas.
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To get the results of Sec. III 8 we followed both methods.
In the case of fairly short microscopic times we found the
latter method to lead to a faster convergence. This can be
accounted for as follows. In such a physical condition the
spectrum consists of three well distinct line shapes, one for
each continued fraction. A few steps of each continued
fraction are required to clearly identify each component
line shape.

B. Computational results

Figure 1 describes the results obtained by using our
fast-computational algorithm in the free-diffusion case
(P2 ——0) and in the presence of an orientating potential
(P2&0) for several values of the parameter r defined by

(3.27)

10
I

10
I

10
I

10

FIG. 2. Plot of the ratio between Redfield linewidth I ~ and
the exact one I vs (A~~ —A&}/D. ———,low field line;
high field line; —.——., central line.

where Mo is the static magnetic field, P, is the Bohr mag-
neton, D denotes the isotropic diffusion coefficient of the
spin probe under study. (The assumption of isotropy does
not involve any gain in the rapidity of convergence), and

g~~ and gz are the components parallel and perpendicular
to the symmetry axis of the splitting tensor, respectively.
In a sense, the parameter r indicates the degree of non-
Markovness of our system.

Note the deep changes of the line shapes at the onset of
molecular order. This effect becomes less significant as
the parameter r decreases. This is in line with the widely
shared opinion that the non-Markovian system is more
sensitive to the details of microscopic dynamics. We be-
lieve this property to especially be of relevance to study
the EPR line shapes in a largely viscous system such as
polymeric mesophase.

Note also that the line shapes significantly narrow as
the order parameter increases. This has to be traced back
to the fact that the mean squared value of the fluctuations
of the local fields "felt" by the resonanting electronic
spins decreases as the intensity of the orientating field in-
creases. In Table I we report the relevant data on the
computational convergence and execution times corre-
sponding to the cases illustrated in Fig. 1.

We found it to be interesting to compare the weak dif-
fusion region with the Redfield theory. To do that we
evaluated the ratio of the Redfield to the true linewidth
with the parameter r ranging from r=10 to 1. This was
done in both the free relaxation case (P2 ——0) and in the
presence of a strong orientating field (P2 ——0.9). In the ex-
plored region the former case was not found to appreci-
ably deviate from the Redfield regime but for r close to

10, where deviations of a few percent appear. On the
contrary, as pointed out Fig. 2, in the presence of a strong
orientating field a spin probe of stearic kind is found to
significantly deviate from the Redfield regime. Since the
non-Markovian system (far from the Redfield regime) is
most sensitive to the details of the microscopic dynam-
ics, we believe that this region could be significantly af-
fected by corrections to the Favro equation coming from
inertial effects and the nonwhite nature of the stochastic
force. This would make the EPR spectroscopy a remark-
able tool to test the predictions of nonlinear nonequilibri-
um statistical mechanics, according to which these correc-
tions are rendered more considerable by the nonlinear na-
ture of the orientating potentials.

IV. CONCLUDING REMARKS

A major original feature of this paper is its completely
self-contained nature. Our fast-computational algorithm
is based on a theoretical foundation (physical rather than
mathematical), an exhaustive account of which is given in
Sec. II. None of the approaches so far attempted seem
to share this appealing characteristic of our method.

However, even at the mere level of efficiency, our ap-
proach successfully faces the challenge posed by the
methods of other groups. We only need 110 K bytes,
[1K=2'o=1024; 1 byte=8 bits (binary digits)], whereas
260 K bytes are required by Ref. 8. As far as the comput-
er time is concerned (see Table I, which concerns a 600-

TABLE I. This table refers to the cases shown in Fig. 1. r is defined by Eq. (3.27), X, is the
minimum number of steps for the continued-fraction convergence to be attained, and t is the elapsed
computing time in seconds.

P2

0
0.3
0.6
0.9

21
18
18
16

4.30
3.45
3.45
3.10

10
10
10
10

25
24
21
16

6.0
5.12
4.30
3.10

100
100
100
100

32
28
25
19

8.66
6.76
6.0
3.70
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point spectrum), ours seems to be much shorter than that
of Ref. 8 even when taking into account that their

machine is about eighty times slower than our IBM 3033
machine.

