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A new variational approach is proposed for the study of the many-body problem with the purpose
of combining the advantages of perturbation-theoretic and variational approaches, while avoiding
their disadvantages. A trial wave function is constructed so that a general expansion for the expec-
tation value of an arbitrary physical quantity can be derived. Each term in the expansion can be
calculated with the use of the techniques of Feynman diagrams, but in contrast with usual
perturbation-theoretic approaches, every term in the expansion always converges. The procedure
for applying the method to real systems is illustrated by a calculation of the ground-state energy of

the electron gas at high densities.

I. INTRODUCTION

In most cases of interest, problems in an interacting
many-particle system cannot be solved exactly. Thus two
approaches have frequently been adopted to study the
properties of a many-body system. One is to employ per-
turbation theory and the other is to make a variational
calculation. Each method has its own advantages as well
as disadvantages. In perturbation treatments, the most
advantageous point is that the higher-order corrections
can be calculated quite systematically by the application
of quantum-field-theoretic methods,' in particluar, the
techniques of Feynman diagrams.? However, one of the
troubles in a perturbation-theoretic calculation is that the
inclusion of higher-order terms does not always lead to an
improvement in the results. We often encounter the situa-
tion where inclusion of the next-order terms leads to a
poorer result. To make matters worse, perturbation
theory itself cannot decide whether or not the next-order
terms should be included. Another trouble is the frequent
appearance of divergences in some terms of the perturba-
tion series. Usually, this kind of divergent series is treated
by an infinite summation, but the validity of the obtained
result is very difficult to justify from the method itself. A
different method of summation of such a formally diver-
gent series generally produces a different answer.

A variational approach is superior to a perturbation-
theoretic approach in several respects. First, the varia-
tional principle can decide which approximation, or which
type of trial wave function should be taken. A trial wave
function providing a lower energy is always considered to
be better. Second, a complication such as the increase in
the number of variational parameters always gives a better
answer, because this makes the energy lower than before.
Third, the variational principle also leads to a definite
statement about the upper limit of the true energy. Such a
limit cannot be obtained in perturbation theory for which
the calculated energy can be either higher or lower than
the true energy. Fourth, even if we take a trial function
having an error of the order of 8, the error of the calculat-
ed energy is small, i.e.,, of order 82. In contrast, in a
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perturbation-theoretic calculation, particularly when the
coupling-constant integration algorithm due to Pauli,
Hellmann, and Feynman is employed,’ the error of the en-
ergy is of order 8.

In spite of such advantages, the variational approach is
less used in the many-body problem than the
perturbation-theoretic approach. There are reasons for
this. In a variational method, one has to choose some spe-
cial form of trial function appropriate to the problem.
Therefore, the first trouble is that a good choice requires
deep physical insight and this is hard to prove. Another
trouble is connected with the first one. When the form of
trial function differs from problem to problem, we cannot
give a general prescription for solving problems in a sys-
tematic way. Lack of such a general prescription makes
calculations so tedious and difficult, especially with the
use of a complicated trial function which many-body sys-
tems usually need, that in most cases, one has to introduce
some further approximations in order to perform the cal-
culations. However, the great advantage of the variational
approach, namely, the existence of the variational upper
bounds, is generally lost if the energy expectation value is
not evaluated exactly. In this respect, the variational ap-
proach suggested by Jastrow* seems to provide a way to
overcome such troubles. His trial function is constructed
from two-particle correlation functions. Many attempts
have already been made along this line, primarily in the
study of the nuclear matter problem.5 However, in the
Jastrow-type formulation, it seems to be quite difficult to
improve trial functions systematically by the inclusion of
three-, four-, and higher-order-particle correlations. Be-
sides, even if we obtain some results with extensive use of
large computers, we cannot usually understand what the
essential physics among many processes is (which may be
described in terms of diagrams in perturbation theory).

Since the perturbation-theoretic and variational ap-
proaches are complementary to each other, we can expect
to obtain a very powerful method for combining these two
approaches. There are two important attempts in this
direction. One is the correlated—basis-function (CBF)
method® and the other is the coupled-cluster formalism
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[or the exp(S) method].” The CBF method is essentially a
perturbation-theoretic approach: A perturbation expan-
sion is developed with a nonorthogonal set of correlated
basis functions (which can be given by a Jastrow-type
variational calculation) in order to improve systematically
on the Jastrow description of the system. The variational
principle cannot be applied to the coupled-cluster formal-
ism, either. The wave function of the ground state | ®,)
is assumed to be exp(S)|0) in the formalism, where S is
an operator to be determined by some integral equation
and |0) is the ground state of the noninteracting system.
Then the ground-state energy is calculated by
(O|H |®0) /{0 ®g), not by (@o|H |Dg)/{Dg| Do),
where H is the Hamiltonian of the system.

Taking these points into account, we propose another
method in the present paper which combines the advan-
tages of perturbation-theoretic and variational approaches.
The present method is based on the variational principle,
in contrast with both the CBF and exp(S) methods. But
this method is so formulated as to avoid the disadvantages
of other variational methods. In particular, this method
can include higher-order effects systematically. It can
also incorporate the techniques of Feynman diagrams for
calculating physical quantities like the total energy. We
also mention that divergences never appear in the calcula-
tion.

As a first example, we treat a homogeneous electron gas
neutralized by a uniform positive background, and consid-
er the system at high densities. Several many-body tech-
niques have been applied to this system®~1° and have al-
ready given a rigorous expression for the correlation ener-
gy per electron €,. The result, first derived by Gell-Mann
and Brueckner, is expressed as!!

€.,=0.0622In7r; —0.0933 4+ O (r;1nr) , (1)

where the energy is in rydbergs and 7, is the parameter re-
lated to the average interparticle distance in units of the
Bohr radius. The same expression is also obtained in the
exp(S) method.!? Variational calculations with simple
Jastrow-type trial function have also been done by many
workers,3~1° but it seems certain that this approach can-
not reproduce Eq. (1). Gaskell!® gave an expression for ¢,
in the high-density limit (7, << 1) as!®
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after an improvement is done with the use of the CBF
method.!’

When we employ our new method, we can obtain €.
easily as

€. =0.0622 In7; —0.0910+ O (71nr,) . (3)

This is a much better result than Eq. (2). By improving
the trial function systematically, we can approach Eq. (1)
more closely.

