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Solutions of the reference —hypernetted-chain equation with minimized free energy
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We use the Rosenfeld-Ashcroft procedure of modeling the bridge function in the
reference —hypernetted-chain integral equation with its hard-sphere values, and choose the sphere
diameter so that the free energy of the system is minimized. The resulting integral equation is

solved for both the long-range Coulomb potential and the short-range Lennard-Jones potential. The
results are in excellent agreement with Monte Carlo data for the thermodynamics and structure of
both systems. The method provides an entirely first-principles approach to the theory of the struc-

ture and thermodynamics of simple classical liquids.

I. INTRODUCTION

Knowledge of the pair-distribution function g(r) is the
essential prerequisite for a complete static description of
homogeneous classical liquids whose molecules are taken
to interact through effective two-body forces. The context
in which much of the work toward this goal has been car-
ried out was established some time ago by a number of au-
thors independently. ' Their analysis of the density expan-
sion of g (r) has led to two equations which, however, in-
volve three unknowns:

h (r) =c (r)+p J dr 'h (
~

r —r '
~

)c(r'),

c (r) =h (r) —In[g (r)e'"']+B (r) .

The first of these is the Ornstein-Zernike equation defin-
ing the direct-correlation function c(r) in terms of
g(r)=1+h(r). In the second, a closure equation, P(r) is
the pair potential and B(r) is the sum of "bridge" or "ele-
mentary" graphs in the diagrammatic analysis of the
two-point functions. Though the same analysis leads to a
formal relationship between B(r) and g(r), it involves an
infinite sum of highly connected diagrams and so cannot
be utilized in practice. This apparent absence of a simp/e
functional connecting B(r) to g(r) prevents this scheme
from being fully closed and has led to a number of ap-
proximate closures, the best known being the Percus-
Yevick (PY) and hypernetted-chain' (HNC) approxima-
tions. These have widely varying theoretical motivations
and domains of useful application. In this paper, we
present an alternative and entirely first-principles pro-
cedure based on a generalization of the HNC approxima-
tion, a procedure which adheres closely to basic ther-
modynamic principles and is seen to be equally successful
in practice when applied to systems described by both
short- and long-range potentials.

In Sec. II, we give a brief derivation, based on a free-
energy functional, of the modified —or reference —HNC
(RHNC) equation, which approximates B(r) with the
bridge function of a short-range (reference) potential Po(r)

Following Rosenfeld and Ashcroft, who proposed and ex-
tensively documented the view that B (r) should be essen-
tially the same function for all potentials P(r), we view

po(r) as an adjustable function. The optimum po(r) is
then determined by requiring that it minimize the free en-

ergy, a condition that greatly increases the internal con-
sistency of the RHNC equation and eliminates the un-
determined parameters found in earlier work with the
RHNC approach. Finally, making the specific choice of a
hard sphere Bo(r) with adjustable core size (obtained from
the Verlet-Weis and Henderson-Cxrundke parametriza-
tions), we examine in Sec. III some numerical results for
the Coulomb and Lennard-Jones (I.J) potentials. The re-
sults of the method, both for structure and for thermo-
dynamics, are in excellent agreement with corresponding
Monte Carlo data.

II. THEORY

A closed-form expression for the free energy is most
readily obtained by the familiar device of "turning on" the
potential P(r), but doing so here in two stages; first, from
the nomnteracting state to the reference potential $0(r),
and then from there to the full potential P(r). To this
end, we write

P(r;Ao Ai)=Logo(r)+A, ,bP(r)

with 4P(r) =P(r) —$0(r), and then introduce the configu-
rational partition function for the partially interacting sys-
tem: Thus,

g(A, , A, , )= V ~ I dr exp —P g P(r~i;&o, &i)

With the corresponding excess free energy defined as

PA(zo Xi)= —lng(zo Xi)

we then have
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a[p~ (~„x,)]
,'m—p f drg(r;Xo Xi)0o(r)

M,p

A (o)

p = ——,'p f drI 2—hp(r)+ho(r)

and

—=Fp(A, p, k, i),

a[p~ (~„x,)]
2Np —f dr g(r;Ap, A, i)h(b(r)

1

(Sa)

A (o)
2

—go(r)»[go(")e

f I in[1+pho(k)] —pho(k) I
2p (2m)'

(1 la)

(1 lb)

=Fi(kp, k, i) . (Sb)

