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Anomalies in chemical equilibria near critical points of dilute solutions
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We show that a recent prediction that the extent of reaction of a very dilute solute near the criti-
cal point of an almost pure solvent will show strong variation with temperature at fixed volume is in

error. We give arguments to show that the behavior is at most weakly singular in the sense of Grif-
fiths and Wheeler, point out the error in the earlier argument, and show that experiments adduced
as evidence for the earlier argument are subject to alternative explanation. We also consider a pre-
diction about the behavior near the critical point of a dissociating solvent.

I. INTRODUCTION

Recently Procaccia and Gitterman' (PG) have argued
that dramatic anomalies are to be expected in the extent of
reaction of a very dilute solute near the critical point of an
almost pure solvent. They predict (among other things)
that for a dissociation reaction of the type

&2~~2B,

near the liquid-vapor critical point of an inert solvent, the
extent of reaction will vary rapidly as the temperature T
approaches its critical value T, at constant density
Specifically, they predict that on the equilibrium line

Bg' T —Tc
(2)

CBT
V, equil

as T approaches T, along the critical isochore, so long as
the mole fractions of the impurities are small compared to
( T/T, —1)r. Here g is the extent of reaction and
y—= 1.24. They adduce in support of their argument the
experiments of Krichevsky on the equilibrium

N204~~2NO2,

in dilute solutions near the critical point of almost pure
CO2, which show an apparent rapid rise in the extent of
reaction near T, .

We believe that this prediction of PG is in error, and
that the experimental results of Krichevsky can be ex-
plained far more plausibly as the result of critical scatter-
ing from the CO2. Because the error arises from a rather
subtle feature in the behavior of a solute near the critical
point of an almost pure solvent, we believe that it may be
worthwhile to discuss the problem in some detail. In this
paper we present three separate lines of argument leading
to the conclusion that only a weak singularity is to be ex-
pected in the variation of g with T in a closed system at
fixed volume. These are presented in Secs. II—IV. In Sec.
II we give thermodynamic arguments which demonstrate
that a strong divergence is not to be expected. The deriva-
tive of interest is calculated within the context of a specif-
ic statistical-mechanical model in Sec. III. Far from T,
an apparent weak divergence (which may be observable) is
obtained. Near T, this crosses over to a weak, nondiver-

gent singularity. In Sec. IV we show that these results are
quite general and discuss their range of validity. An error
in the reasoning of PG that leads to their conclusion that
a strong divergence should be observed is identified in Sec.
V. An alternative interpretation of Krichevskii's results is
given in Sec. VI. PG also make predictions about deriva-
tives of g with respect to T at fixed pressure. One of these
is also in error and is corrected in Sec. VII.

II. THERMODYNAMIC ANALYSIS

For a system consisting of three species 3, B, and C,
with species A the (inert) solvent and species B and C
( =B2) capable of undergoing the chemical reaction

C~28,
it is convenient to express the thermodynamics in terms of
the composition variables Xz, Nz, and the total number of
8 units

&a, t.t=a+2&c .

It is also convenient to define the variable

N=Xg+%g „,,

which measures the total amount of material present. The
variables Xz, Xz, „and X have the convenient, property
that they are conserved in a system closed with respect to
matter flow, i.e., they are independent of the extent of the
reaction. The variable Nz then measures the extent of re-
action. In terms of these variables, the differential of the
internal energy can be written in the form

dU=TdS —p 1V+p~dN~+ ,' pcdN~ „, Md—N~ (7)—

=TdS —p dV+p~dN+( ,
' pc pg )dNg„, —Wd—Ng, —

1

I a —2Pc (9)

is the affi»ty, ~= —gv;p;, for the reaction —,
' C =B.

It is also convenient to define the (intensive) density vari-
ables

g =Ntt /Ntt, o„r=N~ „,/N, u = V/N,
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which measure in a convenient manner the extent of reac-
tion, the concentration of impurities, and the volume.
Note that in a closed-reaction vessel X always remains
constant regardless of whether or not the volume or extent
of reaction are constant. In terms of these variables, for a
closed system at fixed volume, under chemical equilibri-

um, the derivative considered by PG can be written pre-
cisely as

v, X,~=0

or, equivalently, apart from a constant factor,

this density variable couples to the order parameter even
in the limit P~0. As a consequence, the derivative
should diverge only at most weakly, even when +~0, ac-
cording to GW, not strongly as argued by PG.