APPENDIX A

In this Appendix we shall provide explicit expressions for the recursion formulas of Eq. (3.18). To this aim we need
these preliminary definitions:

A =i (A ~(+2Ag)/3,

8 =i ', (g—
~~

gi)13,—H,
C:i (A —

((
—Ag),

C~—= J d cos8dg Y~' (8,$)I +Y~ 2 (8,$),
Co= f dcos8dg F~' (8,$)1 Y~ (8,P),
Cp= J dcos8dg Yi* (8,$)I+Yt+2 (8,$),
C)o =—C(l 2 I m —1 1)C(l 2 I 0 0)

C(~=C(1 +2,2, 1 m —1,1)C(1+2,2, 1 0 0) f [2(1+2)+ I]/[21+1]j
'~

C,p=C(l —2, 2, l, m —1, 1)C(l —2, 2, 1,0,0) [ [2(l —2)+1]/[21+1]j
'~

Cpp =C(1,2, l, m, O)C(1,2, 1,0,0),
Co~= C(l +2,2, l, m, O)C(l +2,2,1,0,0) j [2(1+2)+1]/[21 + 1]j

'~

Cop =C(l —2,2, l, m, O)C(l —2, 2, 1,0,0) [ [2(l —2)+ 1]/[21 + 1]j '~2,

CM~o=C(I, 2, l, m +1,—1)C(1,2, 1,0,0),
C~&M =C(l +2,2, l, m + 1,—1)C(1+2,2, 1 0,0) f [2(l +2)+ 1]/[21 + 1]j

'~

C~,p=C(l —2, 2, l, m +1,—1)C(l —2,2, 1,0,0) j [2(l —2)+1]/[21+1]j '~

(A 1)

(A2)

(A3)

P, is the Bohr magneton, i =v' —1, Hp is the magnetic field. The symbol Yr ~(8,$) denotes the spherical harmonics.
We follow, furthermore, Rose's notation, according to which C(l, l', I",m, m') denotes the Clebsch-Gordan coefficients.
Note that the quantities defined by (A2) and (A3) refer to the same (generic) pair of the indices I and m and are indepen-
dent of i and j.

We are now in a position to give the relationships connecting the [C(n)] r; Js [here renamed W(l, m, i,j)] to the
[C(n —1)]&~;J s [here renamed W(l, m, i,j)] When explo. ring all the pairs of indices i and jwe get

W(l, m, l, l)=[W'(I+2, m+1, 2, 1)C~&M+ W(l, m+1, 2, 1)CM~p+ W(l —2,m+1, 2, 1)CM&p]D

+[W(l +2,m —1, 1,2)C]M+ W(l, m —1 1 2)Cip+ W(l —2 m —1, 1 2)Cip]( D)—
+2W(1+2 m 1 1)[(C/2+8)CoM+Cp]+2W(I m 1 1)[(C/2+8)Coo —A/2+Co]

+2W(I —2, m, 1, 1 )[(C/2+8)Cop+ CM ],
W(i, m, 1,2)= j [ W(1 +2,m +1,2,2)+ W(I +2,m +1,1, 1)]CM&M+ [W(l, m + 1,2,2)+ W(i, m +1,1, 1)]CM &p

+ [W(I —2, m +1,2,2)+ W(I —2, m +1,1, 1)]CM)p jD

+[W(1+2,m —1, 1,3)C&~+ W(l, m —1, 1,3)C&p+ W(l —2,m —1, 1,3)C&p]( D)—
+ W(l —2, m, 1,2)[(28 +C/2)Cpp+2CM ]+W(l, m, 1,2)[(28 +C/2)Cpo —A /2+2Cp]

+ W(l +2 m 1 2)[(28 +C/2)CoM+2Cp]

W(l, m, 1,3)= [ [ W(1 +2,m + 1,1,2)+ W(l +2,m + 1,2, 3)]C~&M+ [W(l, m +1,1,2)+ W(l, m + 1,2, 3)]CM ]p

+ [W(l —2, m +1,1,2)+ W(l —2,m + 1,2, 3)]CM ~p jD+ W(1 —2, m, 1,3)(2BCpp+2C~)
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+ W(l, m, 1,3)(28cpp+2cp)+ W(I+2, m, 1,3)(28cpM+2cp),

W(l, m, 2, 1)=[W(I+2,m+1, 3, 1)c~~~+ W(l, m +1,3, 1)CM&p+ W(l —2 m + 1 3 1)CMp] D

+ I [W(l +2,m —1,2,2)+ W(l +2,m —1, 1,1)]c)M+[W(l, m —1,2,2)+ W(l, m —1, 1, 1)]c)p

+ [W(l —2, m —1,2,2)+ W(l —2,m —1, 1,1)]c)p]( D)—
+ W(l —2, m, 2, 1)[(28+C/2)cpp+2CM]+ W(l, m, 2, 1)[(28+C/2)Cpp —2/2+2cp]

+ W(1+2,m, 2, 1)[(28+C/2)cpM+2cp],

W(l m, 2, 2) = I [W(I +2,m + 1,3,2)+ W(I +2,m + 1,2, 1)]C~~M + [W(I m + 1 3 2)+ W(l m + 1 2, 1)]c~]p

