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An Euler equation, consistent with Maxwell’s equations, for describing the optically induced spa-
tial reorientation of the director of a homeotropically oriented nematic liquid crystal is obtained for
the case of normal incidence. The exact solution describing the orientation of the director is ob-
tained. By examining the maximum deformation angle near the threshold, the threshold intensity
and the criterion for the physical parameters that indicate whether the transition is first- or second-
order at the threshold are obtained. The hysteresis accompanying the first-order Freedericksz tran-
sition is discussed. By choosing a compound (PAA, p-azoxyanisole) with suitable material parame-
ters from known nematic liquid crystals, an experiment is proposed to observe, for the first time, a
first-order Freedericksz transition in nematic liquid crystals. The Zel’dovich approach [Sov.
Phys.—JETP 54, 32 (1981)] based on the geometrical-optics approximation is shown to be internally
inconsistent and also inconsistent with the geometrical-optics approximation. The Euler equation
using a self-consistent geometrical-optics approximation is also obtained, and turns out to be identi-
cal to our exact Euler equation, but different from the infinite-plane-wave approximation used by
Durbin et al. [Phys. Rev. Lett. 47, 1411 (1981)]. Detailed comparisons between our approach and
the Durbin approach are made. The dynamics of the transition are discussed and an approximate
solution is given. The transient responses to the laser switch-on and switch-off are shown to have
exponential time dependence. Finally, the effects of surface interactions on the transition are dis-
cussed and the exact solution is given. The procedure for determining the threshold, the saturation,
and the parallel-state-maintenance intensities is given. We also discuss the first-order transition and
propose experimental methods manifesting the effects of surface interaction. The criterion for the
transition to be first order at any intensity is given.
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I. INTRODUCTION

The nonlinear optical properties of liquid crystals in the
isotropic phase have been studied quite extensively in the
past decade.!~® The liquid-crystal phase was considered
by Shelton and Shen who studied the normal and umklapp
optical third-harmonic generation in cholesteric liquid
crystals.»® Their experimental results agreed well with
their theoretical predictions. In 1979, Herman and Serin-
ko suggested that larger optical wave-mixing efficiency
could be obtained in the nematic liquid-crystal (NLC)
phase than in the isotropic phase, if the NLC is main-
tained in an external magnetic field near the Freedericksz
transition.!® The theory has been extended and verified
experimentally by Khoo and Zhuang.!! Recently, the
purely optical-field-induced nonlinear interaction between
a normally incident light wave and a homeotropically
oriented NLC cell has received a great deal of atten-
tion.!>1? Studies have shown that there exists a charac-
teristic threshold intensity below which no molecular
reorientation can be induced. This effect was explained
qualitatively by Zolot’ko et al. in 1980.1* A quantitative
theory of the optically induced Freedericksz transition
was constructed by Zel’dovich, Tabiryan, and Chilingar-
yan'® (hereafter referred to as the Zel’dovich approach),
using the geometrical-optics approximation in 1981.!6
They obtained the solution for the spatial distribution of
the director and predicted that near the threshold the
maximum deformation angle is proportional to the square
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root of the excess of the intensity above the threshold in-
tensity and that for certain NLC’s the Freedericksz transi-
tion is accompanied by hysteresis, which they claimed has
no analog in the case of a static dc field.!>!7 In fact, it
was shown by Deuling and Helfrich!®!® in 1974 that for a
twisted NLC cell and a conducting nematic cell with a
NLC of strong conductive anisotropy and a dielectric an-
isotropy of opposite sign the Freedericksz transition can
be first order and one can obtain hysteresis. In 1981, Dur-
bin, Arakelian, and Shen?® (hereafter referred to as the
Durbin approach) reported the first observation of the op-
tically induced Freedericksz transition in nematic 5CB
(4-cyano-4'-pentylbiphenyl); their results were in quantita-
tive agreement with their theoretical predictions using the
infinite-plane-wave approximation. Also in 1982, Khoo
presented an approximate solution that assumed equal
elastic constant and small optical dielectric anisotro-
py.'>13 Explicit analytic expressions were obtained in the
small-angle linearized approximation. Khoo also made a
quantitative experimental verification of the associated
nonlinear optical processes. It is because of their large an-
isotropies and associated nonlinear effects that NLC’s
have received considerable attention. Experimental results
show that the optical nonlinearity of NLC’s has a value
larger by eight to ten orders of magnitudes than that of
carbon disulfide (CS,) and a name “gigantic optical non-
linearity” (GON) has been given by Zel’dovich to such
large nonlinearities.!>~'%2° While Zel’dovich and Durbin
take these large anisotropies into account, approximations
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were made which do not properly describe the resulting
nonlinear effects. Clearly, an exact theory is desirable for
a rigorous study of the interaction between the optical
field and the NLC.

The study of the action of an optical field on a NLC is
complicated because the field is propagating in an inho-
mogeneous anisotropic medium having a dielectric tensor
depending on both the intensity of the optical field and
the position, and therefore the field and the Poynting vec-
tor vary in space. Moreover, as appreciated by Durbin,
not only the electric energy, but also the magnetic energy,
of the optical field depend upon the orientation of the
NLC molecules. A theory should encompass all of these
aspects of the problem. Zel’dovich!® realized that the
complex amplitude of the electric field is to be determined
in a self-consistent manner from the solution of Maxwell’s
equations. However, in order to obtain the Euler equation
for the director, Zel’dovich found it necessary to assume
that the amplitude of the electric field is fixed when vary-
ing the total free energy. After obtaining the Euler equa-
tion for the director, the geometrical-optics approximation
was then introduced to obtain the final equation describ-
ing the director. Moreover, the magnetic energy of the in-
cident beam was neglected and only the electric energy of
the incident beam was assumed to be responsible for the
molecular reorientation by the optical field. Evidently,
such an approach is internally inconsistent since the time-
averaged electric and magnetic energy densities are equal
even within the accuracy of geometrical-optics approxima-
tion,?! and the amplitudes of the fields are not fixed but
depend on the local director.!*=1622 A different approach
is used by Durbin, in which the total electromagnetic en-
ergy density is written as the ratio of the magnitude of the
Poynting vector to the ray velocity.?’ The infinite-plane-
wave approximation in which the magnitude of the Poynt-
ing vector is assumed to be a constant is then introduced.