We describe our method in Sec. II by presenting a trial
wave function and by formulating a prescription to calcu-
late the expectation value of an arbitrary physical opera-
tor. Section III is devoted to the calculation of the corre-
lation energy of the electron gas in the high-density limit.
This illustrates how the formalism of Sec. II is used in an
actual problem. After deriving Eq. (3) by a rigorous treat-
ment of variational calculations, we propose a simplified
variational procedure from a physical consideration. The
procedure treats only a finite number of terms in the ex-
pansion of the energy expectation value, but it gives a very
good result for €.. Systematic inclusion of the higher
order corrections is done with this procedure. In the end
of Sec. III, we show how to take account of collective ex-
citations explicitly in our trial function and also present
how to include the nonlocal effect which is brought about
by the retardation of the effective interaction. In Sec. IV,
we conclude with an outlook for this new method.

II. FORMALISM

A. Generalized linked-cluster theorem

Consider a system of N particles which are contained in
a volume (), interacting with one another through a two-
body potential, and moving in an external potential field.
The Hamiltonian for such a system is written as

H=H0+V, (4)

where H, includes the kinetic energy of the particles and
any external field, and V represents the interaction energy
of tllle particles. Let us consider the following wave func-
tion!8;

€. =0.057In7, —0.0836+O (r,1nr,) , ) o 1 [ n
. 1s - l(po):z—'- EleI(O,—oo) |0) (5a)
and Zabolitzky ' obtained the same coefficient of the Inr, n=0M’ |[=1
term. When we compare Eq. (2) with Eq. (1) at ,=0.1,
the error is 9.2%. The correct Inr; term is obtained only  with U;(0, — o ) defined by
]
(—i) o " 0 " ~ ~
U0, — o)== [ eMdty - [ My TP Pl (62)

where u;’s are arbitrary parameters, € is an infinitesimally small positive quantity, and ¥(z) is defined as

V(t)=exp(iH )V exp(—iHyt) ,

(7)

with some suitably chosen noninteracting Hamiltonian H,, and effective interaction V. The state | 0) is the normalized
ground state of H,; the symbol T and the subscript L represent the T product and the instruction to collect only the

terms described by linked graphs in their ordinary sense.! !

The expectation value of some physical quantity 4 with respect to the wave function (5a) is given by
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(A)Y=(Dy|A | Do) /{ Dy | Dp) - (8)

We first consider the numerator which is given by

n n'
<d>o|A|<I>o>—2 2 ',,< S uUf0,00) | 4| U0, — o) o>_ 9)
n=0n'=0 "N I=1 r=1 :
In deriving Eq. (9), | ®,) was written in a way other than Eq. (5a):
|<1>0>—2n zp,U,ooo) |0>, (5b)
n=0
with U (0, « ) defined by
-1
i © _eu [ ~ ~
U0, c0)= 17 [y ey - [T Mdu Ty - Pl (6b)

and this equation was used for (®;|. In the further reduction of Eq. (9), we classify the contributions of the term

<0

according to the number of U;T and U, which are connected with 4. The simplest contribution is the term in which 4
does not connect with either U;r or Uy. Namely, we obtain the term

n'

2 wrUp(0, — o)
I'=1

n
> U (0,00) | 4
=1

o> (10)

(0|4 |o><o o>. (10"

n
ENIU;T ] [EIJ'I’UI' ]"
1 Iz

The next one is the term in which one U,Jr is connected with 4. Since each term in (3, ,,u,U,T )" is unlinked to the others,
this contribution can be written as

n2u1< ‘U;(O oo)A] >c<0 suui |l [EmUr]"' o>, (10”)
I=1 1 r

where the subscript C means that only connected diagrams should be considered in the evaluation of the expectation
value. Similarly, the contribution in which one U} is connected with A4 is given by
0 n
1S 10| AU, — oo)jo>c<o zy,v,f] (St "
1 r

0> . (10"")
I'=1

When there are mU,T’s and m'U,;’s connected with A4, the contribution obtained is

n! "l & X &
— ; 3 2 E D TR N Y SRRy T
=11 =1

min —m) m'(n'—m’),

1=l

X0 Uf[(0,00) "+ U}l (0,0)4U,, (0,—c0) "+ Uy, (0,—20)|0)c
—m ,
><<0 [zﬂz'Uz']"_m
<

In the evaluation of the connected terms, we should consider only such terms in which each U T (U) is linked to other
U™s (U7s) after it is connected with A and/or U’s (U™s). This situation is shown schematically in Fig. 1.
Substituting terms (10')—(10"") into Eq. (9) and arranging each term, we get

(@ | 4 |¢'0>_ 2 2 2

m=0m'=01l=1

n
SuUf o> . (10"
!

s|| M8
Ms

S vy, 1 t...yt
,21#1, B fyy = By (0] Uy, U, AU, U, |0)c

1 =1

[

|8 87050 | w

n
EMIUIT ] [EPI'UI' ]"
1 T

Since the second factor in Eq. (11) is nothing but (®,| ®,), we obtain the result for the expectation value as the first
factor in Eq. (11). This factor can be written in another way to give (4 ) as
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(4)=(0]exp | Zp1070,) [ exp | $usUrt0,— o) | o) - (12)

=1 r=1
Introducing the correlation function C(4 :m,m,, ...;m|,m5,...), defined by
t t 1 2
) ) (OlUlmlemZ...AUTIU;"Z . |0>C
CAm,m,y,...;mi,m5,...)= B (13)
milm,! .- milmsy!---
we can rewrite Eq. (12) further as
) 0 0 © , , m, +m| m,+m),
=3 3 - 3 3 cClA:my,my,..;my,mhy, .. )y tpyt e (14)
my=0my=0  m}{=0mjy=0
|
Although Ul,UZ,... and U,,U,, ... are written in this lq)m)_ 10y— z l)(l V 0)
order in Eq. (13) e should include the contribution of 0 /= S E—
any order of U1,U2, ...and U,,U,, ... in the calculation N
of C(4:m,m,, .. ,m'l,m’z,.. .. 2SS ]l,l’)(l [V [0)I'| V]0) _
Since the result of Eq. (12), or Eq. (14), contains only 2'”119&0 For (By— B\ Ep—E,)

the contribution from connected diagrams, this result may
be classified as a linked-cluster theorem. However, com- (16)

pared to Goldstone’s linked-cluster theorem,!® the present
theorem is more general in the following two aspects.
First, although Eq. (5) is a type of perturbation expansion,
the expansion is not done with respect to the bare interac-
tion ¥V but to some effective interaction V. Second,
Goldstone’s theorem has been derived only in the case of
p;=1, but we have succeeded here in deriving a rigorous
result with any value of u;.