+ [W(l —2, m + 1 3,2) + W(l —2, m + 1,2, 1 )]CM ip jD

+ I [W(l +2,m —1,2,3)+ W(l +2,m —1, 1,2)]C,M+ [W(l, m —1,2,3)+W(l, m —1, 1,2)]C,p

+[W(1—2,m —1,2, 3)+ W(l —2, m —1, 1,2)]c)p]( D)+2W—(I 2, m, 2—,2)(BCpp+CM)

+2W(I, m, 2, 2)(Bcpp+ Cp)+2W(I+2, m, 2,2)(BCpM+Cp),

W(I, m2, 3)= ( [W(l +2,m + 1,3,3)+ W(l +2,m + 1,2, 2)]CM &~+ [W(l m + 1,3,3)+ W(l, m + 1,2, 2)]CM ~p

+[W(l 2 m +1 3 3)+W(l 2 m +1 2 2)]c M&pID

+[W(l +2 m —1 1 3)C~M+ W(l m —1 1 3)c]p+ W(I —2 m —1 1 3)C}p](—D)

+ W(I —2, m, 2,3)[(28—C/2)cpp+2CM]+ W(l, m, 2, 3)[(28 —C/2)cpp+A/2+2cp]

+ W(I +2,m, 2, 3)[(28—C/2)cp~+2cp],

W(I, m, 3, 1)= I [W(l +2,m —1,2, 1)+W(l +2,m —1,3,2)]c&M+ [W(I, m —1,2, 1)+W(l, m —1,3,2)]c&p

+ [W(l —2 m —1,2, 1)+W(1 —2, m —1 3,2)]cipI( —D)+2W(l —2 m, 3, 1 )(Bcpp+ C~ )

+2W(l, m, 3, 1)(Bcpp+ Cp)+2W(I +2,m, 3, 1)(BCp~+Cp),

W(l, m, 3,2)=[W(l+2, m +1,3, 1)c~&~+W(l, m +1,3, 1)CM&p+ W(l —2 m +1 3 1)CM~p]D

+ I [W(l +2,m —1,2,2)+ W(l +2,m —1,3,3)]c)M+[ W(l, m —1,2,2)+ W(l, m —1,3,3)]c)p

+[W(l —2, m —1,2,2)+ W(l —2, m —1,3,3)]c)p]( D)—
+ W(l —2 m 3 2)[(28 —C/2)cpp+ 2C~ j + W( I m 3 2)[(28 C/2)Cpp +2 /2+ 2cp j

+ W(I +2,m, 3,2)[(28 —C/2)cpM+2cp],

W(l, m, 3,3)=[W(I +2, m + 1,3,2)CM &I+ W(l, m +1,3,2)CM &p+ W(l —2 m +1,3,2)cmlp]D

+ [W(l +2, m —1,2, 3)c&~+ W(l, m —1,2, 3)c&p+ W(l —2, m —1,2, 3)c&z]( D)—
+ W(1 —2, m, 3,3)[(28 —C)cpp+2C~]+ W(l, m, 3,3)[(28—C)Cpp+A +2Cp]

+ W(I +2,m, 3,3)[(28—C)cp~+2cp] .

APPENDIX 8

As stressed in Sec. III A, a basic step of our approach is
to determine

" += X [C(n)]imp&2r,

[see Eq. (3.17)]. For a fixed value of n, the index I ex-
plores all the even values ranging from 0 to 2n and m
should range from I to —l thereby making the dimensions
of C(n) overwhelming.

However, it is possible to show the following.
(i) m ranges from —2 to 2. This can be arrived at by re-

marking that the index m is made to change by the terms
Y2 &I+ and Y2&I of the equation in Ref. 21 and
(I+ )'=(I )'=O (I=1).

(ii) [C(n)]I~J =(—1) [C(n)]~ J;.. This useful rela-
tionship can be obtained by using the operator T defined
as follows:

(B2)

where
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Kit (Q) =(—l ) Y2t (Q),

PAgJ AJg

(83)

(84)

T(W"S+ )T '=W"TS+ T '=W"S+ . (85)

and 1, is the identity operator of the electronic spin space.
Since A, =A „Tcommutes with A, . This leads us to

On the other hand, by applying this transformation to the
right-hand side (rhs) of Eq. (Bl)

i,j,l, m
[C(n)]t~j T[A J Y2t (Q)S+]T '= g [C(n)]t~JAJ;( —l) Y2t ~(Q)S+

g,J, l, m

[C(n)]t,IA; Y2t (Q)S
g,J, l, Ptl

From Eqs. (86), (85), and (Bl) we obtain the useful property (ii).
As a consequence the only independent terms to be determined are Ctp»(n), Ctozz(n), Ct()33(n), Ct, 23(n), Ct ~&z(n), and

Ct2t3(n ).
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