In this paper, we present an exact solution, which is
consistent with Maxwell’s equation, for describing the op-
tically induced spatial reorientation of the director of a
homeotropically oriented NLC for the case of normal in-
cidence. By first showing that the time average of the z
component of the Poynting vector is a constant
throughout the medium, the total electromagnetic energy
density can then be expressed as the ratio of the intensity
of the incident field to the phase velocity, where the z axis
is normal to the NLC cell surfaces. This conclusion is
shown to agree with the geometrical-optics approxima-
tion, but disagrees with the infinite-plane-wave approxi-
mation. The Euler equations for the director, using the
exact approach as well as a self-consistent geometrical-
optics approximation, will then be obtained and compared
with those obtained from the Zel’dovich approach and the
Durbin approach. The Euler equations obtained from the
first three approaches turn out to be the same, although
the Zel’dovich approach is shown to be internally incon-
sistent and also inconsistent with the geometrical-optics
approximation. We also obtain the exact solution describ-
ing the orientation of the NLC. In particular, we examine
the maximum deformation angle near the Freedericksz
threshold and obtain the criterion for the optically in-
duced Freedericksz transition to be first order. The cri-
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terion shows that for a NLC with large dielectric and elas-
tic anisotropies, the transition can be first order; the
characteristic of being first order is more favored in the
Durbin approach than this approach. By examining the
material parameters from known NLC’s, we show that the
observation of a first-order Freedericksz transition is pos-
sible in PAA (p-azoxyanisole) in this approach and is pos-
sible in many NLC’s in the Durbin approach. The hys-
teresis accompanying the first-order Freedericksz transi-
tion is shown to be similar to that proposed by Deuling
and Helfrich!®!® for a twisted NLC and a conducting
NLC cell in a static electric field, but is different from
that proposed by Zel’dovich. In our prediction, the rising
and falling transitions exhibit the same deformation for
intensities greater than the rising threshold intensity, and
the changes at both the rising and falling threshold inten-
sities are discontinuous.

We also discuss the dynamics of the transition. The
transient responses to the laser switch-on and switch-off
are shown to have exponential time dependence. Finally,
the effects of interfacial interactions between the NLC
and the surfaces on the molecular reorientation are dis-
cussed and the exact solution is given. The results show
that as the anchoring strength decreases, the threshold in-
tensity will be lower and there will be a saturation intensi-
ty above which the NLC will orient parallel to the sur-
faces. Once the parallel state is attained, the minimum in-
tensity needed to maintain the parallel state can be dif-
ferent from the saturation intensity and can even be less
than the threshold intensity. The criterion for the ex-
istence of the first-order transition at the threshold inten-
sity with finite anchoring is shown to be different from
the case of rigid anchoring strength. By examining the
maintenance intensity as a function of the maximum de-
formation angle, we obtain the general criterion for the ex-
istence of a first-order transition. Using the dependence
of the maximum deformation on the anchoring strength
and the cell thickness, we propose three simple experimen-
tal methods to manifest the effects of finite anchoring on
the transition.

In the following sections we first discuss the exact Euler
equation and the Durbin approach. We then make a de-
tailed  comparison  between the  self-consistent
geometrical-optics approximation and the Zel’dovich ap-
proach in Sec. III. A section on the solution describing
the orientation of the NLC follows, including a discussion
of the first-order transition and the experimental observa-
tion. Finally, the dynamic behavior and the effects of the
interfacial interaction on the transition are discussed.

II. EXACT EULER EQUATION
AND DURBIN APPROACH

Let us consider a homeotropically oriented NLC cell of
thickness d confined between the planes z=0 and z =d of
a Cartesian coordinate system. In the cell, the average
direction of NLC orientation is given by the director A(T).
The NLC director always lies in the xz plane and in the
absence of a light beam, the directors are parallel to the z
axis everywhere. We let 6(z) be the tilt angle between the
director and the z axis. Then the director can be described
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by A(T)=#n(z)=(sind,0,cosf). A harmonic time-
dependent light beam of complex amplitude Eis normally
incident on the NLC medium with the polarization paral-
lel to the plane of incidence, which is the xz plane.

We shall consider the equilibrium orientation of the
director. Then the NLC can be considered as a noncon-
ducting and nondissipative medium where no mechanical
work is done. On taking the time average of the energy
flow

OF op: divS§=0 2.1
Y: +divS=0, (2.1)

we find that
div(S) =0, 2.2)

where F,, is the energy and S=(c/4mEXxH is the
Poynting vector of the optical field. Therefore, we con-
clude that the time average of the z component of the
Poynting vector is a constant throughout the medium. To
show that the magnitude of the Poynting vector is not a
constant, it is sufficient for us to show that S,(z) is not a
constant even for the case of normal incidence. By
Maxwell’s equation curlH = ( l/c)a]_j/at, we obtain D, =0
for a normally incident wave. Consequently, using
]3=?E, we have E,= —(€3/€33)E, and §=Sz(613/€33,
0,1). Since €;3/€;; varies with z, we conclude that S, and
hence S are not constant, but S, is a constant. This con-
clusion agrees with the geometrical-optics approxima-
tion,'> 1423 in which the time average of the z component
of the Poynting vector is a constant, but disagrees with the
infinite-plane-wave approximation in which the time aver-
age of the magnitude of the Poynting vector is a constant.

In general, the wave vector of the fields can be ex-
pressed as wii,/c, where ¢/ |1, | is the phase velocity
and o is the frequency of the incident wave. In terms of
Ti,, the electric and the magnetic energy densities can be
written, respectively, as

F,=E-D/8r=—E-(ii,xH) /87 2.3)

and

F,=B-H/87=H:(5i, XE)/8 . (2.4)
Consequently, F, and F,, are both equal to §'ﬁp /2c, so
that F, and F,, will make equal contributions to the free
energy although the coupling to the director is entirely
through a torque applied by the electric field. The total
electromagnetic energy density can then be written as
Fop =_S'-fi}D /c. Thus, for a normally incident wave,
1, =(0,0,n,) and the total electromagnetic energy density
can be expressed as the ratio of the z component of the
Poynting vector to the phase velocity, i.e., S,n, /c with
n,=ngn, /(nsin’0+n2cos?6)'/? (2.5)
where ny=1"€; and n, =\/Eﬂ are ordinary and extraordi-
nary refractive indices respectively, and €, and € are the
dielectric constants perpendicular and parallel to the local
director at the optical frequency w. Since S;n, =Sn,, the
electromagnetic energy density can also be written as
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Sn, /c, where S is the magnitude of the Poynting vector,
¢ /n, is the ray velocity with

n,=[(€,+€)) /€€ —(€,+€,c08°0) 711712, (2.6)

and €, =€ —€, is the dielectric anisotropy at the optical
frequency w. The last expression is used by Durbin with
the infinite-plane-wave approximation in which (S) is a
constant throughout the medium. It is therefore of in-
terest to compare the solutions obtained by our approach
and that obtained by Durbin. In what follows, we shall
refer to our approach as approach I, and the Durbin ap-
proach as approach II. In approach I, (S, ) was shown to
be constant, whereas in approach II, (S ) is assumed to be
constant, and indeed the constant is the intensity of the in-
cident field, I (if the scattering loss in traversing the medi-
um can be neglected). Thus the total electromagnetic en-
ergy density will be written as

Fo=If(6)/c Q2.7

where #=n, for the approach I and #i=n, for approach
1I.

We shall first consider the static orientation and ignore
the fluctuations of the field and the director. Therefore
the total free energy per unit volume of the NLC can be
written as

F = f t%k”(divr’z‘)z—k koA curli)?

