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A variational principle for relativistic magnetohydrodynamics is formulated. As an application,
the properties of small-amplitude waves and their interaction with the mean flow are calculated.
The generation of waves 4y an external current is incorporated into the formalism.

I. INTRODUCTION

It has long been realized that both the equations of hy-
drodynamics' and magnetohydrodynamics can be de-
rived from a variational principle. The specific form of
the action used depends on whether one uses a Lagrangian
or Eulerian coordinate system and the choice of fields to
describe the flow. The use of variational principle is con-
venient for the formulation of local conservation laws as-
sociated with continuous symmetries in the system by
Noether's theorem, e.g., Hill and Soper.

One possibility is the use of Eulerian coordinates with
the "physical" variables such as the fluid velocity v and
density p as fields. The various constraints on the flow
such as conservation of mass or magnetic flux, are then
treated by the method of Lagrangian multipliers. This
makes this particular choice rather cumbersome since it
leads to the appearance of the multipliers in the equation
of motion (Euler-Lagrange equations) which then have to
be eliminated algebraically in favor of the physical vari-
ables (cf. Henyey ).

A second possibility is the use of Lagrangian coordi-
nates (the position of a fluid element at a given coordinate
time, say t =0) as the basic fields, integrating the various
constraint equations explicitly beforehand. ' This pro-
cedure avoids the use of Lagrangian multipliers, and it is
usually a simple matter to transform the resulting equa-
tions of motion to a Eulerian representation. We will
therefore use this method.

In Sec. II the equations of relativistic magnetohydro-
dynamics (MHD) are briefly discussed. In Sec. III the
variational principle is formulated. This is then used in
Sec. IV to derive the propeities of small-amplitude waves
and their interaction with the mean flow, extending the
work of Dewar to the relativistic regime. The generation
of waves by an external current is incorporated into the
formalism.

Although I am not immediately concerned with general
relativistic effects, we will allow for curvilinear coordi-
nates. The metric will have a signature —2, reducing to
diag(1, —1, —1, —1) in Cartesian space-time. The nota-
tion 8 and V' is used to designate partial and covariant
derivatives, respectively. We will use the notation
A.A=A B for the inner product of two four-vectors,
with obvious generalization to contractions between ten-

sors. The metric, as usual, has components g& . The
four-velocity is designated by u, u u =+1.

II. ASSUMPTIONS GF RELATIVISTIC
MAGNETOHYDRODYNAMICS

Here F ~ are the components of the Maxwell tensor and
+ p

= —,
' e ~rsFr the components of its dual.

& prs = ( —g) ' [aPy5] is the completely antisymmetric
Levi-Civiia tensor, where g =deig„. Note that by virtue
of the antisymmetry of F and F it follows that
E.u =B.u =0 so that E and 8 have only three indepen-
dent components.

The current density in a plasma is given by

Here e is the charge density as measured by a comoving
observer, and o. ~ is the conductivity tensor. The usual as-
sumptions of magnetohydrodynamics are quasineutrality
(e=O) and an isotropic medium (o. ~=oog ~), with a con-
ductivity which is infinite (oo~oo). As was shown by
Bekenstein and Oron, ' these assumptions are justified
when o.o—=q, e z/m, is large, where g„m„and ~ are the
electron density, mass, and collision time, respectively,
while at the same time ~„~is small. Here co„ is the elec-
tron gyrofrequency. This last condition ensures that the
gyrotropy of the plasma due to the ambient magnetic field
can be ignored.

The relevant equations for the electromagnetic field
now become

y FP& O (3b)

The first equation ensures that the current density remains

The equations of (general) relativistic magnetohydro-
dynamics have been formulated by Lichnerowicz, Novi-
kov and Thorne, and Bekenstein and Qron. ' Generally,
one can define (covariant) electric and magnetic four-
vectors, which reduce to the electric and magnetic fields
in a comoving frame, by

F~ =F~I3u P

(lb)
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finite and says that the electric field vanishes in the
comoving frame. In the "classical" limit it is just the
well-known magnetohydrodynamic (MHD) condition
E= —c 'v &B. The second equation, which is usually
written in the form V~&F ~~

——0, ensures the conservation
of magnetic flux. This is most readily seen by "inverting"
Eq. (lb) so that it reads (cf. Bekenstein and Oron, ' taking
into account the opposite signature of their metric)

F~~= u~B+ —u~8~ (4)

So, given the four-velocity of a fiuid element, Fq. (3b)
determines the evolution of the magnetic field. This set of
equations replaces the full set of Maxwell's equations. In
particular, note that the current density J does not ap-
pear anywhere in the equations.