The precise nature of the divergence of strong and weak
derivatives depends on the path of approach to the critical
point, but for the case under consideration, the path corre-
sponds to v,g « 1,n =0 being held constant, or
equivalently (not too close to T, ), v, exp(p c/kT), M = 0
being held constant, and for this path the expected
behavior is

(14a)

(12)
BT VN, X . ..M=o

The behavior near a critical point of partial derivatives
like that on the right-hand side of Eq. (11) was considered
some years ago by Griffiths and Wheeler (GW). They
used geometric arguments to arrive at predictions for the
way in which such derivatives should behave on approach
to the critical manifold in multicomponent systems. Simi-
lar conclusions were reached by Saam on the basis of
model scaling functions for the thermodynamic potential.
Both of these approaches are in accord with results from
numerous decorated lattice-gas model calculations.

The approach of GW draws an important distinction
between density variables like (Ãz/V), g, X, and u (ratios
of extensive variables that, in general, take different values
in coexisting phases), and field variables like T, p, pz, and
M that are necessarily equal in coexisting phases. GW
also distinguish between a strong divergence, analogous to
that of the isothermal compressibility of a pure fluid, and
a weak divergence, analogous to that of the constant-
volume heat capacity of a pure fluid. According to GW a
partial derivative of a density with respect to a field is ex-

pected to be strongly divergent on approach to the critical
manifold if only fields are held constant in the derivative,
weakly divergent if one density is held constant, and will
remain bounded if two or more density variables are held
constant. Exceptions to these general predictions can
occur when the coexistence or critical manifolds bear spe-
cial geometric relations to the coordinate axes in the space
of field variables; examples are given in Ref. 4.

Now the partial derivative in Eq. (11) is the derivative
of a density (g) with respect to a field ( T) with one field
(M) and two densities (u and X) held fixed and, therefore,
would be expected to remain bounded at any typical point
on the critical locus in the equilibrium mixture of 8 and C
with A. On this point we are in agreement with PG. For
very small amounts of dissolved impurity, 7 «1, and as
7~0, the constraint /=const=0 becomes the same as

p~/kT
the constraint zc =e =const=0 unless one is ex-
tremely close to the critical point. Thus, for systems with
+&&1, the derivative in Eq. (11) will behave like the
derivative

for a strong divergence, and

T —Tc

Tc

—a

for a weak divergence, where y and a are critical ex-
ponents with values y -=1.24 and a=0. 12. Thus, the pre-
diction of CxW is that the apparent divergence, if observ-
able at all, should be far less dramatic than that predicted
by PG. [Both GW and PG agree that for any X&0, the
derivative in Eq. (11) ultimately approaches a finite limit
as T approaches T, (X) arbitrarily closely. ] While we be-
lieve that the above analysis is correct, the application of
the method of GW requires some care in cases of special
geometries and limits, and so it is reassuring that explicit
statistical-mechanical calculations (described below) yield
the same conclusion.

III. DECORATED-LATTICE MODEL

dw

dT

C

The behavior of a dilute solution near the critical point
of an almost pure solvent was considered some years ago
by one of us using a decorated-lattice model. We con-
cluded there that the activity coefficient of a very dilute
solute could be expressed in the form

Zg'

Xl
PI

where z; and p; are the activity and number density of a
solute, where Ao;, AI;, and A2; are smooth functions of
temperature and the activities, and where p is the number
density of the solvent and m is the symmetrized energy
density of pure solvent. As the activities of the solutes be-
come small, the A; 1 in Eq. (15) become functions of tem-
perature alone. As a consequence, the derivative of y;
with respect to T at fixed density in a very dilute solution
is given by

(13)
(3T v, p&, ~

provided T is not too close to T, . But this derivative still
has one denisty variable held constant (u) and, moreover,

C

where the ellipsis represents the less singular terms. Note
that it is precisely because the density p is held constant
that there is no strongly divergent contrj. bution to this
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derivative.
The activity z; in Eq. (15) is chosen in such a manner

that y;~1 for an ideal infinitely dilute gas. It is related
to the chemical potential by