+ thy(Rxcurl?—2a(0) |dr,  @.8)

where k1, k,,, and k33 are the splay, twist, and bend elas-
tic constants. The Euler equation for 7(z) resulting from
the variation of the free energy has the following form in
the stationary case:

2
. d?*o . do
2
(1—k sin 9)-‘12—2——k sinf cosO e ]
In, (B—a)sin6 cosO —0
cks; (1—asin?9)/%(1—Bsin?0)*2

(2.9)

where kK =(k33—k;;)/k3; and a and B are defined in
Table I. The exact solution of the Euler equation (2.9)
will be given in Sec. IV.

III. GEOMETRICAL-OPTICS APPROXIMATIONS
AND ZEL’DOVICH APPROACH

A. Electromagnetic field and energy

We first discuss the solutions of the fields in the
geometrical-optics approximation in which the NLC
medium is assumed to be a slowly varying dielectric medi-
um so that

Ald _1
T | dz V€

is satisfied, where A is the wavelength of the incident
light.

<1 (3.1)
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TABLE 1. A comparison of the different parameters in approaches I and II. In the table, k =(k3;—k;;)/ks3, €, =¢€)—€y,
u=1—e¢,/€) w=1—(€/¢ )2, and the CFFT stands for the criterion for first-order transition at the threshold intensity.

Parameter Approach 1 Approach 1II
172

po no no 1 —u sin%0

(1—u sin%9)!7? 1—w sin’0
I (S;) (s)
a 0 u
B u w
Iy ckss(€)/no€, ) /d) k(| /no€ €, ) /d)?
B (1—k —9u/4)/4 (1—k —%w/4—3u/4)/4
G (11/2—k +9u /44 63u /4—9k%/2—261u?/32) /96 (11/2—k +9%w /4+3u /4+63kw /44 153wu /16

+ 3ku —9k?/2—261w?/32— 1892/32)/96
CFFT kn o6& 9 kn 3ea_ 9la| _,

ks 4 € "4

k33 4 € 4 E”

Since the magnetic anisotropy for a typical NLC is of
the order of 10~7 which is much smaller than the typical
dielectric anisotropy (~10~1), NLC’s can be considered
as nonmagnetic media and the magnetic permeability can
be set to unity throughout all space.?* By eliminating the
magnetic field in the usual manner from Maxwell’s equa-
tions, we obtain

H=——curlE, (3.2)

lkO

and
V?’E—grad divE+k2&-E=0, (3.3)

where kg=w/c. The dielectric tensor of the NLC is given
by24

€;=€8;;+€,n;n; . (3.4
With # =(sin6,0,cos6), € can be written as
€,+¢€,5in’0 0 €,sin0 cosd
€= 0 € 0 (3.5)

€,sinfcosd 0 €, +€,c0s%0

For a normally incident p-polarized wave, E=(EI,O,EZ)
and H=(0,H,,0). Equations (3.2), (3.3), and (3.5) give

1 dE,

T !ko dZ ’
€13

E,=—-—E,,
€33

(3.6)

and E, satisfies the wave equation
d ZE €€

2" +k (2) i}

dz €33

In the geometrical-optics approximation, the fields are
given by?*

(3.7

E,=0.

’

E (z2)=Ae}*exp [ikonone fe3_31/2(z)dz

EZ(Z)Z -—(613/633)Ex N

and

Hy(z)=(none/ 633)Ex . (3.8

With the use of S=(c/4m)EXxH, the time average of the
Poynting vector is given by

. cnon, |4 |?

(s)

€13
—,0,1
€33

8 . (3.9

Thus, the magnitude of the time-averaged Poynting vector
is not a constant since €3 and €33 vary with z. But the
time average of the z component of the Poynting vector,
(S.), is a constant which is just the power flux density I
since at z=0, €,3=0 and (S,)=1. The constant 4 relat-
ing to the amplitude of the electric field can be expressed
in terms of I as follows:

|4 | =8I /cngn, . (3.10)

Equations (3.8) and (3.10) constitute the geometrical-
optics approximation.

We now discuss the electromagnetic energy using the
geometrical-optics approximation. To simplify the discus-
sion, we let

L _ g0
Fel“ 167T61|E| ’

and (3.11)

—Le (7
27 16 °

Then the time-averaged electric energy density in the
NLC is the sum of F,, and F,,. In the geometrical-optics
approximation, F,| and F,, can be written as

F, E)AE*).

Fe1=2_lcnone€;|( 1—wsin%0) /€35,

F,,= —I—noneelu sinzé?/e%2 R
2¢
and (3.12)
F,=In,/2c,

where u =1—¢,/¢) and w=1—(¢,/¢)*. By Eq. (3.8),
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H,=n,E, and the time-averaged magnetic energy density
F,=|H,|*/16m can also be written as F,,=In,/2c.
Therefore, within the accuracy of geometrical optics, the
time-averaged electric and magnetic energy densities are
equal. Such a result is true in general as we have shown in
Sec. I1.?! Consequently, F,, has the form

Fop=1In,/c (3.13)

which is the same as Eq. (2.7) with #=n, that we ob-
tained without the geometrical-optics approximation.
This shows that (S) is not a constant and the infinite-
plane-wave approximation fails even in the slowly varying
media. Consequently, the equation describing the orienta-
tion of the director using the geometrical-optics approxi-
mation is the same as approach L.

B. Euler equation

In the following we discuss the Euler equation for the
director using the self-consistent geometrical-optics ap-
proximation and compare with that obtained by
Zel’dovich. The contributions to the Euler equation from
the F,,; under the geometrical-optics approximation are of
the form

d 8| d¥a)
dz 86" |goa dz 80" |goa
8Fel i
80 GoA= 4_cn0n‘6||€“sm29
XQ2u —1—w sin29)/€§3/2 ’
SF,
8;2 GOA= Z%noneeleasinZG(Z-i-u sin’6)/ex4*
(3.14)
and
SF, I i
_—S;—pt GOA= EgnoneeasanG/E%Z ’

where 60'=06/0z and GOA stands for the geometrical-
optics approximation. The results (3.13) and (3.14) show
that the Euler equation that obtained using the self-
consistent geometrical-optics approximation is the same as
the exact Euler equation that obtained using approach 1.
In the Zel’dovich approach, the magnetic energy density
is assumed not to affect the molecular orientation and the
total electromagnetic energy density is set equal to the
electric energy density. Such an approach is inconsistent
with the geometrical-optics approximation and would
predict only half of the orientational energy of an optical
field. In addition, when varying the free energy, the am-
plitudes of the fields were assumed to be fixed and thereby
the contribution of the electric energy density in the Euler
equation for the director was overestimated by a factor of
2, which then canceled the factor of one-half induced by
erroneously ignoring the contribution from the magnetic
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energy density. As a result, Zel’dovich was able to obtain
the correct Euler equation using the geometrical-optics
approximation.