B. Variational procedure

Let us try to solve the system described by H in Eq. (4)
variationally. For the trial function of the ground state,
we consider a series of functions { | ®¥’)}. The function
| @) is defined by Eq. (52) w1th u;=0forl>j+1. The
parameters py, . .., 4; in | ®4’) can be determined by the
varlatlonal procedure. It should be noted that u; in

?f ) thus obtained is generally different from that in
D).

Wlth the use of an excited state |/) of H, which satis-
fies
Ho|)=E|1), (15)

| ®§’) with j =1, for example, can be rewritten as

FIG. 1. Schematlc representatlon of the structure of
(0] U;TI U, AU, Ur,.|0)c. Operator 4 is assumed to

be a two-body mteractlon

When we take p; to be unity and do not consider the
terms higher than the first order, | <I>o”) is reduced to the
trial wave function suggested by Macke. 20 Thus, our
method may be regarded as a direct extension of Macke’s
idea. The important consequence of this extension is that
we can achieve a progressive and systematlc 1mprovement
by changing the trial function from | ®Y’) to | ®Y *).
When we consider the normal state of metals and take
the effective interaction ¥ as a two-body potential, |/) in
Eq. (16) is the state in which two electrons below the Fer-
mi surface are excited above it and leave two holes. We
will denote such a state by (2e-24). Then, the nth order
term in Eq. (16) has n uncorrelated (2e-2h) states. For ex-
ample, |1,I') is the state constructed by two uncorrelated
(2e-2h) states [ and I’. Thus |®f") oontalns only two-
particle correlations. In general, |®§’) can include the
higher-order-particle correlations up to the (j + 1)th order.
If we assume further in Eq. (16) that
@, {I|V|0)/(E;—E,) depends only on the transferred

momentum ¢, i.e.,
il | r7|o>/(E“,_E‘o)=fa, ,

our trial function | ®f) is just the same as that proposed
by Jastrow.* The correlation factor F in his wave function
is related to f 71’ through

F=]]exp ——zfa,exp(iq’-f}j)
L

q
i<j

(17)

(18)

Thus the Jastrow-type approach is included in our formal-
ism as a special case.

The choice of H, o and Vi is at our disposal. In principle,
the most suitable H, and V are determined by the varia-
tional procedure. But m order to obtain a good answer
even with the use of |®}’) and with only a few terms in
Eq. (14), rather deep physical insight is necessary. Gen-
erally speaking, when we treat normal Fermi-liquid sys-
tems, H, may be taken as the kinetic energy of the quasi-
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particles and ¥ as the effective interaction between such
quasiparticles. When we study a condensed phase like a
charge-density-wave or superconducting state, we should
include such information in H, and start from the con-
densed state |0), e.g., a BCS state in superconductivity.*!
In the construction of appropriate forms for H, and V, we
need to include parameters like the effective mass and
strength of the effective interaction. These parameters
will be variational parameters in addition to y;.

|

i)

G4 :wy, .. .,w,)—————f_wwexp(iwltl —€|ty|)dty -

IT

where the operator 4 should be regarded as having a time
of zero, namely, A =A (t =0). This Green’s function can
be calculated with the techniques of Feynman diagrams.
Since the rules for application of Feynman diagrams can
be found in any standard textbook on the many-body
problem,! we will omit the details of the method to calcu-
late G)(4 :wy, . . ., wyp).

In Eq. (19), the parameters w,, . . ., ; are external fre-
quencies and if they are taken to be zero, we obtain the
following relation by comparing the definition of Eq. (13)
with that of Eq. (19):

G)(4:0,0,...,0)

m m ’ ’
1M mi m}

. ’ ’
Cc(4 my,my,....mip,moy,.. .) ,

(20)

where the summation is done under the condition

mi+2my+ - +mi+2my+ - =1 . (21)

Taking u; =1 and ¥ =V and substituting Eq. (20) into Eq.
(14), we find easily that the expansion (14) reduces to that
in the ordinary perturbation-theoretic approach. Howev-
er, it is very important to extract C(A4:m,m,,...;
mi,mj,...) from G; in our formalism. For that pur-
pose, we need to calculate G; as a function of w, and then
to investigate the analytic behavior of this Green’s func-
tion in the w, plane. For example, G,(4 :0;,w,) is com-

posed of  eight parts, G2+ (4 1,0 §+a)2)
GyP 40+ %,wz) GyP' (4 wl,wz) GyP (4
co,,wz) (_) +) (4 a),,wz) - (A wl,w1+w2)

(4 w1+co2,co2) and G “)(_)(A :w1,0,). The part
Gyt (4 w,0,+w,) is ana](ytlc in both upper ; and
(w1+co2) planes, while G57 (4 wl,wz) is analytlc in
both upper @1 and w, planes The part G5V~ (4 :01,0,)
is analytic in upper w; and lower w, pIanes Other parts
can be defined in a similar way. From this analytic
behavior, we obtain
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C. Calculation of the correlation function

The correlation function C(4 :m,m,,...;m7,m5,...)
can be evaluated with the use of quantum-field-theoretic
techniques, because the structure of this function is very
similar to that appearing in the ordinary perturbation-
theoretic approach. Let us first define a causal Green’s
function G;(4 :w,, . .., ®;) as

f:o expliogt;—e ] t | )dt;

X{O|T[V(t;) - V(tPA]|0)c s 19

c(4:0,1,0,...;0,0,0,...)

=Gy 1(4:0,0+0)+G5T ) (4:040,0) ,

C(4:2,0,0,...;0,0,0,...)=G5""*)(4:0,0),
C(4:1,0,0,...;1,0,0,...)
=G5V"74:0,00+ G5 H(4:0,0), (22)
C(4:0,0,0,...;0,1,0,...)
=G5 7(4:0,040)+ G5 7(4:0+0,0)
C(4:0,0,0,...;2,0,0,...)=G5"7(4:0,0) .
It might seem to be confusing to distinguish

GyM P (4 iwy,014w;), or G5P Y (4w, 4wy w,), from
G5 (4:w,,0,), but in actual calculations, it is easy to
clas51fy the contributions of G;(4:w,, . .., ®;). This pro-
cess is probably best illustrated by examples and some of
them will be shown in Sec. III.