~ 3/2
2m.m; kT p. /kp

Ql

(22) varies as (2+Br )/C, and there is an apparent
weak divergence that will be visible if 3 is not too large
compared to Br . As T approaches T, (X) closely
enough that DX~ becomes comparable to and eventual-
ly large compared to C, the ratio in (22) saturates at the
finite value 8/DX with the behavior

where q; is the internal partition function of species i,
which is a function of temperature alone. The condition
of chemical equilibrium, M=0 [cf. Eq. (9)], requires that

zg /zc ——K ( T),

8 A C
DX

'+ 8 DX
+

This crossover occurs when, roughly

(24)

where K ( T) is a function of temperature alone that is
determined by the ideal-gas behavior of NO2 and N2O4,
and therefore cannot have any singularity at the critical
point of pure CG2, nor along the critical line of the CG2,
NO2, N2O4 mixture. It follows that in nearly pure CO2 the
equilibrium values of p~ and p~ are governed by

r

x
(19)

2
Pa T)

'Yc
2pc 3 8

2g
2

1 —g

Upon differentiation with respect to T at fixed g and U,

this gives

v, x, w=o
p 1 g) 8 ln[K(T)yc/yg
(2—g') BT v, x,~=o

(20)

For X« 1, Eq. (16) then gives

T TQ
(21)

8 ln[K (r)yc/ys ]
()T

+B'r
(22)

v, z,~=o C+D&&

where 3, B, C, and D are functions of T, pz, and pc that
approach finite nonzero limits on the critical curve, and
where w is a smooth function of T, pz, and pz. The vari-
ation of ~ with T along the path of interest can be ex-
pressed in the form

(23)

where E is a function of T, p&, and p& that approaches a
finite nonzero limit on the critical curve, and the denomi-
nator is the same as in (22). For X„/V constant, X «1,
and T not too close to T, (X), r is a function of T that
varies linearly with T —T, (X). Then the expression in

v,x,M =o

i.e., an apparent weak divergence, in agreement with our
conclusions from the thermodynamic approach.

It should be noted, however, that for any fixed X, no
matter how small, if T approaches arbitrarily close to
T, (X), the fact that the derivative in Eq. (20) is at fixed X
and not fixed zc eventually becomes important, and the
derivative in Eq. (20) remains bounded. Near the critical
locus and for 7 small, the derivative on the right-hand
side of Eq. (20) can be expressed in the form

At this same crossover value of ~, the temperature depen-
dence of r changes, according to (23), so that when
Dgw ~~C, r varies as

Since a is small (about 0.12), we conclude that for X « 1,
the critical locus must be approached extremely closely
before the rounding is observed. Thus, for X « 1, we can
anticipate an apparent weak divergence in (Bg/c}T)„&~
as a function of T until

[T—T, (X)]/T, (X)-X~,

where p is about 7 to 8.
Equation (20) contains explicitly an interesting feature

that is intrinsic to the problem considered here. If for a
given fixed solvent we truly take the limit 7—+0 at fixed
T&T,(X=O), then, from Eq. (19), the equilibrium value
of g will of necessity approach unity, independently of T,
and (Bg/BT)„& ~ must therefore be zero. This is
guaranteed by the factor (1—g) in Eq. (20). However, it
may well be that for an appropriate choice of chemical re-
action and solvent, 7 may be much less than 1 and the ac-
tivities of the solutes may be low enough that the con-
stants A, ; and A2; in Eq. (15) are functions of T alone
(and not also of zs and zc), while g is still substantially
less than unity. It is presumed that this is the case under
consideration. This assumption seems reasonable for the
N204 ——2NO2 equilibrium. Under the conditions at the
critical point of CO2, the ideal-gas equilibrium constant
for the reaction is K(T)-5&(10 mole/cm . For the ex-
periments used by PG the concentrations of NO2 are in
the range of 4 && 10 —10 moles/cm so that
[N2G4]-[NG2] aIld g Is not ldentlcaliy one, wh11e at the
same time, 7-10 « 1.