III. VARIATIONAL PRINCIPLE:
GENERAL THEORY

AM —— p(x)c —U(p) —— g ~g" F„F13

Hamilton s principle is 5A =0, where the action 3 is
given by

A =fd x v' —g A(x) . (5)

Here d xv' —g is the invariant volume element and A(x)
a scalar, so that A is a scalar and invariant under coordi-
nate transformations. The "Lagrangian density" A con-
sists of a matter part AM and a pure gravitational part AG
(cf. Sopers and Weinberg"). A suitable choice for AM in
magnetohydrodynamics is

(X)
p" (X)

g„„(X)

F„v (X)

p (x)
~(x)

REFERENCE
STATE

ACTUAL
STATE

FIG. 1. Schematic representation of the mapping from the
reference state at some fiducial proper time to the actual state.
The mapping is a one-to-one correspondence, with points con-
nected by Auid-element world-lines.

ment (cf. Fig. 1). The fields X" are Lagrangian labels,
which are carried by the fluid elements, and behave as sca-
lars under coordinate transformations. The world-lines
are parametrized by a parameter A, , so that the four-
velocity at each point is given by

—1/2

u"=—dx" dx «a
dA, dk,

(9)

As I will show below, the matter part of the Lagrangian
density AM in the case of magnetohydrodynamics can al-
ways be represented in the form

A =A (X~;a~~;u~). (10)

%'e also introduce the Eulerian variation 5 at a fixed posi-
tion in space-time and a Lagrangian variation 6 evaluated
at a position following a fluid element along its world-
line. The relation between the two is

= —p(x)c —U(p)+ B B2 1

Sm

where I have used (1) and (4). Here U(p) is a thermo-
dynamic potential from which the proper gas pressure P is
determined by the equation

I=' (7)
lnp

The assumption of isentropic flow (no dissipation) has
been implicitly made [generally, U=U(p, s), with s the
entropy density]. The gravitational part is, as usual, given
by

—U.

e4R
AG ———

16mG
'

where R =R~z is the trace of the Ricci tensor and 6 the
gravitational constant.

Note that, in keeping with our earlier remark, the
current density J does not appear in A, which is a conse-
quence of the fact that there is no irreversible exchange of
energy between the electromagnetic field and the internal
degrees of freedom of the plasma, i.e., the Joule heating
o ~FNEp vanishes because of (3).

Following Dewar, ' I use as the basic matter fields for
the variational principle the position X"=X&(x,A, ) of a
fluid element in space-time at a "reference state" at t =0,
which is mapped to the actual position xI' of a fluid ele-
ment at time t by following the world-line of the fluid ele-

~i'=0 5x"=0 5X"=—M B~" (12)

Using (12) and (9) and the fact that 5 and 8 commute, one
can calculate

5B„X"=B„(5X")= —B„(M B~"),
5u"=h""u V (M„) MV u" —.

(13)

(14)

Here h""=—g" —ut'u" is the projection tensor on a hyper-
plane perpendicular to the four-velocity. Equations (13)
and (14) generalize Dewar's result to curvilinear coordi-
nates in space-time. Note that B~" is a set of four co-
variant vectors, one for each value of p, and not a mixed
tensor, as the notation might suggest at face value.

Using (12)—(14), one can perform the variation M of
the fluid world-lines keeping the inetric g&„ fixed. As-
suming the system to be infinite and the variations Lx to
vanish when ~x

~

~ao, one obtains, after a partial in-
tegration,

5=5+M"V~ .

[A third possible variation is b, =5+1.~, where I.~ is
the Lie derivative along bx (Schutz' ). It corresponds to
the change evaluated following the fluid element with
respect to a coordinate system carried with the fiuid, rath-
er than a fixed system. The definitions of 6 and b, coin-
cide for scalars, but not for vectors or tensors. We will
not use this particular variation here. ]

The definitions of X",6, and 5 immediately imply
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8AM
5A=OJ d xv' —gb,x X" & —gax~ „

8AM—V' u"
Bu"

BAv' —gh" u'—g au~

~AM

au~
(15)

Here I have employed the notation y for 8 y and used V (hx )=B„(bx )+I „~Ax". Since the variation hx is arbi-
trary, one finds a set of Euler-Lagrange equations which describe the MHD flow, and that can be written in a manifestly
covariant form

aA
8 " V„" a(a~~)

8AM RAM—V u" —V h" u"
au~ au~

(16)

Here I have used (1/V —g )8„(&—g ) = I
The fact that AM does not exp/icitly depend on x, and

the action is therefore invariant under an infinitesimal
coordinate transformation corresponding to a translation
x"~x"+en", m&&1, leads by Noether's theorem to the
energy-momentum conservation law

where the energy-momentum tensor (TM )&„is given by

RAM BA~
(T~ P„=8~ h~" ——AMg&„.a(aX ) au

V~(pu") =0, (19)

and the conservation law (3b) for the magnetic flux, ex-
pressing the density p(x) in terms of the density p*(X) in
the reference state and the above fields, and similarly ex-
pressing F" in terms of F +(X).