The contributions from F,, in the Zel’dovich approach
(denoted by subscript Zel) are of the form

d | d 8| _
dZ 89’ Zel_ dz 89’ Zel ’
| _y, (3.15)
89 Zel
and
SF, 1 .
56 |~ Tor Calsin20U | Ex = | E; ")

+cos26(E,EX +EXE,)] .

After obtaining the Euler equation for the director,
Zel’dovich then used the geometrical-optics approxima-
tion, i.e., taking into account Egs. (3.8) and (3.10), and ob-
tained

8F,,
86
From Egs. (3.14)—(3.16), we see that the contributions
from F, and F,, to the Euler equation in the Zel’dovich

approach are different from those of the geometrical-
optics approximation:

I .
=-—non,€, sm29/e§{2 .

(3.16)
za 2C

SF,, 8F,,
=0 —1|
86 |za 86 |Goa
SF,, SF,,
S22 ) (3.17)
660 Zel 89 GOA
8Fm | _ 8Fn _
86 |za 86 |coa

Table II summarizes the results. However, the overall
contributions from F,, have the form

8F o
86

8F,,
Zel 86

Zel

2 S(Fel+F92)
56

GOA

OF o

50 (3.18)

GOA

Therefore, the final Euler equation obtained by Zel’dovich
is the same as the Euler equation obtained under the self-
consistent geometrical-optics approximation, although the
Zel’dovich approach is not internally consistent and also
inconsistent with the geometrical-optics approximation.
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TABLE II. A comparison of the contributions from the electric and magnetic energy densities to the
Euler equation for the director between the self-consistent geometrical-optics approximation and the

Zel’dovich approach. In the table, ' =036/3z and M =(1I /2c)ngn.€, sin20/e§§2=(1/c)(8np /806).

Geometrical-optics

Contribution approximation Zel’dovich approach
d OF opt
_—— 0 0
dz FSB'
551 Me(2u —1—w sin®0) /2€s3 0
F, .
8892 Me (24 u sin®0) /2ex; M
SF,
M/2 M
m M/2 0
86 /
% M M
86

IV. SOLUTION AND HYSTERESIS

A. Exact solution and threshold behavior

Now we consider the solution for the deformation angle
of the NLC described by Eq. (2.9). In this section, rigid
boundary conditions at the two interfaces are always as-
sumed (i.e., 6=0 at z=0 and z =d). The effects of finite
anchoring on the transition are discussed in Sec. VB. In
the rising transition, for I <Ig, 6=0 is the solution
which minimizes the free energy where I, is the thresh-
old intensity below which no molecular reorientation can
be induced. By the symmetry of the problem, we look for
solutions which are symmetrical with respect to the
z =d /2 plane, that is, solutions satisfying

6(z)=0(d —z) .

Consequently d6/dz=0 at z=d /2, and minimization of
total free energy requires that the maximum deformatiog

4.1)

angle 6,, is attained at the center of the cell,
0,,=0(z =d /2).

Together with the above conditions at z =d /2, Eq. (2.9)
can be integrated to give for d6/dz+#0
do |’ 21 #6,)—Ae)
— | = — . 4.2)
dz cky;  1—ksin’0

With the use of the boundary conditions, integration of
Eq. (4.2) yields for 0<z <d /2,
172

I

172

)
1—ksin®® " q 4.3)

(0, ) —7(6)

cki3
21

yA—

We let

siny=sin6/sinb,, , (4.4)

then the orientation of the director at a point 0<z <d /2
is given by

172
ol 1'% 1—Bsin%0,, |'* v 1—k sin20,,sin*y 1
cks; 1—asin®é,, Yo ) 1—pBsin“,, 1—asin®f,,sin“y | 1—sin“f,sin“yY
1—asin®f,, 1—Bsin%g,,sin’y
(4.5)
] r
with ,=0. _ 6~0,,sin(7z /d)+0(63,) (4.6)
The maximum deformation angle can be determined by
evaluating Eq. (4.5) at z =d /2 and setting the upper limit ~ and
in the integration to be y=m/2. The deformation angle at 0% ~(vVT/Te —
a point z can be expressed in terms of the maximum de- m=(V1/Ig.—1)/B
formation angle using Eqgs. (4.1) and (4.5). Therefore, Egs. ~(I/Ig,—1)/2B , 4.7)

(4.1) and (4.5) describe completely the spatial orientation
of the director as a function of the NLC parameters and
the incident beam intensity.

To consider the threshold behavior, i.e., I>Ig, we
compute the integral in Eq. (4.5) up to and including
terms ~ 6%, and obtain the following equation for the tilt
angle:

where the threshold intensity Iy, and B are defined in
Table 1.2° In the limit of a single elastic constant
kiy=kj; and small dielectric anisotropy €, <<€,~¢€,
B~ in both approaches and Eq. (4.7) reduces to those
obtained by Khoo.!>!3 Notice that the threshold intensity
predicted by approach I is smaller than that predicted by



28 OPTICALLY INDUCED FREEDERICKSZ TRANSITION AND BISTABILITY IN A . ..

w/2 T

Om

/a4

1710,

FIG. 1. Maximum deformation angle 6,, as a function of the
reduced orientating beam intensity ///r, for MBBA and PAA
in approach I. For MBBA, we put A=6328 A, ny=1.544,
n,=1.758, k{;=6.95x10"7 dyn, and k;3;=8.99x10~7 dyn.
Freedericksz transition is second order with B=0.06, G=0.06,
and Ig, = 120.6° W/cm? for a cell 250-um thick. For PAA, we
put A=4800 A, ny=1.595, n,=1.995, k;;=9.26xX10""7 dyn,
and k;3=18.10X10"7 dyn. Freedericksz transition is first or-
der accompanied by hysteresis with B =—0.08, G=0.07,
Iy, =149.0 W/cm?, and Iy=142.8 W/cm? for a cell 250-um
thick. (a) For PAA and MBBA, the rigid anchoring condition at
the two interfaces are assumed. Curve of 6,, vs I/Ig, depends
only on k and u, but is independent of the cell thickness for rigid
anchoring. (b) and (c) For MBBA, a finite interfacial potential
of F,=(11.7sin?0+7.8sin*9) merg/cm? is assumed at the two
surfaces. (b) For MBBA, d=250 um, (c) for MBBA, d=50 pm.
Curve of 0,, vs I /I depends not only on k, u, and the anchor-
ing, but also on the cell thickness for finite anchoring.

approach II. The exact maximum deformation angle as a
function of the reduced intensity I/Ig, is shown in Fig.
1.77 Since

%ﬂnoI/Ck:n = 127-“\/21/111}71- N

the curve for 6,, vs I /I, depends only on k, u, and w, but
is independent of the cell thickness.