The fact that (1—g) is proportional to X as X~O, while
the ratio in (22) saturates at a value proportional to X
on the critical locus has the interesting consequence that
( c}g/8 T)„r~ p evaluated on the critical locus remains
nonzero and bounded as X—+0. Of course, the value may
be very large if K(T) is very small. Thus, the limiting
value of (Bg/BT), z ~ p at the pure-solvent critical point
is path dependent, approaching zero along any path on
which X~O first and then T~T, (X=O), but approaching
a nonzero finite constant as +~0 along the critical curve.
Path dependence of thermodynamic quantities is a charac-
teristic feature of the approach to the critical point of a
solvent, as discussed in Ref. 7 and in Sec. V.
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It is interesting to note that the behavior of
(Bg/B T), r ~ o is somewhat different if the reaction
B =C rather than 2B =C is considered. In this case the
ratio analogous to that in Eq. (22) still diverges propor-
tionally to 7 ' along the critical locus, but the prefactor is
no longer proportional to P. As a consequence
(Bg/BT)„r~ o diverges proportionally to X ' as X~O
along the critical curve, but approaches a nonzero finite
limit as X~O with T held constant [&T,(X=O)]. This
limit then diverges weakly as T~T, with +=0.

IV. GENERAL ARGUMENT

Although the decorated-lattice model has certain some-
what artificial features, the conclusion that the activity
coefficient of a dilute species should be a smooth function
of densities, which is the crucial feature of Eq. (15), is
much more general. First note that this is an automatic
consequence of mean-field theories, such as the van der
%"aals equation for mixtures, that express the Helmholtz
free energy as an analytic function of the densities of vari-
ous components and temperature. Thus, these mean-field
theories will predict no "strong" divergence of
(Bg/BT), r ~ o with exponent @=1, but, rather, a com-
pletely nondivergent behavior for this derivative bemuse
these theories do not possess the weak singularity of non-
classical theories. If, indeed, (Bg'/BT)„& ~ 0 were to pos-
sess the apparently strongly divergent character predicted
by PG, it would be expected to be derivable from these
classical theories, and it is not.

Secondly, we note that the potential distribution formu-
lation of statistical mechanics expresses the activity coef-
ficient y; in terms of an average of the potential energy
felt by a test particle of type i through what has come to
be called the Widom relation

and some number of additional operators whose fluctua-
tions remains bounded near the critical point. The argu-
ment would then proceed precisely as for the decorated-
lattice-model case: no strong divergence in
(Bg/BT)„r ~ 0 because the constraint U =const for X && 1

forces the order-parameter to be constant and thereby
suppresses the strong fluctuations.

The argument above, of course, depends very much on
the fact that the potential g is in some sense short ranged
so that the operators in exp( g;/k—T) are local operators.
If f varies on length scales large compared to the correla-
tion length, the average in Eq. (26) will, in general, involve
such operators as the square of the integral of the order
parameter over regions larger than the correlation length.
Such averages vary rapidly with the correlation length.
Once the correlation length is larger than the effective
range of the potential, however, these correlation func-
tions cease to vary rapidly and, in particular, the most
rapidly varying are those described in the general argu-
ment above. For smaH moleeules such as N02 and N2G4
we expect the operators to be local in this sense
throughout the range in which critical divergences are ob-
served.

V. PATH-DEPENDENT LIMIT

If the above arguments are accepted as convincing, then
what is wrong with the argument of PG? The error lies in
a subtle interchange of limits and the rather bizarre and
path-dependent behavior of certain thermodynamic
derivatives at the critical point of a pure solvent. PG ar-
gue, quite correctly, that the behavior of the derivative of
interest depends upon the derivative of the internal energy
with respect to the extent of reaction at constant volume.
In the notation adopted here their Eq. (7) reads

Be

where P; is the potential energy felt by a test particle of
species i due to the other X —1 particles, and the average
is over a canonical ensemble of X —1 particles in which
the Hamiltonian does not contain any interactions with
the test particle. Now if we make the definition of densi-
ties sufficiently general that the short-ranged structure of
the liquid is described by them, then it seems very reason-
able to suppose that the average (e ~" )& ~ can be ex-
pressed as a weighted sum of their average values with
weights that are smooth functions of the field variables.
This is the essence of the result for the decorated-lattice
model. In that model the symmetrized energy density ~
measures the number of empty-filled nearest-neighbor
pairs of cells and gives the essential short-ranged structure
necessary to specify y; once p is given. For a more gen-
eral model we might expect to have to specify the averages
of other operators as well. In general, one would expect to
be able to write the average in Eq. (26) in terms of the
averages of one operator that plays the role of order pa-
rameter (and can be taken to be the solvent density), the
fluctuations in which are strongly divergent as the critical
point is approached, a second operator whose fluctuations
diverge only weakly as the critical point is approached,