Defining the rnatter current j&=pu", matter conserva-
tion (19) implies

j"der„=j*~dXg, (20)

where do. is a surface element in the actual state and dX
its image in the reference state: j* is the image of j in the
reference state. Noting that the four-velocity U in the
reference state equals

UA,
u.aX'

[(u.a)X (u.a)X.g*.,(X)]'" ' (21)

it follows immediately that the actual density p can be ex-
pressed as

A. Application to magnetohydrodynamics

We will now apply the general theory developed above
to magnetohydrodynamics. In order to do so, the La-
grangian density AM must be expressed in terms of X",
B~",and u". This can be achieved by formally integrat-
ing the matter-current conservation law

Jp (X)
(22)

[(u.B)x (u B)x'g', (X)]'

Here J=det(B~~), and I have used the fact that der and
dX are related by

g'(X)
g(x)

L„F=d(F u)+(dF). u . (23)

Taking F to be the Faraday two-form and u the four-
velocity, it follows that the Lie derivative I.„Fvanishes
identically. According to the MHD condition (3a), one
has F.u=E:E~dx =0, eli—minating the first term in
(23). The second term vanishes by virtue of dF =ddA =0,
independently of the MHD condition.

This means that the Faraday two-form is Lie dragged
with the fluid. Since the reference state, with
F= ,' F* pdx A dx—~ and the actual state with
F = ,'F»dx" h dx" are—bydefinition connected by world-
lines, this implies that

, F' gx h dx~ =—,F„„dx"A dx ", — (24)

or equivalently,

Fp„(x)=F* p(x)Bqx B~~. (25)

The relations (22) and (25) allow us to express the La-
grangian density AM as a functional of X&, 8+&, and u",
as was asserted above.

dop —— J 'B„x dXg .—g
g', (X) are the components of the metric in the reference
state, and g =det(g*~, ).

The constraint of magnetic-flux conservation is most
conveniently expressed in a coordinate-free fashion using
the theory of differential forms. ' ' To that purpose one
defines as usual the Faraday two-form
F= 2F& dx" hdx . As is well known, the electromagnet-
ic field can be dervied from a vector potential
F„„=BQ„—Bg„concisely expressed as F =dA and
A:—Azdx". We now invoke a general result for the Lie
derivative L„Fof a form F along a vector u =u"8& (see
Schutz )
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Introducing the differential operator

D"„—=8
B(B„X )

—u "h
0'

one can write (18) in the form

(& )" = (D—" g"—)A

Using (12)—(14) (22), and (25), it follows that

D vP PA v &

DP F p
—F gP +F gPp

The definition (6) for AM then immediately yields

(26)

= ——,
' ph" 5g„ (33)

Here I have used the general relation 5V —g= —,&—gg" 5g„,„cf.Weinberg. " With this result, the
relation 5g ~= g "g—~ 5g&„, expression (25) for F&„, and
the definition (6) for AM, it follows immediately that

(34)

with a & the inverse of BpX' so that BpX' a~~ =g r, which
follows straightforwardly from matter conservation, and
writing p = (g &j j~)', it follows that

5p= V"J" g.—pj i%"")5g,.
2p

(TM)" =[pc + U(p)]u"u„Ph", +— F~F—~g",

FI F va .

H
(TM)& = p c+ U(p)+ u"u„P+ ——— h"

87r
" 8~

~

gag
4m

Here I have defined H —= —Ba+ which corresponds to
the magnetic field strength squared in the comoving
frame.

The conservation laws V T=0, V' (pu ) =O, and
V F=0, together with u.B=0, constitute a closed set of
equations for relativistic magnetohydrodynamics. For al-
ternative formulations, the reader is referred to Bekenstein
and Oron. '

B. Variation of the metric

In Sec. III A I have derived the dynamical equations for
the matter by varying the world-lines of the Auid ele-
ments. We will now briefly review the result of varying
the metric, with the matter variables fixed.

generally one can write

6AM Lf6
5A = fd x + 5gp~

5g„ 5g„

where

(31)

Writing (4) in the form F p F~pzsur——B~, and using the
properties of the Levi-Cevita tensor (e.g. , Misner, Thorne,
and Wheeler' ), one can write this in a more transparent
form:

with TM" the matter energy-momentum tensor defined
by (29).