B. First-order transition and hysteresis

From Eq. (4.7), we see that as B>0, the tilt angle
remains zero for intensity below the threshold intensity
and changes smoothl;' as I > Ig,. However, if B <0 which
implies that dI/d(6;,) <0, then small distortions are not
stable and the Freedericksz transition becomes a first-
order transition accompanied by hysteresis: As the inten-
sity increases from zero, the tilt angle remains O for
I < Iy, and the director switches at I =Ig, from the unde-
formed state to a finite value of 6,,. But if the intensity
decreases from above the threshold intensity, the director
assumes a finite 6,, even at intensities below the rising
threshold intensity. Upon reaching a lower critical
threshold intensity Iy, the director switches again to the
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undeformed state. This falling threshold intensity can be
determined by the condition

al__o. 4.8
d(6;,)
The hysteresis associated with the first-order Freedericksz
transition that we proposed is analogous to that proposed
by Deuling and Helfrich!® ! for a twisted nematic cell and
a conducting nematic cell in a static electric field, but is
different from that proposed by Zel’dovich. That is, with
increasing intensity, the NLC director switches discon-
tinuously at the rising threshold intensity from the undis-
torted homeotropic state to a state with a finite amount of
distortion. With decreasing intensity the NLC director
switches discontinuously back to the undistorted state at a
lower falling threshold intensity as shown in Fig. 1. In
our prediction the transitions associated with hysteresis
are first order and the rising and falling transitions as-
sume the same deformation for intensities greater than the
rising threshold intensity, and the changes at both the ris-
ing and falling threshold intensities are discontinuous.
But Zel’dovich proposed that the transitions associated
with hysteresis are two second-order transitions and the
rising and falling transitions assume different deforma-
tions even for intensities greater than the rising threshold
intensity.
The criterion for the existence of the first-order optical-
ly induced Freedericksz transition at the threshold is given
by B<0,i.e.,

kn  9ea 9

— 4.9
k33 4 6” < 4 ( )
for approach I; and
ki 3€ 9 |€ 2
—+—+|— | <3 (4.10)
k33 4 GH 4 EH

for approach II. Figure 2 shows the nature of the transi-
tion at the threshold as a function of the NLC’s parame-
ters ky;/k33 and €,/€). The criterion shows that for a
NLC with large dielectric and elastic anisotropies, the

3 <0 T T T
}‘ ) > J
~
- S ~ Second-Order 4
/ ~
N 4
Approach |l N Transition
2 AN —
N
o - \ ~
x
~N L 4
- \
x L \ 4
N\
e First-Order
i Transition
1 1
o 0.5 1
€, / €y
FIG. 2. Criterion for the existence of a first-order optically

induced Freedericksz transition at the rising threshold intensity
with rigid anchoring condition.
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transition can be first order and that this is more favored
in approach II than approach I. The nature of the transi-
tion at B=0 can be determined from the coefficient of 6*
in the series expansion of Eq. (4.5), G, which will be deter-
mined later.

To determine the falling threshold intensity in the
first-order Freedericksz transition, we compute the in-
tegral in Eq. (4.5) up to and including terms ~ 6* and ob-
tain the following equation for the maximum deformation
angle:

—B +(B*+4GC)'?
2G ’
where C=11/Ig,—1 and G is defined in Table 1.26

Therefore, for the first-order optically induced Freeder-
icksz transition, the falling threshold intensity is given by

Iy, =Ig(1—B?/4G)? . (4.12)

Since G >0 for known NLC'’s even when B <0, Egs. (4.11)
and (4.12) suffice for our present discussion of the first-
order Freedericksz transition. In any case, if it happens
that G <0, we need only to expand the solution up to the
next higher-order term having a positive coefficient.

We can obtain a consistent formal thermodynamic
description for the behavior of the transition by consider-
ing the expansion of the total free energy as a function of
the maximum deformation angle. By expanding Eq. (2.8)
up to and including terms 6S,, apart from a coefficient
that renders it dimensionless, the total free energy has the
form?®

F=—C0%+B0%/2+GOS, /3+0(68) .

The series (4.13) does not contain terms in odd powers of
6,, due to inversion symmetry for an ideal nematic and
since the laws of electromagnetism conserve parity. The
value of 6,, in thermal equilibrium is given by the
minimum of .% as a function of 6,, and satisfies

AF
a(62)

A negative value of C means that 3. /3(6%)>0 for
0,, =0, implying that the initial homeotropic state 8,, =0
is stable, whereas a positive value of C means that the
homeotropic state is unstable. The variation of the total
free energy with the maximum deformation angle and in-
tensity is shown in Fig. 3 for both B> 0 and B <O.

We first consider the case where B is positive [Fi%. 3(a)].
Since nothing new is added by the 65, term, the 65, term
may then be neglected in . From Eq. (4.14) we have at
equilibrium either 8,, =0 or 8,, =V'C/B. For I <Ig,, the
only real root is at 6,, =0 since C is negative. For I > Ig,,
C> 0 and the minimum of % is at 8,, =V'C/B. Thus Iy,
is the threshold intensity and the transition is second order
since the maximum  deformation angle 6,
=[(v/T/Tg,—1)/B]'/? changes continuously from zero
with increasing intensity above the threshold intensity.

We now consider the case where B is negative [Fig.
3(b)]. The positively valued G restrains % from going to
minus infinity. The equilibrium condition Eq. (4.14)
shows that 6,, is either zero or given by Eq. (4.11). Using

0% = 4.11)

(4.13)

=_—C+B0:L+GO: +0(6%)=0. (4.14)
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3: 1 >0,

Total Free Energy

(a)

Total Free Energy

FIG. 3. Total free energy as a function of maximum defor-
mation angle for various intensities. (a). B>0 and G>O0, a
second-order transition. 1, I <Ig;; 2, I =Ig, 3, I >Ig. (b).
B <0 and G >0, a first-order transition. 1, I <Ig; 2, I =I5 3,
Ig <1 <I;4,1=1;51 <I <Ig;6,1=Ig;7,1>I,.

Eq. (4.14), at the inflection point 9.7 /3(6%)
=3%7 /3(6%)*=0 we have Iy, =I¢(1—B2/4G)* and
6,, =V —B/2G, which can also be obtained by substitut-
ing Eq. (4.11) into Eq. (4.10). For I <Ig,, 6,,=0 is the
only real solution for the equilibrium state. From Fig.
3(b) we see that for the rising transition, the state 6,40 is
unattainable at Iy, <I <Ig, because of the presence of the
potential barrier. Thus the rising transition occurs at
I =Ig, and the state changes discontinuously from 6,, =0
to 6,, =V —B/G and then changes continuously as I in-
creases. For the falling transition, the state changes from
I>1Ig and 6,, >V —B/G so that the state will assume its
local minimum described by Eq. (4.11) until the falling
threshold Iy, which is a point of inflection of % is
reached. Only after I < Iy, will the state change discon-
tinuously from 6,, =V —B/2G to 0,,=0. Therefore, the
transition with negative B is first order accompanied by
hysteresis with I, as the rising threshold intensity and Ig,
as the falling threshold intensity. It should be noticed
that if the potential barrier is small, then thermal fluctua-
tion may cause the rising transition to occur at I, <I <Ig,
or the falling transition to disappear at Ig, <I <1, where
I, =I5 (1—3B%/16G)* is the critical intensity at which
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F=3%/3(0%)=0 and 6,,=V —3B/4G >0. The
thermodynamic description of the first-order transition
agrees with our previous prediction using the solution of
the maximum deformation angle [Eq. (4.5)] but disagrees
with the Zel’dovich prediction as discussed earlier.