(27)

where

and E is the internal energy of the system. They then ob-
serve that (Be/Bg)z-, r can be written in terms of the
derivative of the enthalpy and volume at fixed T,P,J'; in
our notation

(29)

where

(30)

and H is the extensive enthalpy. They argue (correctly)
that each term on the right-hand side is strongly divergent
and (incorrectly) that a cancellation between them is un-
likely. This might seem a strange way to proceed, since it
is somewhat analogous to arguing that C, for a pure fluid
must diverge strongly because it can be written as the
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difference

BP BU
P gT

(31)
lim rim(h~/Tv~) = dp
+~0 CL CL,X=0

nevertheless

(36)

between two strongly divergent quantities. Indeed, the
derivative (Be/Bg)T„r is precisely the sort of derivative
that would be expected to diverge only weakly by the ar-
guments given earlier, and can be seen explicitly to diverge
only weakly using the decorated-lattice-model approach.
However, the argument of PG (although not stated in de-
tail) continues in a seemingly plausible manner. Equation
(29) can be rewritten

Be

Bg ~... 1=(hs ——,hc) —T
BT

I
(UB —

2 Uc),

(32)

where hB, h&, vB, and v& are the partial molar enthalpies
and volumes of B and C:

BH
B ax,

BV
UB =

B TPN„, Nc

Now as 7~0, with T, v fixed at noncritical values,
(Bp/BT), ~r approaches (Bp/BT), for the pure fluid, and
this, in turn, approaches the slope of the pure-fIuid coex-
istence curve (CC) in the P, T plane as the pure-fluid criti-
cal point is approached. On the other hand, it can be
shown" that as the critical point (CP) of a pure solvent is
approached along the critical line (CI.) of the mixture, the
ratio h2/TU2 for a dilute solute approaches the initial
slope of the critical curve projected into the P, T plane.
[Similarly, PC&'s Eq. (9) holds on the critical line. ] Thus, if
we rewrite Eq. (32) in the form,

Be

T,.x

1

hB ——,h~= T(vz ——,
'

v, )
T(vg — Uc )

Bp
0T

it is tempting to argue that, as the critical point of the
pure solvent is approached, (vz ——,

'
vc) diverges strongly

(it does), and the term in square brackets approaches

dp dp
dT cL dT (35)

Since the slope of these two curves is not, in general, iden-
tical, a strong divergence in (Be/Bg) I „& is suggested.

The argument above would be correct if the ratio
h2/TU2 approached a single limiting value independent of
the path of approach to the pure-fluid critical point. This
is not, in fact, the case. This ratio of two diverging quan-
tities approached different limiting values depending upon
the path of approach to the critical point. In fact, it is
fairly easy to show that if one first lets X~O and then ap-
proaches the critical point, the limiting value of both
hB/TvB and hc/Tvc is just the slope of the coexistence
curve for the pure solvent. That is, while

hB

TUB
2

aI B/T
Bl /T

r

c)PB /T
Bp

Bp

g', X,p& /T

Bp

g,x, v

+ Bp BU

U ~~ T BT g'gp /T
(3g)

Now, as +~0 first and then the critical point of the pure
fluid is approached, the limit of (Bp/BT)~ r „ is the
desired quantity while (Bp/Bv)~& T becomes (Bp/Bv)T for
the pure fluid which, in turn, is the reciprocal of a strong-
ly diverging derivative. Thus, if it can be shown that the
limit of (Bv/BT)~ + „Tis, at most, weakly divergent, Eq.
(37) will be established. We recall that, near X=O, p,z
can be expressed as

PB I B +B
+ln +lnyB, (39)

where pB/T is a smooth function of T alone, and yB, as a
function of temperature and density, has the property that
the derivative (By+/BT)„ is, at worst, weakly divergent,
while (By~/Bv)T is finite. Thus, (Bv/BT)~x„~T has, at
most, a weak divergence, and the desired result is estab-
lished. The first limit, Eq. (36), may also be obtained
from Eq. (38) by noting that the ratio of interest is the
derivative of p with respect to T with two densities held
fixed and, therefore, by the arguments of Ref. 4, will be
equal to the slope dp/dT of the critical line all along the
critical linc, Rnd therefore, ln particular, Rs +~0.