Using the definition of A =g "g""R~& in terms of the
Riemann tensor, one can write for the functional deriva-
tive 5AG/5g„(cf. Weinberg")

LfG (R""——,
' Rg""), (3&)

5gp 16m.G

where R~ is the Ricci tensor. Hamilton's principle with
respect to the arbitrary variation 6g„now yields
Einstein's equations

6A =0= d x R""—2Rg"4 c V —g v

16m 6
8~6

4 TM 5gp. v .
C

(36)

IV. SMALL-AMPLITUDE MHD WAVES

We will now use the Lagrangian formalism to derive
the properties of small-amplitude MHD waves and the in-
teraction between the waves and a suitably defined mean
flow which supports the waves. In the nonrelativistic
case, this was first done in a systematic way by Dewar.
He used the work of Whitham' who showed that in the
WKB approximation, when 1/cuT and 1/kL are small
quantities (co and k are the typical wave frequency and
wave vector; T and I. the typical time and length scales on
which the mean flow varies appreciably), the wave proper-
ties can be derived from a variational principle employing
an action averaged over the phase of the waves.

The starting point is the assumption that it is possible
to divide the motion of a Auid element into a slowly vary-
ing component and a nearly periodic wave train

6AM

5g„ gpv

g AM

~gatv, z
x "=x"+eP,
@=a"e' +c.c.

and similarly for kg/5g& . Using

Ja A~ +@
v' —g

(32) Here e is a dummy parameter which will be set equal to
unity in the end results, and c.c. denotes complex conjuga-
tion. The congruence of world-lines x constitutes the ex-
act motion of the fluid, whereas the congruence of world-
lines x "(A, ) of (fictitious) fluid elements constitute the
"background state, " which evolves according to a self-
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Lp(x) =Ao(x),

L,(x)=(a.gA, +A, ) . (41b)

To get the explicit expressions in terms of the background
fluid variables such as p, B", etc., one must consider the
mapping X~x =x+eg to calculate A& and A2, by expan-
sion of AM(x). This is done in the Appendix. Defining
the wave vector k& by

BS
kp ———

(42)

the result reads

consistent set of dynamical equations which follow from
the variational principle.

The action for the system is expanded in powers of e
(for simplicity we assume Cartesian space-time, limiting
this discussion to special relativity):

A =fd x AM(x)

= fd x J[AO(x)+@A&(x)+e A2(x)+O(e )] . (38)

Here J=det(Bx "/Bx") is the determinant of the transfor-
mation x~x, which is given by

J= 1+mB P'+ —,E [(8 g ) —Bg 8 g'~]+O(e') . (39)

Likewise AM(x) has been expanded in owers of e.
The work of Whitham' and Dewar now states that the

action A can be replaced by the average action (A ) with
( . ) =(1/2~) ds(. - ). Performing the average,

0
one gets

(A ) = fd X(L )(x)=fd x(Lo+e L2) . (40)

Here

Lp ———pe —U(p)+ 8 82 1

Sm
(43a)

pc +P+U)(k u) (~~ ~*L)—p (k~ ~)(k
C)P

(k u ) [(8 a )(8 a*) (8—8 )(aq a*q)]
4m.

(43b)

Here I have used the notation Az =—h ~A~ for any four-
vector A, which satisfies 3~ u =0, and defined

0"=(kq.a)B" (k—8)aj" . (44)

We note here that, since az.u =kz-u =B u =0, the
average Lagrangian (L ) is invariant under the "gauge"
transformation

a.u =0 .

The average Lagrangian (L ) is now to be considered as
a functional:

(L ) =(L )(g~;d~t";ui';ai";a*";S;k„) . (47)

Here X~(x,g) is the mapping from the reference state to
the background state, u" the four-velocity of the fluid ele-
ments in the background state, and a", a*", and 5 are to
be regarded as fields which can be varied independently.