III. ELECTRON GAS AT HIGH DENSITIES

A. Preliminaries

For the case of an electron gas in a uniform positive
background, H, and V are given by

+
Hy= E e_..p{ d?,a R (23)
k o
and
y=1= Vgt RN
2 L ki+4d,0)" ¥,-1,0,
q#0 k,, k,71%2
XA g 0% 0 (24)

in second quantization, where €r= K2/2m, V(q)
=47re2/Qq2, o o is the destruction operator of an elec-

tron with momentum k and spin o, and the omission of
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—

the term q=6 is a consequence of charge neutrality of
the system. _ _

Now, let us choose Hy and V. In the normal state, each
electron moves with an effective mass m* instead of a
bare mass m. In the high-density limit, however, m* ap-
proaches m. Thus we will take H|, itself for H,. The nor-
malized ground state |0) is, therefore, a state described
by a plane-wave Slater determinant, which is written in
second quantization as

0= TI H.:z/%-’o|vacuum>, (25)

K| <kp ©

where kr is the Fermi momentum. _

Unlike H~o, we cannot choose V for V. Although there
are two types of excitation in an electron gas, i.e., the indi-
vidual and collective, only the former is included explicit-
ly in our trial function at this stage. For example, the
wave function (16) is composed of uncorrelated (2e-2h)
states. (They are individual excitations.) However, we
cannot neglect the effect of the collective excitation, or
plasmon, in the choice of V. When an electron is excited,
a charge fluctuation is created which induces a simultane-
ous collective response of other electrons. Thus we have
to introduce a screened potential which produces a (2e-2k)
state less frequently than a bare potential. From such a
consideration, we will take V as
]

m m ’ ’
1M mimj

ec(}\"/'l‘l’lu’Z’ .

m1+m2+~“m;+m£+~~~;&0

C(H:ml,mz, .o
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Pt

(26)
with

~ _, 41re
Vid)=——"">5—_.
Y02 1 Agkp)

A is a variational parameter which adjusts the strength of
the coupling between electrons and plasmons; gt is the
Thomas-Fermi screening constant, given by

(27

Gieski=Lar, (28)
T

with a=(4/97)'/3=0.521, and r, =me?/akp.
When the state (25) is used for the evaluation of
(0| H | 0), we obtain easily

et ]_ 2.21 0916

(O|H |0)/ Nm2 3 - (29

in which the first term is the contribution of the kinetic
energy in rydbergs and the second is that of the exchange
energy. The correlation energy is defined as the difference
between the true energy and (O |H |0). Since (O|H |0)
is the first term in the expansion of Eq. (14), the correla-
tion energy in our formalism is given by Eq. (14) with the
omission of the first term, namely,

’ ’
. , , ml—§—m1 m,+m,
amiy,ma, ..Uy :

4
-/’N’"; } (30)

In the following calculations, we consider only those terms in €, which survive as r; approaches zero, because we aim to
obtain the result to the order of the constant term at high densities.

B. Calculation with trial function having two-particle correlations

We first calculate €, with the simplest trial function (16). In this case, the correlation functions we have to calculate

are C(Hy:m,0,0,...;m',0,0,...) and C(V:m,0,0, ...
Coum(V), respectively.

,;m’,0,0,...).

These two will be denoted by C,,,,(H,) and

Let us calculate the first few terms in the expansion (30) by evaluating the Green’s functions G; and G,. The Green’s
function G,(Hy:w) is easily found to vanish from its definition. Thus C;o(Hy)=Cy;(H)=0. The diagrams which con-
tribute to G| (¥ :w) are shown in Figs. 2(a) and 2(b). Figure 2(a) is usually called the direct term and is

Giw(Ve)=23 S V(@Wq) 1

1

=,
q+0 ky, k,
where

A(G;K;,Ky) =€

€+ —€E-
k,+?{+

€— — .
ky+q ky kj

w+ze—A(a;E1,E2)

- pra— , (31
(0—16+A(a;k1,k2)

(32)

In Eq. (31) the integral should be done under the conditions | K, | <kp and | K,+d | >kg. In the following calcula-
tions, we do not write these conditions on k, explicitly, but it should be understood that they always apply. The ex-
change term of Fig. 2(b) can be calculated similarly and the result is

(33)

Gl(b)(VZC!))= z z V(a)i;(ﬁl'f'EZ'*‘a) —
T£0 ¥, K,

o+ie—A(G;K,K,)

1 1
+ r— .
w—ie+A(q;ky,ks)
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In order to obtain Cy(¥) and Cy, (V) from G(V:w), we examine the analytic behavior of the terms in Egs. (31) and
(33). The first term in each equation is analytic in the upper w plane, while the second one is analytic in the lower
plane. Thus Co(¥) and Cy,(V) are, respectively, given by the first and second terms in each equation with ©=0.

A little more complicated calculation is necessary for G,(Hj:w;,®,), but the diagrams to represent this function are
almost the same as those for G(V:w). For example, the direct term for G,(Hy:w,,) is given in Fig. 2(c) and is calcu-
lated by

Gaw(Hoopa)= 3 3 V(GPAGKK,) |- 1___. s L
G40 K, K, ' w1+ie—A(]q;ky, k) w,—ie+A(];k,k,)
_ L 1| (34)
a)l—ie+A(Ei;k1,k2) a)z—l—iE-—A(a;kl,kz)

The analytic behavior of this function shows that both C,o(H) and Cp,(H) vanish, while C,,(H,) is given by Eq. (34)
with w;=w,=0. We also obtain that C(H:0,1,0, .. .;0,0,0,...)=C(H,:0,0,0,...;0,1,0,...)=0.

Since both G(,)(V:w) and G,,)(Hj:w;,,) give the second-order terms with respect to the interaction, they are gath-
ered together to yield the second-order, direct terms in the correlation energy

3 1 1 1
=g [ e[ [ o LM 7 |- (35)
q°+q-(k;+kj) 2 q2+7x;ars

q2+kiars
T

Momenta are measured in units of k. In an analogous way, calculating Gy, (Ho:w;,w,), given by Fig. 2(d), and upon
combining this result with G,)(¥V:@), we obtain the second-order exchange energy :

3 3 1 1
65qufdkfdk2 2u1 R
(k1+k2) q2+k—ar: (q+k1+k2)
T
2 L : : (36)

I 4 4
(G+k,+ k)’ +A—ar, g>+A—ar,
T T
When we use the state |/) in Eq. (16) and take ;= 1, these second-order terms can be rewritten as

me*

2

N

Doy 2OV |DU|VI0) | <1|mo>|2/ (37)

10 E]—EO

If we take V for ¥, Eq. (37) reduces to the result given by an ordinary perturbation approach.® However, it is very im-
portant to distinguish V from ¥ in order to remove the divergence of the integral which ordinary perturbation ap-
proaches suffer from. In the present formalism, the problem of the divergences is solved by the use of V instead of V in
constructing the trial function. Although we have shown this here only in second order, divergence does not appear in
higher order either.