It should not be entirely unexpected that certain ther-
modynamic derivatives might approach finite but path-

lim lim(h~/TU~) = dp
CP X~O CC,X=0

and similarly for component C. Now if we wish to exam-
ine the behavior of (Be/Bg')T„x for X«1 and not too
close to T„as stated explicitly by PG, then clearly the
second of these limits is a more appropriate estimate of
the behavior of hz/Tv~. That is, one should examine the
behavior of the quantity of interest in the limit 7~0 as a
function of T and not the behavior of the quantity on the
critical line as a function of X. In this case the quantity in
brackets in Eq. (34) is tending to zero while (U~ ——,vc) is
diverging, and no simple conclusion can be reached con-
cerning the product. Of course, this argument does not
establish the actual behavior of X '(Be/Bg)T, r. It does,
however, show that it cannot be strongly divergent since it
is the product of strongly divergent and vanishing terms.

The argument concerning the second limit, Eq. (37),
proceeds as follows:
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dependent values at the critical point of a pure solvent. It
has been noted both experimentally' and theoretically
that the partial molar enthalpy and volume of the solvent
are dependent upon the path of approach to the critical
point. If this limit is taken in the order +~0 first, they
approach the enthalpy and volume per mole of solvent at
the critical point. If the limit is taken along the critical
locus, however, quite different values are obtained and the
limiting partial molar volume of the solvent can even be
negative. As noted in Sec. III, similar behavior is ob-
served for the derivative (dg/dT)„& ~ p. The error of
PG illustrates the care that must be taken in analyzing the
behavior of dilute solutions near a critical point.

VI. EXPERIMENT

&(ln(1+2a) —2(a —a ')], (40)

where Kz- is the isothermal compressibility, A,o is the
wavelength of the light in Uacuo, n is the index of refrac-
tion, k~ is the Boltzmann's constant, and a=8+/ A,p

where g is the correlation length in the critical mixture.
For the purposes of the crude estimate below we assume
that a && 1, i.e., that the correlation length is not too long,
and that the index of refraction is the value for the red
light used in Ref. 12, 1.106. Each of these approxima-
tions means that we will overestimate the attenuation by a

The experiment of Krickevskii is in apparent contradi-
tion to our theoretical analysis and in apparent agreement
with that of PC&. In this experiment the color of a dilute
solution of N204 and NQz in CO2 was measured by
transmitted light. It is known that N204 is transparent in
the visible and that NO2 absorbs blue light, giving a red
color to NO2, N204 solutions. A color change in the
transmitted light within 0.1 K of the critical point, with a
shift toward the red as T, was approached from above,
was interpreted by Krichevsky as an increase in the NO2
concentration as T~T, . His quoted values of NO2
concentration were used by PG to conclude that
(Bf/BT)„z ~ p diverges strongly.

However, the effect of scattering from the critical fluc-
tuations also yields an effective attenuation which is
strongest in the blue and which leads to a pronounced
change in color of the transmitted light near T„shifting it
toward the red. This shift toward the red of the transmit-
ted light and the corresponding blue color of the scatter-
ing light is readily seen by the eye when observing pure
fluids near the critical point.