(45)

which corresponds to a relabeling of proper time on the
world-lines of the background fluid elements. This means
that one can always choose a gauge with

A. Properties of the waves

(48)

The properties of the small-amplitude waves follow from the variation of (L ) with respect to a*„(or a&) and S:
Varying a*& yields

BL2 =0.
Ba

This can be written in the form

H ~ (k 8) dP H (k B)(a 8).
pc2+P+U+ (k.u)~ — a~~+ p- + (k~ a)+ —k,"

4m. 4' Bp 4m 4~

1 1-(k u) (8 a)+ (k 8)(ki a) 8"=0 . (49)
4~ 4m

This set of equations determines the wave frequencies
and the polarization characteristics of the wave ampli-
tudes a". Note that there are only three independent
equations (and, therefore, three independent kinds of
waves) since u„(BL2/Ba*„)=0. This can be seen directly
from (49), or can be interpreted as a consequence of
Noether's theorem due to the invariance of (L ) under the
gauge transformation (45). Furthermore, Lz is bilinear in
a and a*, so that a*„(BLz/Ba*„)=L2 ——0. One can show

I

with considerable algebra that this set of equations is
is the order e

perturbation in the energy-momentum tensor
[T""(x)=TO"(x)+eT~" (x)+O(e )] induced by the
waves. This once again proves the equivalence of the
average Lagrangian method with the full dynamics of the
system when the perturbations can be represented as trav-
eling waves.

The three independent wave modes can be projected out
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by contracting (49) with X„=e„„„2u"B O'=Fz„k, k„,
and 8&, the first being orthogonal to the second two. The
resulting equation can be written as a matrix equation
D Z =0, where

(X.a )

(k1.a )

which are the relativistic (proper) fast magnetosound and
the sound speed, respectively, in units of c. If one chooses
the gauge (a.u ) =0, these waves will have their amplitude
a" in the hyperplane containing kz and B.

Varying the phase S(x) of the waves leads to a conser-
vation law for the wave-action current density

(B.a),
D„o 0

(50)
81.2B„N~=0, N~-=

IJ)

(56)

0 D22 D23

D32 D33

2 H 2

D11 —— pc +P+U+ (k u)—
4~

(k B)
4m

The elements of the matrix D are given by

The wave-action current density can be expanded as

an
Bkj

Here I have used that for a frequency A(k1,x) which sat-
isfies the dispersion relation (52), one has L2(Q, k1)=0, so
that for any quantity gr, one has

D22 —pc +P+U+ (k u) + p + k,2 8'
4m. Bp 4m

D23 ——k (k.B),4n. (51)

+
Bg Bg

8
g~+ a

D32 ——p (k B),aI
Bp

D33 —(pc +P + U)(k u )

The dispersion relation corresponds to the requirement
that there are nontrivial solutions of D Z =0:

We also defined the wave-action density in the comoving
frame by

BL,2
N = =e 'u~X" .=

an
=

detD D 1 I (D22D33 D23D32 ) (52)

The solution D~I ——0 corresponds to the Alfven mode,
which has the polarization kz.a =B a =0, and a frequen-
cy Q =ck u in the plasma rest frame given by

1/2
H

v4m pc +P+U+
4~

(53)
The second term in the dispersion relation (52) corre-

sponds to the fast and slow MHD modes:
T" =(D"" g"")(L)—

where

(58)

B. Interaction between the waves and the background

%'e now turn to the question of the interaction between
the waves and the background flow. By Noether's
theorem the invariance of (L ) under the (infinitesimal)
translation x"~x"+d" (no explicit dependence on x) im-
plies the energy-momentum conservation law 8 T" =0,p
with T" being the total energy-momentum tensor of the
system of background flow and waves which is given by

&'=
2 [I'c'pM'+ps'(ck A)']
+ —,

' I[I c P~ +Ps (ck P~) ]
412c2P 2(ck.P )2

I
1/2 (54)

—uI'h~" +k
Bu~

D Pv gv~cT
BX p

DPv+ k v

Bkp
(59)

Here I have defined l = —(k~.kz), the length of the wave
vector squared in a comoving frame, and

1/2

Here I have used the Euler-Lagrange equations (16), (48),
and (56).

This allows one to writeBI' 8
pap+ 4~

H
pe +I'+U+

4m

(55a)
T" =T ~+T

HTgg""= pc'+ U(p)+
Sm.

r

u "u v —I'+
8m.

1/2

(55b)
+PAL V

4m

T~""=—K"k"+D""1.2 .

(60)
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This split up of the total energy-momentum tensor into a
"background part" and a "wave part" is rather arbitrary
and is motivated by the fact that the background part is
unchanged by the presence of the waves. This corre-
sponds to the so-called physical split up as defined by
Dewar. ' Other divisions are, of course, equally valid.
For instance, one could assign the canonical energy-
momentum tensor

BI 2Tc" —= k —I.2g
8k~

to the waves and the remainder of T" to the background.
This arbitrariness is the basis for the well-known
Abrahams-Minkovski controversy about the "correct"
form for the energy-momentum tensor associated with
electromagnetic waves in a medium, ' ' which shows up
here in the MHD limit.