C. Experimental observation

The natures and the threshold intensities of the optical-
ly induced Freedericksz transition are listed in Table III
for some known NLC’s: E7, SCB (also referred to as
K15, PCB, and 4-cyano-4'pentylbiphenyl), 8CB (also re-
ferred to as K24, OCB, OCBP, and 4-n-octyl-
4’cyanobiphenyl), MBBA [N-(p-methoxybenzylidene-p-
butylaniline)], and PAA (p-azoxyanisole). The threshold
intensities are calculated for a cell of 250-um thickness.
For those NLC’s listed in the Table III, we found that
—0.08 <B<0.11 and 0.05<G <0.07 for approach I,
whereas —0.28 <B < —0.02 and 0.06 <G <0.10 for ap-
proach II. The values of B and G differ quite significant-

.

. dmng, [ckys |2 o 1—Bsin%,, |'*
= sin —_—
Ap 2nol " | 1—asin®0,,
w2 1 —k sin%@,,sin’y
X f " ) - 2n 2, 1172
0 1—pBsin“G,, 1—asin“g,,sin“yY
1—asin?g,, 1—Bsin%g,,sin’y

1
(1—sin’6,,sin’Y)(1—u,sin’0,,sin’¢)
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ly from those obtained from the singe elastic constant and
small dielectric anisotropy approximation in which B =+
and G =+5;. The transition is always second order in the
small dielectric and elastic anisotropies approximation.

Experimentally, the deformation can be observed by
measuring the induced phase shift ¢ of the extraordinary
ray component of a normally incident probe beam,

[}

nopnep
(n §pcos29 +n gpsin

T rd .
¢=_;C; fo 2)172 —nop |dz,

(4.15)

where A, is the wavelength of the probe beam and 7, and
ne, are, respectively, the ordinary and the extraordinary
refractive indices of the nematic medium at the optical
wavelength A,. By Eq. (4.5), the induced phase shift is
given by

2mnopd

A,

cosypdy— (4.16)

TABLE III. A comparison of the orders and the threshold intensities of the optically induced Freedericksz transition in ap-

proaches I and II.

Temp. ki ki3 A Approach I Approach II
NLC °C) (1077 dyn) (1077 dyn) (A) no ne Order Ige Ig: Order Ig, Ix
E7* 30 10.1 16.20 5893 1.524 1.732 Second 223.1 First 288.1 265.4
5Cb® 26 7.20 8.52 5890 1.533 1.703 Second 133.5 First 166.2 162.4
5CB*¢ 26 7.20 8.52 5890 1.540 1.719 Second 133.4 First 166.0 165.3
5CB¢ 26 5.20 7.17 5890 1.533 1.703 Second 116.8 First 144.2 141.9
8CB* 34 4 7 6328 1.516 1.665 Second 1279 First 154.3 149.8
8CBf 34 4 7 6328 1.521 1.670 Second 127.9 First 1543 149.8
MBBAS# 22 6.95 8.99 6328 1.544 1.758 Second 120.6 First 156.4 150.0
PAA"P 110 9.26 18.10 4800 1.595  1.995 First 149.0 14238 First 233.1 1503
PAA 120 7.80 13.60 4800 1.600 1.967 First 119.0 117.0  First 179.9 1279
PAA 125 6.94 11.90 4800 1.605 1.949 First 108.9 107.9 First 160.8 119.6
PAA 130 5.67 9.05 4800 1.611 1.928 First 88.2 88.1 First 126.3 101.0

2Reference 30.
YReference 31.
“Reference 32.
dReference 33.
¢Reference 34.
fReference 35.
8Reference 36.
hReference 37.
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FIG. 4. Induced phase shift of the extraordinary ray com-
ponent of a normally incident probe beam as a function of the
reduced pump beam intensity I /Ir, for MBBA and PAA by ap-
proach I for a cell 250-um thick. Data for the elastic constants
and refractive indices for the pump beam are the same as those
used in Fig. 1. Rigid anchoring conditions at the two surfaces
are assumed. For the probe beam, we put JAp=5145 ;\,
Mop=1.562, ne,=1.802 for MBBA; A, =6438 A, n,,=1.550,
ne,=1.839 for PAA. MBBA shows a second-order transition,
whereas PAA shows a first-order transition.

where ¥,=0 and u,=1—(n,,/n.,)>. The induced phase
shift as a function of the orientating beam intensity is
shown in Fig. 4.

Optically induced Freedericksz transitions have been
observed in 5CB,2>* 8CB,'“*> MBBA,'>!%%45 and a
NLC comprised of 60% of mixture “4” and 40% of 4-
cyano-phenyl-4-n-hepanyl-benzoate.*® However, like the
elastic constants and refractive indices, the experimental
results by different researchers disagree greatly.*’ For ex-
ample, for MBAA Csillag et al.*® reported that the mea-
sured threshold was 45+ 10 mW for a 150-um-thick cell at
a spot size of 65 um and temperature 21.5°C, i.e.,
I, =1070+240 W/cm?. However, Khoo'>!>* reported
that for a MBBA cell of 100-um thickness, Ig. ~ 1000
W/cm? at 20°C. Since the threshold intensity is inversely
proportional to the cell thickness (see Table I), we have,
for a MBBA cell with thickness of 250 um at room tem-
perature, Ig, ~385 W/cm? according to the Csillag et al.
result, but Iz, ~160 W/cm? according to the Khoo result.
As a result it is difficult to compare the two approaches in
the basis of the present experimental results. However, we
see that in approach I the Freedericksz transitions for
5CB, 8CB, and MBBA are predicted to be second order,
but in approach II the transitions are predicted to be first
order, which conflicts with the experimental observations
made by Csillag et al.,'»* Durbin ef al.,° and
Khoo, 213,44

Since the first observation made by Freedericksz> in
1927, all the observed Freedericksz transitions are second
order. In 1974 Deuling and Helfrich!®!® predicted that
for a NLC of strong conductive anisotropy and a dielec-
tric anisotropy of opposite sign the dc electric-field-
induced Freedericksz transitions in a twisted NLC cell
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and a conducting nematic cell can be first order. But the
criterion for the existence of a first-order electric-field-
induced Freedericksz transition is quite unattainable by
the known NLC’s. However, as shown in Table III, for
PAA, the optically induced Freedericksz transition can be
of first order; being of first order is more favored as the
temperature decreases from the isotropic to nematic tran-
sition temperature, since k; /k3; and € 1/€)| become larger
at lower temperature. Clearly, the thermal fluctuation of
the director would cause the hysteresis to disappear if the
lower threshold intensity I, is too close to the threshold
intensity If,.?® From Table III we see that for PAA with
an incident orientating beam wavelength of 4800 A at
110°C Iy, ~0.958If, and the hysteresis will be stable to
thermal fluctuations. Therefore, it is convincing that a
first-order Freedericksz transition could be observed ex-
perimentally for the first time in the near future.