As r; tends to zero, 6(2) and 6},2) have the following forms:

€P=2u,|41n A%ar, +8|—uildmn A%ars

+4 +5] , (38)

and

e =(2u—pDEy , (39)

where 4 =2(1—1n2)/m*=0.0622. 8 was defined by Eq. (23) in Ref. 8 and has the value of —0.0508. E,, was calculat-
ed analytically by Onsager et al.!! and found to be 0.0484.

The only contribution of G,(V:0,®,) which does not vanish at r,=0 is given by the diagram shown in Fig. 2(e), usu-
ally called the ring diagram. This diagram can be calculated rather easily and the result is given by
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1 1
w1+i6—A(a;E1,E2) w1+w2+ie—A(_q';E2,E3)

G, (Viwy,w,)=4 3 V(@V(g)

T#0 K, K, K,

1 1
wr+ie—A(G;K 1, K3) @)+, +ie—A(G;K,

+

~|
w

1 1
wl—i6+A(?1’;E1, Ez) w1+w2—ie+A(a;E2,l—€3)

+

1 1
wy—ie+A(d;K1,K3) 0, +0;—ie+A(G;Ka K3)

+

1 1
01+ie—A(T;X1,K,) 0,—ie+A(G; K, Ks)

— 1 1 . 40)

01—ie+A(d;K1,K,) @, +ie—A(G;K,,Ks)

The analytic behavior of Eq. (40) shows that both C,(¥) and Cp, (V) vanish, while C;(¥) is given by the last two terms
with ;=w,=0. Further, C(V:0,1,0,...;0,0,0,...)and C(V:0,0,0,...;0,1,0,...) can be obtained by the first two and
the next two terms, respectively.

Similarly, we can calculate other correlation functions by evaluating the ring diagrams and obtain the result for

€.(A,uq) as

< 1
]+;2#1 €m |7 4 | (a1)

eMu)=e?+ 3 (—up)e, 1 4
n=1 q2+7k;ars

n=1

where €,[4 (¢)] is defined by
ar. |"7? —n+l
= [dqfd*k, - [dk,A(g)

3
€.[4 (q)]=2m [ =

qz—}—kiars 1_) = s
m >+ G (ki+ky) ¢24+G-(k,+ks)

> L 1 . 42)

q2+a'(in—2+l_€n—l) q2+a'(En—l+En)

The structure of €,(A4) is shown in Fig. 3 by a Goldstone-type diagram. As 7, tends to zero, Eq. (41) has the following
form:

€. (A, py)=2u,(4 lnrs +AIA+C +4)—pi(A Inrg+A4 InA+C +24)

+,§2 " _1 E{;_(_”‘)"D””Léz (2n —1)1(2n ~2) (2x)12"-2“%nD2" ' “
The constant C is given by
C=Ej;+5+4 ln%a——l ]=—0.0901, (44)
and D, is defined by
D,.=—ﬂ%-folx1dx1f01xzdx2 f x,d x1+x2 X2—41—JC3 xn-—-Zixn—l xn_ll—i-xn . (45)

The value D, is just the same as 4 and Dj is calculated 3(1—72/12)/(27?)=0.0270. We have computed other D, and
found that when D, /D, is plotted as a function of n, it is almost constant, as shown in Fig. 4. In particular, when we
calculate €, with an accuracy up to 10™%, we can consider that for n larger than three, D, is given by

=Bn_3D3 , (46)

with £=0.437.
Substituting Eq. (46) into Eq. (43), we finally obtain
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€c(Apy)=p1(2—p)A Inrg+ 2, (1—p XA +C)+C 4+-puiD3 /B+p (2 —p,) |4

4 Ps 11D3

mDs [A  m
B

B |B 2

Buy
In [k— 5

This expression is valid only when
A>5Bu1=0.214u, .
If A is smaller than Bu,/2, Eq. (43) diverges.

2425
_Ds
InA
B
H1 A Bﬂl
2— 2 B n [A+ 47)
(48)

In order to minimize the leading term, i.e., the Inr; term, in Eq. (47), we should take u, to be unity first. Then we op-

timize A to get the minimum of €, as

min[e.(A,1,)]=0.0622 Inr;, —0.0910 ,

(49)

which occurs for A=0.329. Compared with Eq. (1), Eq. (49) has the same Inr; term. The error in the constant term is

only 2.5%. Atr,

=0.1, the difference between Egs. (1) and (49) is less than 1%. We have investigated other possibilities

for 7(q), but the choice of Eq. (27) for 7(q) seems to be the best, as long as ¥ is static and local, i.e., depends only on q.
When ¥ is a nonlocal potential, written as V(k,,k,;k;+q,k,—¢q) in Eq. (26) instead of ¥(§), Eq. (41) is changed

into the following form:

kd ~ me
€A =€+ 2(—ul)E,,+1(V)/ +% S uiEy(V)/ |N , (50)
n=1 n=1
where
GIV(K K.+ G K V(Ko K3+ T3 Ko+ G, K3) - P(Kpy_ Ky +03Kp_14G,Kp)
E,(N=2S 3.3 V(4 )V(kl,k2+q,k1+q,k2—)’V(_>2 3+:1 —)2+Cl 3_'—, =K q;k,_1+9q 51)
_"T Yl T:,, A(a9kl)k2)A(a,k2’k3) A(q;kn—ber)
and
E,N=2"3 3 -+ 3 VK, K+ G K1+ T, K)P(Ky, K+ G5 Ko+, K3) -+ - (K1, K +G3Kp 1+, K,)
I% X,
X V(K Ky 4T3 Ky + 8, K1) /MG K1, KA Ky, K3) - -+ AT K, 1,K,) - (52)

We should also modify €}’ in an appropriate way, but €}’
always tends to E,;, as r; goes to zero. If we include the
k1 and kz dependence of the energy denominator
A(q; k,,k ) in the choice of ¥ to give a Jastrow-type trial
function [Eqgs. (17) and (18)], i.e., if we take

A 2 mA(G;Ky,k,)
V( k ]+a’k2)= 247Te 2 d 22 ’
Q(g*+Agt1E) krq
(53)
the coefficient of the Inr, term is given by
3 1 5
——u——pui, 54
21';'2'u1 17'2M1 (54)

which has the maximum value 0.057 at u,=+. This is
I

€c,L(Apy)=

the result in Eq. (2). Thus, the failure of the Jastrow-type
approach to reproduce the Inr; term is due to the inap-
proprlate treatment of the energy denominator
A(q; kl,k ) which compels us to use an unsuitable nonlo-
cal potential like Eq. (53). It is difficult to give a suitable
nonlocal potential at this stage. This problem will be in-
vestigated in Sec. III E.