One can associate a ponderomotive force with the waves
to describe their interaction with the background flow as a

I

simple consequence of overall energy-momentum conser-
vation:

~pTBG =fpond ~pTlv (61)

The precise form of the ponderomotive force, of course,
does depend on the particular split up chosen.

Using the relations

D ~p=ph ]',
D I'a~=u~u~a~ —h»a +I ~a~,

D I'n=u uI'n,

D ~ki" king—"—+(k u)(h" u~+h "~u ),

(62)

one gets for the wave part of the energy-momentum tensor
in the gauge a.u =0, taking into account that
L2[Q(k&,B,x,p);k&, B,x,p]=0, and the only dependence
of L2 on the four-velocity is through Q:

T &"=NQ u&u" — h~ +(u&u B'—h "B&+h& B ) + ki g" +—(u "h "+u"h ") lnQ8 0
ax~ c Bkq

(63)

Note that energy density of the waves as measured by a
comoving observer equals 8'=u„T~" u„=NO.

As an example, for Alfven waves the energy-
momentum tensor becomes

T„&"=NQ~ [u&u ——,
' (1 PM )h~'+—Pg "Pg'

—u "p„"—u "pz "] . (64)

Here Q~ and Pz are defined in Eq. (53), choosing the plus
sign in the solution of Qz. (The equivalent tensor with
the minus sign follows by replacing p„by —p„.) pM is
the fast magnetosound velocity defined in (5Sa).

One can always go to a three-vector notation by realiz-
ing that T" can be thought of as being built out of the
following "components" (indices i take the values 1 to 3):

(65)

C. Wave turbulence and wave generation

So far I have assumed essentially monochromatic
waves. All the results derived above can be extended in a
simple manner to the case of wave turbulence where a
wide range of frequencies and wave vectors is present. We
write

g'"=gaie '+c.c.
I

(66)

Here the g& indicates a sum over mode numbers or,

T ——T"J V

where W is the energy density, S is the energy flux 6 is
the momentum flux, and T is the physical stress tensor.

I

equivalently, over initial wave vectors. Expression (42)
generalizes to ki& = —BSI /Bx@. The averaging procedure
used to find the average action (A ) can now be re-
interpreted as an ensemble average with the assumption of
random phases, i.e., (ai"ai ) =ai"a*& 5& &

All the. equa-
tions involving wave quantities derived above remain
valid, provided one includes the subscript I' on each quan-
tity indicating the mode under consideration. For in-
stance, one can write L2 ——g&(Lq)i, and the variation of
this Lagrangian with respect to the phase SI gives the con-
servation of wave action for each model l, analogous to
(56):

Ops" ——0 . (67)

In this section, I will use a "3 + 1"notation rather than
a covariant notation (roman indices run from 1 to 3). The
dispersion relation is now used in the form cu =ck
=co( k, x, t ), and (67) can be written as
dna/dt+(d/dx')[(dpi/Bki')ni] =0. Here I have defined
ni

—=B(Lq)i/Bcoi. Note that ni is not a Lorentz invariant
but the time component of the four-vector
Ni" = [cnI, (BcoI /Bki )ni], where I used (L2)I =0. In
geometrical optics it is customary to define the wave-

action density with respect to the local wave vector k
rather than the mode number, which corresponds to a Eu-
lerian rather than a Lagrangian parametrization in space.
This can be done straightforwardly by defining

nk(x, t) =—gni(x, t)5(k —ki),
I

cf. Katou. ' Using the well-known result

067I Q 867~
k ———

it 8kj Bx~ Bxg

the conservation of wave action becomes
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Bnk
+ — P

9x
BQ)k

Elk
Bk

A =fd x J(Ao(x)+eAi(x)+e &2(x)]

+e(1/c) fd x J, 3 (70)

The total energy-momentum tensor associated with the
ensemble of waves is simply the sum of all contributions
in k space, formally defined as

T„"= f —
4 g(Tg"')15(k —kI)2rr5(ru —~((k(, x, r)) .

(2'�) g

We now turn to the question of wave generation and/or
wave damping. A variational principle, in general, cannot
handle dissipative (irreversible) effects in a system. How-
ever, when the generation or damping of the waves is due
to an "external" current which could, for instance,
describe the resonant generation of waves by a small frac-
tion of the particles in the plasma which are considered as
a separate component in the system, it can be included in
ihe variational principle.