V. FURTHER DISCUSSION

A. Dynamic response

We now consider the time dependence of the optically
induced Freedericksz transition using approach 1. For the
total free energy density defined by Eq. (2.9), we include a
dissipative term 7(37/3¢)2/2 which will contribute a
viscous torque opposing any rapid change of the director,
where 7 is the viscosity of the NLC. The dynamic
behavior is described by the resulting Euler equation

2
20
az

sinfcosf 71 36 )
cky3 (1—usin?0)3/2 ki ot

2
(1—k sinze)% —k siné cos@
z

Ingu

(5.1)

In the following, we consider second-order transition
and neglecting the role of backflow.>*> We look for an ap-
proximate solution of the form

sinf(z,t) =sind,, (t)sinyY(z,?) , (5.2)

where 6,,(t) is the amplitude of the distortion. This form
of solution has been considered by Deuling!® in the study
of the dynamics of a dc field-induced Freedericksz transi-
tion. By assuming a weak time dependence on ¥(z,t)
which contains the spatial distribution of the deformation
angle, we have 00/0t =(q /g)tanf and the solution of Eq.
(5.1) is

¥
z=f0

21710
Ck33

1 1
l_uq2)1/2 (l_quSin2¢)1/2
—1/72

14 In 1—g%sin*y
kiq 1—g?

172
L2
X l—q_ll1 k 2:1:;1/; cospdy ,
—q

(5.3)

where g (¢)=sinf(t) and ¢ =09q /dt. In obtaining Eq. (5.3),
we have made use of the condition that at all times
00/03z=0 at z=d /2. q can be determined by evaluating
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Eq. (5.3) at z=d /2. In the static case, =0 and Eq. (5.3)
reduces to the exact solution that is given by Eq. (4.5).
The description of the dynamic behavior is by no means
complete since, in general, it is still difficult to determine
g from Eq. (5.3).

Let us first consider the case where the optical field is
abruptly increased from zero to I > I,. Since even in the
final state, described by Eq. (4.6), 6,, will still be small, we
may expand the dynamic solution Eq. (5.3) in powers of g
and obtain that

g=q(a —bg®>)+0(q°), (5.4)

where
a =k33(1T/d)2(I/IFr—1)/"]=nou I —TIg)/cm,

b =2Bk3(w/d)?*/n, and B =(1—k —9u /4)/4. Equation
(5.4) is of the same form for the dc case derived by Pieran-
ski et al.>* Since the constant term is missing, we need a
small fluctuation g; at t=0 to get the distortion started.
Equation (5.4) can be solved to give

172

0(z,t)= [ qssin(wz/d) , (5.5)

1+qr2e—2at

where gf=a/b=(I/Iy,—1)/2B and g/ =q}/q/—1. At
t =0, Eq. (5.5) describes the exponential growth of a small
fluctuation with a time constant 1/a, which agrees with
that obtained by Zel’dovich!® and by Durbin?®>¢:

q(t>0)=g;explat) . (5.6)

For t>>1, the deformation amplitude reaches its final
value g exponentially with a smaller time constant 1/2a:

g(t>>1)~(1—5gfe g, . (5.7)

Typically, the time constant 1/a for a cell 250-pum thick is
about 70/(I /Ig.—1) sec.

We now consider the case where the optical field is
switched off from I > Iy, at time t=0. The amplitude of
the deformation angle can be determined from Eq. (5.3)
with I=0. For I>Ig,, by denoting the initial deforma-
tion state by O(z,t =0)=g;siny(z), g can again be
described by Eq. (5.4) with a=—ky(w/d)?*/n=—g,
b =ah, and h =+ +k /2. The amplitude of the deforma-
tion then decreases exponentially:

] 172

i€ —8t . (58)
1—hgi(1—e %" e

q(t)= [

The initial and the long-time responses to the laser
switch-off are both exponential with a relaxation time 1/g
which is the same as that obtained by Durbin®’:

q () =~Cgq;exp(—gt) , (5.9)

where C~1 for t~0 and C~1/(1—hg?)'/? for t>>1.
Typically, the time constant 1/g for a cell 250-um thick is
about 70 sec.

The transient behavior of the molecular reorientation
can be used to determine the viscosity, the threshold inten-
sity, and the bend elastic constant as discussed above. Ex-
perimental results’>>’ show that the initial responses to

2403

the laser switch-on and the long-time response to the laser
switch-off both have exponential time dependence.

B. Interfacial interaction

All the above calculations always assume that the orien-
tations of the NLC’s at the two interfaces can never be
changed. Such an assumption would require a rigid an-
choring between the NLC’s and the interfaces. However,
some experimental findings show that the anchoring
strength between the NLC’s and the interfaces is finite
and typically of the order of 1—10~* erg/cm?2.%® Khoo
found that in order to create molecular reorientation in
5CB, it was necessary to soften the surface anchoring con-
dition.** We now discuss the effects of the surface in-
teraction on the optically induced reorientation using ap-
proach 1.

Without loss of generality, we assume that the anchor-
ing potential at the two surfaces is the same and can be
expressed as

(5.10)

where P,, is the Legendre polynomial of order 2n and 4,,
represents the anchoring strength.>>® The total free ener-
gy density can be written as

2

I

n

_1 ksin2o) |99 | _ L
F—2k33(1 ksm@)[dz c p

+ 8@ +8(d —2)] S, A,,sin>0 . (5.11)

n=1

The variation of the total free energy leads to three
equations, the solutions of which describe the equilibrium
orientation of NLC throughout the cell. A bulk equation
is given by Eq. (2.9) with a=0 and B=wu, and two boun-
dary equations for the two interfaces are

a1k sin?09) 22 = cosy 3 nzssin® =165,
n=1

(5.12)

where 6p=0(z =0)=0(z =d) and the upper sign for z=0
and lower sign for z =d.

With the boundary condition that 6(z =0)=6, and
6(z)=0(d —z), the orientation of the director at
0<z <d /2 is given by Eq. (4.5) with the lower limit in the
integration y,=sin"!(sinfy/sinb,,). Evaluating Eq. (4.2)
at z=0 to eliminate d6/z, we obtain the following equa-
tion for determining the surface tilt angle:
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cosOy 3, nd,,sin® ~10y={(2nolks3 /c)(1—k sin?6,)

n=1

X [(1—u sin?6y)"/2 — (1 —u sin8,, )] /[ (1 —u sin®6y)(1 —u sin?6,, )12} /2 .