These may be solved for 2 (A.p, )L, &) by first integrating (Sb)
to give

J

p& (A,p, A, i) —pA (A,p, 0)= f dA, 'iFi(A. p, A, 'i )+6 (A,p),

(6)

with G(Ap) an arbitrary function of Ap. Differentiating
(6) with respect to A,p and comparing with Eq. (5a) to
determine G, we get

A3 ', i Bg(r;Ap, O)
P = ——,'p f dr f dkoB(r;Ao,O), (llc)2 0 0

with the tilde denoting a Fourier transform. Similarly,
the increment in the free energy in turning on the rest of
the potential is

P = —,p f dr f dk, gi(r;l, i. )id'(r)

(12)

B[Pc4 (Ap 0)] ~] BFi(Ap A, 'i )
Fp(kp, ki) = + dA, ')

0 0 0

+6'(Xo»

In this last equation

AJ AJ

and

(13a)

i.e.,

8[PA (A, ,O)]
Fo(kook i) = +Fo(kook i) —Fo(ko~O)

0

i Bg(r; I,Ai)
p = —,'p f dr f—dk8i(r;1,A, )i0

1

(13b)

+6'(A,p)

=Fp(A, p, A, i)+6'(A,p),

or, for the fully interacting system,
1

p—= —,'p f dr f dk, pg(r Ap0)p ()pr

1

+ —,
'
p f dr f dk, ,g (r; l, A, , )hg(r) . (9)

The first term in (9) can be evaluated to give the
reference-system free energy

where we have used BFi/BAp ——BFp/BA, i to evaluate the
integral. Thus, G'=0, or G must be a constant, which is
easily seen (upon setting Ap

——A, i
——0) to be zero. Equation

(6) now expresses the anticipated two-stage "charging"
process

Alp

p~ (Ao~k, i) = f dkoFo(Ao~O)+ f d~iFi(Ao~~i)

where A i,Az are defined as in Eqs. (11) for the full poten-
tial P(r) and its corresponding correlation functions. The
excess free energy with potential P(r) is then seen to be
given by

A A(o)

(14)

This is an exact expression. The first two terms are com-
putable, and the third is assumed known through Eq. (10).
Only the final term resists evaluation. Clearly, the
behavior of 8(r; I,ki) in the core region does not affect
the last integral [Eq. (13b)]. Further, what is known about
the bridge function suggests that it is relatively short
ranged. Hence, it is only the form of B(r; l, k, i) in the re-
gion of the first peak of g (r;1,A, &) that matters physical-
ly. If we assume that 8(r; I,A, , ) in this region is indeed
relatively insensitive to the change in potential from Po(r)
to P(r), we may evaluate (13b) approximately as

P = —,'p f dr B(r;1,0)[g—(r;1,1) g(r;1,0)]—
A (o) A (o) A (o)

p x =p x +p x +p x
where

(10)
= ——,

'
p f d r &p(r) [g (r) —gp(r) ] . (15)

This produces a readily computable expression for the free
energy and constitutes the RHNC approximation.
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—Bp(r) ] &g (r)

——,'p f dr [g(r) gp—(r)]&Bp(r) . (16)

It follows that (i)

c (r)=h (r) —ln[g (r)e" ]+Bp(r),
which is the RHNC closure, and (ii)

p f dr [g(r) —gp(r)]5Bp(r)=0,

(17)

(18)

which is the constraint. If we specialize now to some
selected reference potential Pp(r)=Pp(r;o. ,e) which in-
corporates adjustable length and energy parameters o. and
e, Eq. (18) becomes

and

Mp(r)
p f d r [g (r) gp(r)]o— =0

Bo

BBp(r)
p J dr [g(r) gp(r)]e — =0.

(19a)

(19b)

These are the conditions that will determine the optimum
values of o. and e that minimize the free energy.

The physical appeal of these integral constraints on
Pp(r) is underscored when we note that without them the
RHNC approximation leads to thermodynamic incon-
sistency. Specifically, from the free energy we have for
the pressure p and internal energy U

B(PA /%)
p

'
Bp

U B(PA /~)
X BP

On the other hand, we have the quadratures

P——1=——,'p f drg(r)re'(r),
P

13& = —,p f drg(r)PP(r) . (23)

In RHNC these separate determinations disagree. VA'th

Eqs. (19), this inconsistency is removed. Further, the
thermodynamic relatloI1

Aside from the need for a repulsive core (as required on
general physical grounds) the reference potential Pp(r) to
this point has been essentially arbitrary. %'e can now im-
pose a constraint on the selection of Pp by insisting that it
comply with the fundamental condition of the canonical
ensemble, namely, the requirement of a minimum free en-
ergy. As expressed in Eq. (14), A is a functional of g(r),
gp(r), and Bp(r). Accordingly, a straightforward variation
of these functions [using the approximation (15)] then
leads to

P = , p f d—r[c(r)—h (r)+ln[g(r)e+'"']6A

proposed by Hiroike' as a test of approximate integral
equations [when p and U are obtained, for instance, from
Eqs. (22) and (23)] is satisfied.