To that purpose, I add an interaction term to the action
(38):

Here the external current density I, is explicitly given by a
superposition of plane waves

J,"(x)= f j,"(q)e
d'q

(2~)
(71)

As usual, 3 =~ o+eA 1+ . . is the vector potential.
The fact that J,(x) is real requires j, ( —q) =j,'(q),
whereas charge conservation BzJ,"=0 implies
q&j,"(q)=0. I will assume that the external current j,(q)
is small in the sense that the change 5' in the wave fre-
quency that it induces is small, i.e.,

~

5'/co
~

&&1. This
means that to lowest order the quantities associated with
the waves, such as the first-order change (F&")~ in the
Maxwell tensor, are unaffected ("rigid") by the presence of
the external current. Performing the variation in the total
action and taking an (ensemble) average of the result
yields for each mode 1 (suppressing the I index)

(5A) =0=fd x ~ hx +g 5a —+ Fq~ * (k) —+c c.5(L)
6X I Ba

+ g5~& + i—F~ a j,* (k)+c.c.
Bx"

Here the random-pha, se approximation was used to calcu-
late (j, a~) and the fact that one locally can always
choose 5= —ik "x&. In this equation I have defined

r

(L ) =Lo+g (L2)I+ —[j,' (k()(A ))(kl)+c.c. j
1

I c

with Lo and L2 given by Eqs. (43a) and (43b) and used the
fact that the perturbing vector potential A &(k) due to the
waves can be expressed in terms of a" and the (unper-
turbed) Maxwell tensor F„„as (A„)~ aF~„e' +c.c., up-—
to an arbitrary of electromagnetic gauge (A„~A„
+ik&g), which does not change the result, since current
requires k„j,~(k) =0. This expression for A

~ can straight-
forwardly bc dcrivcd from thc definition of F in tcI'ms of
A and the perturbation expansion (A4) in the Appendix.
The functional derivative 5(L )/5X is a shorthand nota-
tion for the left-hand side of Eq. (16) with (L ) instead of
AM RIld covRllant dcrlvatlvcs Icplaccd by ordinary dc11va-
tives since I am assuming flat space-time. It corresponds
to the functional derivative with respect to the variation
of the fluid-clement orbits in the background Rnd not to
any variation in x, 6x =0, as the notation might sug-
gest. (This procedure does not introduce any spurious de-
grees of freedom; instead of the four fields g" describing
the waves, there now are the three independent com-
ponents of a", since the invariancc of the equations under
the transformation a"~a"+A,u" is still satisfied as is
demonstrated below, and the phase S.)

In the absence of any external current, the variations in
bx, 5a,", and 5S, yield the Eqs. (i6), (4S), and (56) de-

t

rived in the previous sections. With the current, the last
two equations are modified for each mode I to

F„~, (k()—,Qg~ c
(73a)

j,"(k)=a," (A„)) .

The linear response tensor a," can be expressed in terms
of the conductivity tensor o.,z in ordinary space which
connects the spatial components of the current density to
the wave electric field by j; =o.

;~ EJ:

o k, k,
. c

o.":——i—
COo. k—

PJ /'

c

Q)o-;„k„—
c

2c

Fg a* j, (k—, )+c.c.
Bx"

The first equation describes the dispersion relation of the
MHD waves modified by the external current. Note that
there are still only three independent equations.
u "(BL2/r3a*")=0 because of the MHD condition (3a). In
the classical limit (choo) this set of equations can be
shown to be equivalent to the equations derived by
Akhiezer et a/. ' for this case.

We are interested in the case where the external current
is the linear response of some (external) system to the
wave-electromagnetic field. In that case one can always
write
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It can be easily checked that the response tensor a con-
structed in this way satisfies k a" =a""k =0 which
guarantees charge conservation and the invariance of the
current with respect to gauge transformations of the vec-
tor potential. The generation of waves is due to the Her-
mitian part o. ;J—:—,(a;f+cr*/; ) of the conductivity tensor,
and consequently to the anti-Hermitian part
of a"', as follows from its definition. In the following I
will neglect the contribution of the anti-Hermitian part to
the external current, which leads to a small shift in the
real part of the wave frequency. Defining the tensor
M„?,= (i /c)a, 'F„F?„„we can write BL2/Ba*"

H A,=)M pea
Note that u "M@~——M„~u =0 which ensures the invari-

ance of the equations under the gauge transformation
a?'~a@+A,???'. Using the procedure used in (50) project
out three different MHD modes, I now find D Z=iS,
where the column vector S has the components—M ~,a'[X,kz",0]. Here I have used B F?„=0. Since
I assumed the external current to be small, one can expand
this dispersion relation by putting co =~p+i y, with