C. Variational calculation with a finite number
of terms

Since the minimum value of ¢, is found in the conver-
gent region of A in Eq. (43), we can also obtain the result
of Eq. (49) by the following procedure. First, we truncate
the series in Eq. (43), keeping terms up to the order of p2%,
namely,

2u1(A Inrg+AInA+C +A4)—p}(A4 Inrg+ A4 InA+ C +24)

1 1

L
(= )" Dy 1+ 3,

+2

1
o2 —1 (A1 <, (2n —1)(2n —2)

(2}\.)2" —2 :u'%nDZn . (55)
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FIG. 2. Diagrams for the Green’s functions G(V:w),
G,(Hy:01,0,), and G,(V:w1,;). (a) and (b) are, respectively, the
direct and exchange terms of G(V:w), while (c) and (d) are the
corresponding ones of G,(Hy:w,,w,). (€) provides the only term
for G,(V:w,,®,) which does not vanish at high densities.

FIG. 3. Structure of €,(4) defined in Eq. (42) shown in a
Goldstone-type diagram. Integer n is assumed to be odd here.
Case of even n is given by a similar structure. Only change is
that both (K, K;+9) and (K,, K, +q) pairs are in the same re-
gion of ¢.
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0.4 40y

o

c
2 0.435
IS
o

0.430°

D,=0.0622

FIG. 4. Ratio D, /D, plotted vs n. Integral D, is defined
in Eq. (45).

Next, we find the minimum value of €, ; (A,u,). Then we
can reach Eq. (49) by extrapolation:

min[ec(k,,ul)]=Llim min[e, r (A,u)] . (56)

Physically, €. ; (A,111) is the energy calculated for the case
in which we neglect terms beyond the Lth order in the tri-
al wave function (16). Thus, by making a variational cal-
culation for €., (A,u,), we can obtain the optimized state
under the condition that there are, at most, L uncorrelated
(2e-2h) states.

Now, we apply this procedure to the present problem.
As before, p| can always be determined to be unity in or-
der to minimize the Inr; term. Then, for L =1, we obtain

€ 1(Au=1)=AInr;+AInA+C+D;3/A . (57)

The optimized A is easily found to be D;/4 =0.434 and
the minimum value of €, (A,u,) is given by

min[e, ;(A,u)]=0.0622Inr; —0.0798 . (58)

This is a pretty good result for €,. Compared to Eq. (1),
the error is only 6% at r;=0.1. Thus, this is even better
than Eq. (2).

As L is increased, the minimum value of €, ; decreases,
as shown in Fig. 5 in which the constant term in

-0.070,

-0.075

-0.080

L(),J.(]:T) -Alnrg

-0.085)

€

-0.090)

-0.095

FIG. 5. Constant term in €, (A,u;=1) as a function of A for
several values of L. In the limit of L = 0, €, diverges for A
less than 0.214. Effective potential is a static and local one, de-
fined in Eq. (27). Point indicated by GB is the value obtained by
Gell-Mann and Brueckner.
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€,.(A,u;=1) is plotted as a function of A. The optimized
A also decreases, and the effective potential V approaches
the bare one V. In order to see the physical meaning of
this result, let us go back in Fig. 3. The figure tells us
that a larger number of polarization pairs (E,E+Z}’) is
taken into account in the calculation of €, with the in-
crease of L. Therefore, we need less of the polarization ef-
fect in ¥, which results in the decrease of the optimized A.

The above consideration also clarifies the reason why
Eq. (57) has given such a good result as in Eq. (58) for €.
We have considered only a few terms in obtaining Eq.
(57), but by choosing V appropriately, we have been able
to include most of the physically important effects which
other infinite-order terms produce. The meaing of the
fact is profound. It suggests that we can reduce the N-
body problem to the two-body one, because when we cal-
culate €, (A,u;), we treat the problem as if there were
only two particles in the system. The presence of other
particles is taken into account by the effective medium
which produces an effective potential between the two
particles. The properties of the effective interaction are
determined variationally by minimizing the total energy of

NEW VARIATIONAL APPROACH TO THE MANY-BODY PROBLEM . ..
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the two-body system €, ,(A,u;).

The obtained minimum energy of €., is larger than the
exact value of €, in the present case. At present, it is not
proved mathematically that min(e, ;) is always an upper
bound of the true ground-state energy. However, we can
expect the above statement to be true from the following
consideration. First, the true ground-state energy is al-
ways smaller than lim; _,  min(e, ;). Second, min(e, ) is
expected to be a monotonically decreasing function of L,
because when we increase L, we treat more particles in the
system. Any increase of degrees of freedom always leads
to a decrease of the minimum value of the energy.

From a physical point of view, however, it is more im-
portant that min(e, ;) is found to be a good approximation
to the true value of €, than that min(e. ) is proved to be
an upper bound of €,. This is particularly useful when we
apply this new method to more complicated systems. It is
probably impossible to sum a series like Eq. (43), or even
to obtain the form of higher-order terms in a complicated
system, but we can expect to get a physically meaningful
result by calculating a few terms in the expansion of the
energy expectation value with a suitably chosen V.

D. Inclusion of higher-order corrections

One of the advantages of the present method is that even if we cannot choose the best form of V, we can improve the
result by changing the wave function from | ®Y¥’) to | ®§*!'). The actual calculations can be done by the extension of

the procedure proposed in Sec. IIIC. Namely, we calculate €, ; (A1, . . .

,ﬂj)=22"‘222"' EC(H:ml,.

6c,L()\'nu'1’ e

my my m; mi m) mj

where the following restriction is imposed on the sum:

l<my+ - +mj+mi+ - +mj<2L . (60)

Then we take the limit of min[e,z(A,uy, ..., u;)] as

» ~0.075 — —
: 1
<<

3 :
Yy -
Ey i
o -
WC~
<

E -0.085 ‘ -

1.0 7 T 7 T T T

[

E S

- 0.5

~ .

FIG. 6. Minimum energy of €.;(A,uy, . . ., i), optimized A,
and u, at each step of j. Parameter p, is always unity.

, i), defined by

,
my+m

+m!
compmi, L mi gl /(Nme?/2)

(59)

|
L— 0.

The case of L =1 is shown in Fig. 6. The constant
term in the energy and the optimized values of A, u,, 13,
and u,4 are plotted as a function of j. (As before, u, is al-
ways taken to be unity.) As j is increased, more polariza-
tion effects are included in such a way as shown in Fig. 7
which gives a Goldstone-type diagram for

C(V:O,...,m,:l,...,O;O,...,mp-—:l,...,O).

Thus, we need less of the polarization effect of ¥ and ob-
tain the smaller value for the optimized A with the in-

FIG. 7.