The induced phase shift of the extraordinary ray com-
ponent of a normally incident probe beam is given by Eq.
(4.16) with 1y=sin"!(sinfy/sind,), ).

Evidently, the threshold intensity will be lower as the
anchoring strength decreases. At higher intensities the ef-
fects of finite anchoring will be larger, and there exists a
saturation intensity I, above which all NLC’s will orient
parallel to the surfaces (the x axis). By computing the
solution for the tilt angle up to and including terms ~6%
we find that the new rising threshold intensity I, for fin-
ite anchoring can be determined from

172
7rk33

"~ dA,
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cot

and that the tilt angle just above the threshold intensity in
the second-order transition is given by

(T 172
6(2)29msm[7 K z
~ 12
+7 [1- 1:: H+o<o§,,),
(5.15)
where

6 = /Tg)" > — (T /Tg)'?1/B
B={(1—k —9u /4)m(Ig /I
+(1—k —3u /4)sin[7(Tg, /T)" 21} /47,

and Ig, =cks;(€)/no€, Jar/d)? is the threshold intensity
for rigid anchoring. Consequently, the criterion for the
existence of the first-order transition at the rising thresh-
old is given by

(1—k —9u /4)i(Tg, /Tg )2

+(1—k —3u /4)sin[7(Tg, /I) ?1<0.  (5.16)

The less than sign (<) in Eq. (5.16) is replaced by an equal
sign for the case of zero anchoring. As the anchoring
strength decreases from infinity to zero, the criterion Eq.
(4.9) relaxes completely so that a first-order transition is
always possible regardless of the other physical parame-
ters of the NLC, and the threshold intensity changes from
finite value to zero.

The function I(6,,) which gives the maintenance inten-
sity I at a given 0, is a single-valued function of 6,, but
can assume the same value at different 6,,. Consequently,
the function 6,,(I) which gives the maximum deformation
angle at a given intensity is a multivalued function of I.
The saturation intensity as well as the nature of the transi-
tion at a given intensity can be determined by examining
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(5.13)

r
the value of 1(6,,) as a function of the maximum defor-
mation angle. Clearly the saturation intensity I; is the
maximum value of I1(6,,) for 0<@,<w/2. If
0,=0,,(I =I) is less than /2, then at I =I, the state
changes discontinuously from 6,, =0, to the parallel state
[6(z)=m/2 for all z] through a first-order transition.
Once the parallel state is attained, the parallel-state-
maintenance intensity I,, which is the intensity above
which the state remains in the parallel state is given by

3 172 3 172
nekSJIm nek33Im

3 3
nok11 g nok 1 Ip,
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aMm

s
2

coth

(5.17)

where M = 3 °_,nd,,. We see that Iy /Iy depends
only on kj3/A,d as in the dc case.’®* =2 However, I, /Ig,
depends not only on k;;/k;; and M, but also on
nlksy3/ndk,,. This dependence differs from that in the
magnetic field where one can show that the ratio of the
parallel-state-maintenance field to the threshold field de-
pends only on k;, /k3; and M. If the function 1(6,,) has
extremal values at some intermediate angles between 0 and
/2, then first-order transitions accompanied by hysteresis
loops could occur at those angles. The criteria for the ex-
istence of a first-order transition is given as follows.

(1) If dI/d (6%) <0 at 6,,=0, i.e., the criterion (5.6) is
satisfied, then at the rising threshold intensity I, the ris-
ing transition is first order and the state will assume a de-
formation with 6,,=6,,(I'z,)>0. The falling threshold
intensity is the minimum value of I(6,,) in the range
0<6,, <0,,(I =Iy) where the falling transition occurs at
I=1I,.

(2)f If dI/d6,, <0 at 0<0; <6, <Oy <mw/2, then the
transition is first order for states with 6,, in the range
0; <6,, <0y. In the rising transition, the transition is first
order at I =1;=1(6;) and the state changes from 0,, =6;
to 6,,=0,,(I =I;)>0;. In the falling transition, the
first-order transition occurs at I =1I,=1(8;) and the state
changes from 6,, =6y to 6, =0,,(I =17) <6y.

(3) If I,, < I, then the rising transition at I =1 is first
order and the state changes from 60,,=6,,(I =I;) <7 /2 to
the parallel state. Once the parallel state is attained, the
parallel state remains for I > I,,,, and as I drops below I,,,
the state changes to 0,,=0,(I=1I,)<m/2 through a
first-order transition. If I,, <Ig,, then once the parallel
state is attained I,, becomes the falling threshold intensity
and the state changes back to the homeotropic state as
I <I,, through a strongly first-order transition.

We notice that even in a simple case like
F,=A,sin?0+ A ,sin*@, the rising and falling transitions
can be first order at some intermediate angle. We consid-
er a 20-um thick MBBA cell as an example with the ma-
terial constants that were wused in_Fig. 1 and
A,=—3.54,=2 merg/cm? We obtain Iz, =0.50If, and
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I,=0.59Ig, at which the state changes discontinuously
from 6,,=70° to 6,,=m/2. That is, at I =I, the state
changes to the parallel state through a first-order transi-
tion resulting from lowering the electromagnetic energy
and the elastic energy into their minimum values. More-
over, Eq. (5.17) shows that the parallel-state-maintenance
intensity I,, =0.41/g, which is less than the rising thresh-
old intensity. Consequently, I,, is also the falling thresh-
old intensity if the  parallel state is attained and an intensi-
ty I with I,, <I <Ig. <I; is enough to maintain the paral-
lel state. As I <I,,, the state changes discontinuously
from the parallel state back to the homeotropic state
through a strongly first-order transition.

Recently, Yang and Rosenblatt reported an interfacial
potential of F,=(11.7sin’6+7.8sin*9) merg/cm? for a
MBBA homeotropic cell.®> The effects of this interfacial
potential on the maximum deformation angle are shown
in Fig. 1 for two different thicknesses. We see that the ef-
fects of the interfacial interaction become more important
as the cell thickness decreases. Using the dependence of
6,, on the I /Ig, and the cell thickness, there are three
simple experimental methods to manifest the effects of
finite anchoring on the transition.

(1) By measuring the threshold intensity Iy, for the
same NLC with different cell thickness: Rigid anchoring
conditions would show that the threshold intensity is in-
versely proportional to the square of the cell thickness
(Table I).

(2) By measuring the maximum deformation angle
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versus I /I, for different thickness: Rigid anchoring con-
ditions predict that 6,, depends only on I/Ig, and is in-
dependent on the cell thickness.

(3) By measuring the threshold intensity and 6,, versus
the intensity for the same NLC and thickness but with
different homeotropic surface treatment: The results
should be independent of the surface treatment if the an-
chorings are rigid.

These three rigid anchoring predictions will not be true
for finite anchoring conditions.

At present, the surface interaction remains one of the
least understood areas of the liquid crystal’s physics.
Clearly the as yet unexplored and unobserved first-order
transition induced by surface interactions could have im-
portant practical applications.
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