~
y/co

~
0&& 1 and coo( k, x, t) corresponding to the solution

of the "zero-order" dispersion relation BZ=0. Once the
frequency coo and the corresponding vector Z for all three
modes is determined, the first-order correction due to J,
for each of the modes follows from y[(B/Bazoo)D]Z=S,
which yields

Z.S

D:ZZ8

Bop

r)rTr = gk? F~ a t +C.C. =+2y?kt nt
C j

(78)

V. CONCLUSIONS

In this paper I have formulated a variational principle
for relativistic magnetohydrodynamics from a Lagrangian
point of view. I have employed that variational principle
to calculate the properties of small-amplitude MHD
waves and their interaction with the mean flow. The for-
malism was extended to include the generation of waves
by an "external" current. A simple transformation law
for the Maxwell tensor in MHD was found, linking it to
its values at some initial proper time to the actual value.

The right-hand side of this equation is the mean Lorentz
force density —I/cj, *"(F„)?+c.c. due to the external
current on the system. Here I used Eq. (A4) from the Ap-
pendix, and charge conservation. The energy-momentum
tensor T" is given by the analog of (60),T?'"=Ts ""+T~", with the background part unchanged,
and the wave part is given by T~"
=g& [N?"kt"+D""(L2 )?]. Here I have neglected the
terms due to the external current in T", since they only
enter into the equations as derivatives and are, therefore,
higher-order terms in the %'KB approximation.

The fact that the energy-momentum tensor is no longer
conserved is physically obvious, since the external current
does work on the system, which leads to the nonconserva-
tion of the wave-action current. Mathematically it can be
traced to the explicit dependence on x of the external
current, as given in (71).

Equation (73b) describes the generation of wave quanta
by the external current. This can be most easily seen by
employing the relation

BL,2a ~- =J- = ——E a ~j =iM a*1"g2 pa e pi,C

scop ()+
Ox

BCgp

Bk

Here I have transformed again to Eulerian representation
in wave-number space.

Finally, I write the equation of energy-momentum con-
servation in the case with an external current. The fact
that &L ) does not explicitly depend on x, i.e.,
B&L & B&L) t? B&L &

p
X

and expanding this equation with respect to ~p+iy. To
lowest order one has L, 2

——0, whereas to next order one
finds

?ydL2/dcoo ?yn? =?M „g——a* a (k') .

This allows one to write (73b) in the form
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APPENDIX

We briefly describe the expansion of AM(x) in powers
of e due to the transformation x"=x"+eP, writing

AM(x) =Ao(x)+eA?(x)+e Az(x)+0(e'),

and likewise for all other quantities, e.g.,

p(x ) =pp(x) +Ep?(x)+ e pp(x)+

F„(x)=(Fo)„(x)+~(F?)„„(x)+e'(F?)„(x)+

can be written in the form

This can be most straightforwardly achieved by consid-
ering the mapping X~x to the exact Quid state and the
mapping X~x to the background Quid state and expand-
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ing the first in terms of the latter. The relations (22) and
(25) of the main paper then immediately yield

pl = ph t)pea ~

p2=p( 2 I[(u B)g] —(uu:Bg) +(c).g) +Bg Bg]

—(»:ag)(a g)),

(F„.)i=Fan„~4 —Fx ~t & (A4)

(F„.),=F„,ag'ag +F .a,g'a„P+F„,a„Pa@'" .

Here g have dropped the subscripts 0 on po and (Fp)& .
Making a Taylor expansion of A~(x) as given by (6) with
a tilde substituted on all variables, using (A3) and (A4),
one finds after some algebra, using F„„=e„„zu"B:

&,=[p '+P+U(p)]h t'a.gp+ [B Bt' (B B)h—~~g.g~,4m

&2= —-[P"+F+ U(P)][(u ~g)' —(»:~g)'+(& g)'+(ag:ag) —2(:~g)(a g)] ——,
'
p (h- ag. ) (A5)

[B B& (B B—)h &](d"g+t) P)dd F—„F'„dg"t)~P

Equations (43) of the main paper now follow straight-
forwardly by putting /=ac' +c.c. and averaging over the
phase S, according to Eq. (40) of the main paper. Owing
to the antisymmetry of F&, the last term in A2 vanishes
identicaIly, whereas the second but last term can be elim-

inated using the identity
F ~I&&k, k apa*~+c.c.

= —2Q 0' —2k [B B (B B)h —]a a"
0 is defined by Eq. (44) of the main paper.
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