Goldstone-type
.,0;0, ...

diagram for C(V:0,...,my
,mp=1,...,0) which contributes to Eq. (59).

=1,..
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L 6B minle | (A, tyip)] FIG. 10. Schematic represeEtation of the process in Fig. 7 by
. B L introducing a time-dependent V.
T . 3 4 s & 7 e

FIG. 8. Minimum energy of €, plotted vs L. Case of | )
is shown by the solid curve, while that of | &) is by the bro-
ken curve.

crease of j. The parameter u; depends how good V is.
For example, if V takes almost all physically important ef-
fects into account, uy,u3, ... will be very small. In the
case of Fig. 6, V includes less of the polarization effect
with the increase of j, which results in the increase of the
values of p, 3, and p4. Since p; is correlated with A in
this manner, it is quite important not to take u;=1 from
the outset, but to take y; as a variational parameter.

Let us compare Fig. 7 with Fig. 3. Both diagrams treat
the polarization effect, but they are a little different.
There are many polarized pairs at ¢ =0 in Fig. 3, but only
one (2e-2h) state is present at ¢t = t€ in Fig. 7. Thus, even
if we calculate with | ®f’), | ®§), and so on, these wave
functions have only two-particle correlations in the high-

-0.075

(L =01

01 02 03 04 05 06 07 08
A

FIG. 9. Minimum energy €..(A,uy, . .., ;) vs optimized A
for several values of j and L. Solid points are given by calcula-
tions, while the points indicated by open circles are estimated by
extrapolation.

density limit in which only the ring diagrams are impor-
tant. Therefore, the value, obtained as

» 1;)]1=0.0622 Inr; —0.0812 ,

(e1)

corresponds to the case in which we employ a trial func-
tion with the best choice of V, but having only one (2e-2h)
state.

The fact that there is a difference between Egs. (1) and
(61) indicates that many (2e-2h) states are necessary in or-
der to reproduce Eq. (1). Physically, this can be explained
as follows. In the high-density limit, there are many par-
ticles in the range of the interaction, estimated by 1/gtF,
because the ratio of the interparticle spacing to 1/grf is
proportional to 17, and very small for ; << 1. Therefore,
the polarization of many particles will play an important
role in the calculation of €.

As L is increased, we can include larger number of (2e-
2h) states and obtain an improvement of the result for €,.
The case of j =2 is shown in Fig. 8. The minimum values
of €. 1 (A,py,12) are plotted as a function of L by a broken
curve. (A solid curve corresponds to the case of j=1.)
By extrapolation, we can estimate that

min[ € (A,p1,1,2)]=0.0622 Inr; —0.0918 .

lim min[e, (A,uy, - ..

j—oo

(62)

Thus the result of Eq. (49) is improved. The minimum
values of €., (A,uy, ...,u;) are plotted in Fig. 9 as a
function of the optimized A for each j and L. The result
of Eq. (1) seems to be obtained at A=0, j= o, and
L=c.

E. Inclusion of dynamic effects in the effective interaction

The analysis in Sec. III D suggests that Eq. (1) may be
reproduced with the simplest wave function (16), if we can
find a better form of V than Eq. (27). Let us return to
Fig. 7 in order to see what kind of improvement should be
made. At t = —e(t =¢), there are two electron-hole pairs,
but these two are created (annihilated) at different times.
Thus, if we wish to simulate the process in Fig. 7 by using
one effective interaction in each region of ¢, we have to
employ a time-dependent ¥ as shown by a Goldstone-type
diagram in Fig. 10, though, strictly speaking, this diagram
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is not a Goldstone-type diagram, because the interaction
line is not vertical to the time axis.

The advantage in formulation of the whole problem
with the use of Feynman diagrams is that each term in
Eq. (14) can be calculated easily even if ¥V depends on t.
Of course, once ¥ has a dynamic effect, ¥ cannot be writ-
ten in the form of Eq. (26). However, this e~quation is not
necessary for actual calculations, because V appears only

2429

dependent form of V. The only complexity that occurs is
that we have to introduce an external frequency at each
end of V in the diagrams, as shown in Fig. 11 for G, (H,).

Since both ends of each effective interaction lie in the
same region of ¢ in Fig. 10, we will consider only the
terms in which both end points of one effective interaction
are characterized by the same analytic behavior. Then, we
obtain €.(A,u,) in just the same form as in Eq. (50). The

in the calculation of the Green’s functions G; which is ex- gnlz _’differgpce ls that in Eqgs. (51) and (52)

pressed by Feynman diagrams. We need only the w- FV(k,k’'4+q;k+¢,k’) should be replaced by

J
~ > — — — - = © ~ > — - 2 =1 =1

PHEE + G+ E ) =AGK D [, L KK+ K+ G, K i) —— @ FADOAG KD (63)

T [0®+A(G; kP ][+ A(G; k)]

f

with where the branch of tan~'z is between 0 and 7. The pro-
. cess to minimize €.(A,u,) is the same as shown in Sec.
A(q;k)=e?+a,—e? . (64)  IIIC. The constant term in €..(Au;=1) is plotted as a

Therefore, the introduction of dynamic effects does not
produce any new terms in €.(A,u;). However, Eq. (63) is
very important and provides a good prescription to give a
proper nonlocal potential. The nonlocal behavior appear-
ing in Eq. (63) is due to the retarded effects of the interac-
tion.

We have investigated several forms for ¥ and found
that a very good, if not the best, choice for ¥ is given by

V(K,K'+4;K+4,K o)
41e
T Qg+ Agdef(q/2kp,ime /kpq)]
2A(9;K)AG;k )
0+ AGOAGK)
with the random-phase approximation function f(z,iu),
given by??

2

(65)

. 1—z24u? . (1+4z)2+u?
(ziu)=~ | 1+ n
4 ? 4z (1—z)?+u?
~utan_1% , (66)
u+z-—1
W/’
K, Qi+’
k.q AN )+ W)
QoQ,t(Jl HO
K9
]

FIG. 11. Diagram for the Green’s function G,(Hy:w,01).
Effective potential ¥ depends on Q as well as §.

function of A in Fig. 12 for several values of L. By taking
the limit of L = «, we can estimate

min[e, (A,x,)]=0.0622 Inr, —0.0929 , (67)

which occurs at A=0.585. The dynamic interaction like
Eq. (65) gives a weaker screening effect than the static one
[Eq. (27)] for the processes with high . In order to com-
pensate such a situation, a stronger coupling constant A
was necessary in Eq. (67) than that in Eq. (49).