The relative importance of these contributions to the at-
tenuation can be estimated from the results of Hall et al."
for NzO and those of White et al. ' and Lunacek et al'
for pure CQ2. From the results of Hall et al. ' we readily
compute that the attenuation coefficient of NO2 gas in the
blue is approximately 2&&10 [CNo /(mole cm )] cm
where CNo is the concentration of NO2. The effective at-

2

tenuation coefficient of a near-critical mixture due to
scattering is

r= Hk& TKrkp [(n 1)(n +2)/3]—
X [ (2a '+2a '+a ')

factor. In particular the a-dependent factor in square
brackets in Eq. (40) decreases as g gets large near the criti-
cal point. However, use of measured values of g for the
pure fluid has little effect. Similarly, the index of refrac-
tion is somewhat smaller in the blue. Use of realistic
values again does not substantially change the result. Sub-
stituting experimentally measured values we find

~- (0.1 cm ')[
~

T —T,
~

/(1 K)]

X [kp/(4500 A)] (41)

Thus, there are wavelength-dependent contributions to
the optical density from the critical scattering that imply
changes in the color of the transmitted light of the right
sign and order of magntiude to account for the apparent
changes in NO2 concentration given by Krichevskii et al.
This conclusion has been confirmed by Morrison' of the
National Bureau of Standards who has made a careful
study of Krichevskii's data using a traveling microscope
and has found that both the magnitude and apparent ex-
ponent are in good agreement with critical scattering.

VII. PREDICTIONS AT CONSTANT PRESSURE

PG also make predictions about the behavior at con-
stant pressure of the extent of the reaction B2~~2B near
the liquid-vapor critical point of an equilibrium mixture
of pure B and 82. They predict that on the equilibrium
line the derivative (dg'/dT)~ ~ p should generally exhibit
a strong divergence at the critical point, varying as

ag T —T.
(42)

Tcp, equil
BT

We agree with the conclusion that this derivative should
diverge strongly. We note however, that the exponent y is
appropriate only if the derivative is examined as the criti-
cal point is approached along a path with one density held
fixed, e.g., along the path U =U, =const. The behavior
along the critical isobar is expected to be described by an
exponent related to the degree of the critical isotherm 6:

—(5—1/5)T —Tcag

W=O
(P =const) (43)

C

8T p ~ 0 Tc
(44)

which is no longer integrable. This leads to the physically
unreasonable conclusion that when g' is extremely small,
g/g, must necessarily change by many orders of magni-

where 5 is about 4.9. The resulting exponent is less than
unity, as is required for the derivative to be integrable
through the transition along the path P =P„M=0.

PG then consider the special limiting case in which the
equilibrium concentration of the dissociation product is
very small. They argue that in this case the divergence be-
comes that of a product of two strongly diverging quanti-
ties and the appropriate exponent is 2y. We believe that
this prediction is in error. We first note that if this con-
clusion were correct, then the appropriate behavior along
the line P =P„M=0 would be given by
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tude as the critical point is approached, where g', is the
value of g at the critical point. The problem again lies in
the subtle behavior of thermodynamic derivatives near the
critical point of an almost pure solvent. The derivative of
interest can be expressed as

P, M=O

p 1 g) r) in(KTyc/y~)
r)T P, M=O

P M=O

( Bh /r) g) z; p

T(~~/ag), , (45)
8 lnU

P, M=O
(46)

PG argue (correctly) that in the limit of nearly pure C the
numerator becomes a strongly divergent quantity near (but
not too near) the critical point. What they fail to notice is
that in the same limit the denominator, which is ordinari-
ly strongly vanishing, becomes nonvanishing. This comes
about because of the dilute-solution limit the chemical po-
tential is dominated by a logarithmic dependence on con-
centration. As a result, the denominator in Eq. (45) is
dominated by a term RT/g until strongly divergent quan-
tities become comparable to this term; i.e., precisely over
the range in which the numerator is apparently strongly
divergent. As a consequence, even in the dilute-solution
hmit (Qg/QT)p ~ will exhibit only a simple strong diver-

gence, and this will be scaled by an amplitude g coming
from the denominator of Eq. (45). Equation (19) can be

adapted to the present case by setting 7= 1 and differen-
tiating with respect to T at fixed I' and M=O. The result

Both terms in square brackets will contribute simple
strong divergence as the critical point is approached re-
gardless of whether g is close to 0 or 1, or not.

VIII. CGNCLUSII
Interesting anomalies occur in the temperature depen-

dence of chemical equilibria near critical points of fluid
mixtures. Care is needed in the analysis of these
anomalies in very dilute solution because of the competi-
tion between singularities due to the critical point and
singularities due to the ideal dilute-solution behavior of
the chemical potential.
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