There is still a difference between Egs. (1) and (67), but
we believe that if we can find the form for ¥ for which
min[e€. (A,u;)] reproduces Eq. (61), we can reach Eq. (1).
In the case of ¥ in Eq. (65), we have obtained

min[e, y(A,1;)]=0.0622 Inr, —0.0810 , (68)

~0.070y

-0.075

-0.080]

=1) - A Inrg

€o LAy

~0.085|

-0.090

-0.095

FIG. 12. Constant term in €., (A,u;=1) as a function of A
for several value of L. Effective potential is a nonlocal one,
given by Eq. (65) with Eq. (66).
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and there is a small difference between Eqgs. (61) and (68).
In the rest of this section, we will show that our trial

functions can encompass the states of collective excita-

tions as well as those of individual ones, when dynamic ef-
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have neglected the terms having at least one effective in-
teraction whose end points are characterized by the dif-
ferent analytic behavior. In order to see the physical
meaning of those neglected terms, G(H,), given in Fig.

fects are included in V. In the derivation of Eq. (67), we 11, is calculated as

1

6?4—'&;’ 1

w0 —ie+o+A(G;K) o) +ie—o—A(G;K)

G,(Hoza)l,co',):2

€—
_ k L , (69

0 +ie—wo—AG;K) o) —ie+o+A(G;K)

where the superscripts R refers to the retarded form. The analytic behavior of Eq. (69) indicates that G,(H,) does not
vanish for the process shown in Fig. 13. At ¢ =0 in this diagram, there are one electron-hole pair and the state intro-
duced by Im¥ R, Since the main contribution of Im¥ ® comes from plasmons in the electron gas, it is anticipated that
collective excitations might be included explicitly in | <I>§)”).

In order to show that this is the case, we calculate the kinetic energy of the trial function, defined by

| D)= |0)—p, | plasmon) + - - -

AR
k+—q’,a

where )ua, is the plasmon-electron coupling constant,
.%T_Tf is the creation operator of the plasmon and is as-
sumed to commute with both .o/ To and & %a, and wp is
the plasmon energy. The result is given by

| A | 2A(G;K)
(plasmon | Hy | plasmon) =2 ¥ ¥ —F—7—.
G#0 X [@p +A(6;k)]2
(71)

When we employ the plasmon-pole approximation for
ImV R as

—

—ImVR(K,K+G K+, Ko)=7| Ay | Do—a,),
(72)

and make both w; and ] zero, Eq. (69) is reduced to Eq.
(71).

Similar terms can be obtained in other Green’s func-
tions G;(Hy) and G;(V). Collecting these contributions
and making a variational procedure, we find that the total
energy of the ground state is minimized at p, =0. Thus,
it is verified variationally that we should neglect these

t>0

t=0 —— ¢ o
Ho

t<0

FIG. 13. Schematic representation of the term in G,(H,)
which does not vanish for ¢ dependent V.

t
Ao B0V (70)

contributions in the calculation of €.. The above result
also means that if we operate with '@Ti on | <I>§)” Y, we ob-

tain
B | 9)=0. (73)

This is just the condition which Bohm and Pines® assumed
for the true ground state.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we have proposed a new variational
method which combines two complementary approaches,
namely, perturbation-theoretic and variational, to the
many-body problem. The essential point of the present
method is the use of a variationally determined effective
potential. This is a striking difference from other
methods. We have checked the usefulness of our method
by applying it to the high-density electron gas.

There are many advantages in this new method, but the
following two points are particularly important. First, the
problem of divergences never occurs and we always attack
the problem from the convergent region. Thus, even if we
calculate only a finte number of terms, we can obtain a
physically meaningful result. Second, improvement can
be made by either a better choice of the effective potential,
or the systematic change of the trial function. If a very
good effective potential is found from physical intuition,
we will obtain an excellent result by calculating a very
small number of terms. If it is difficult to find a good ef-
fective potential, we can improve the result gradually and
systematically by increasing the number of terms which
we calculate. By plotting sequential results and employing
extrapolation, we can find the value which a summation
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of an infinite number of terms produces.

It can be seen from the definition of the trial function,
Eq. (5a), that the present method works well for weak
coupling. The applicability of this method to strong cou-
pling needs to be checked in the future. However, we be-
lieve this method to be useful even in the strong-coupling
case. One reason is that if strong-coupling effects can be
expressed by renormalization of the interaction and the
single-particle states, as assumed, for example, in strong-
coupling superconductivity,’ we can take these effects
into account by an appropriate choice of Hy, and V.
Another reason is that Eq. (5a) is an expansion with
respect to 17, not to the bare interaction V. Therefore,
even if V becomes very large, the series in Eq. (5a) will
converge rapidly, when ¥ remains small. This is just the
case of the electron gas. The smallness parameter in the
expansion with respect to V is r, and becomes large for
larger than unity. However, it is something like
rs/(1+r¢) for the expansion with respect to the screened
Coulomb interaction V. This quantity remains less than
unity, even if r; is larger than unity. Consider the ap-
proach due to Jastrow* which has been employed in the
strong-coupling situation.’ The essential physics is to
treat the two-particle correlations properly. Since two-
particle correlations are also treated well in our trial func-
tion | ®{), we can hope that our method will be useful in
problems for which the Jastrow-type approach has been
successful.

A system to which the present method can be applied in
the future is the electron gas at metallic densities. One ad-
vantage of the present method is that we can include the ©
dependence in the effective interaction. In the case of the
Jastrow-type approach, inclusion of the « dependence
would be very difficult. In perturbation-theoretic ap-
proaches, inclusion of the w dependence is also easy, but
the problem is that there is not a guiding principle for
determining the form of the » dependence. At most there
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are a few sum rules to Ee employed. In our method, the
most suitable form of ¥V can be determined by the varia-
tional procedure. Another advantage is that we can inves-
tigate the effect of nonlocality, as partly shown in Sec.
IITE.

Another area for application of the present method is
the condensed phase of the electron gas. The method can
be used to study spin-density-wave and charge-density-
wave states in much the same way as for the normal
phase. The possibility of such phases of the electron gas
has been extensively discussed.?* However, a quantitative
study of correlation in these phases remains a very in-
teresting problem. Another area is superconductivity.
The present author has already pointed out that when the
usual perturbation-theoretic approach is employed in the
solution of the gap equation (with the interaction treated
in the lowest order), the low-density electron gas may be-
come superconducting with the mediation of plasmons.?’
The possibility of superconductivity without mediation
from phonons or excitons should be investigated in more
detail.

Since the present method is related to fundamental
problems in quantum mechanics, its application need not
be restricted to solid-state physics. It may also be applied
to nuclear and elementary-particle physics, e.g., the nu-
clear matter problem.
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