III. RESULTS

At present the only model of a simple liquid sufficiently
well explored to serve as a reference system in the pro-
posed scheme is the hard-sphere fluid. For this system,
Verlet and Weis7 (VW) have constructed a very accurate
parametrization of gp(r), based on the PY equation and
augmented with a correction, which incorporates thermo-
dynamic consistency through the Camahan-Starling"
equation of state. Henderson and Grundke have provid-
ed an extension into the hard-core region for the function

O(&)
yp(r) =gp(r)e (25)

which is then known over the entire range of r. The
"series" or "nodal" function for the hard-sphere fluid
Sp(r) =hp(r) —cp(r) can also be obtained by numerical in-
version of Sp(k), where

ph p(k)
Sp(k) =

1+php(k)
(26)

Here hp(k) is given by the analytic transform of hp(r).
The bridge function then follows from these by using Eq.
(lb), i.e.,

Bp(r) =lnyp(r) —Sp(r) . (27)

Mp(r)
Bo

8 1nyp(r)

BG

BSp(r)
Bo' (29)

Because the V%' parametrization incorporates into the PY
hard-sphere solution a core diameter that is slightly small-
er than the actual value of cr, there is a mismatch of the
analytic properties of the fitted functions at multiples of
o. Thus, the BBp(r)/Bcr obtained through Eqs. (28) and
(29) shows a small but clearly unphysical discontinuity at
r =2o.. It appears to be the case that this anoma1y has no
significant consequences. Nevertheless, despite the suc-
cess of the V%' model, an equally good parametrization of
the hard sphere gp(r) that more faithfully preserves its an-
alytic character seems desirable for uses such as the
present one.

With Bp(r) deterinined, a solution of Eqs. (1) for the
potential of interest proceeds in the conventional fashion.
We first rewrite Eqs. (1) in terms of the series function

For the hard-sphere potential, Eq. (19b) is of course
trivially satisfied since the hard-sphere system has no en-
ergy scale. The function BBp(r)/Bo needed in Eq. (19a) to
fix the hard-sphere diameter is determined in the same
way as Bp(r). From the explicit differentiation of the
parametrized yp(r), we obtain first

aS,(k) , ah, (k)
Bo

=
I 1 —[1+php(k)] 'I

BET

and, after numerical inversion,

S(r)=h(r) —c(r) . (30)
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This yields

c(r) =exp[ PP—(r)+S(r)+Bo(r)]—1 S(—r) (31a)

and

P
' = ——,'p f drI —,'h'(r)+h(r)

—g (r)ln[g (r)e'"']+PP(r) J (35)

g (r) =exp[ PP(r—)+S(r)+Bo(r)] . (32)

kS(k)=p (3 lb)
1 —pc(k)

which are to be solved iteratively for S(r) Th. en g(r) is
obtained from

while the pressure is given by

P——1 = —,
'
p f d r [g (r) —1 ]PP(r) =

3 P—.

Finally, the inverse compressibility is obtained from

(36)

The algorithm may thus be summarized as follows:
Determine Bo(r) and Mo(r)/Bo for hard spheres of diam-
eter cr, solve Eqs. (31), and test the vanishing of Eq. (19a).
Repeat this process altering o until (19a) is satisfied to a
numerically adequate degree. Standard root-finding tech-
niques may be used to generate new estimates of o. from
earlier guesses; the convergence is generally quite rapid.

To test this method, we have carried out solutions for
two physically disparate models of interactions in simple
liquids: the long-range Coulomb potential (one-
component plasma) and the short-range LJ potential.

A. Coulomb potential

The simplest model of fiuids of charged particles, the
one-component plasma' (OCP) consists of K point parti-
cles of charge e immersed in a uniform neutralizing back-
ground. This is actually a two-component system in
which the second component is taken to be completely
structureless. Its state-dependent potential energy

2 2

U(r )= g —, Np fdr— (33)
r,g r

I (J
leads to a thermal average U of the form

2

P—= —,'p f dr [g(r) —1]P (34)

which differs from Eq. (23) because of the background
terms. A similar replacement of g (r) by g (r) —1 occurs in
other formulas whenever g (r) multiplies P(r) =e /r.
Thus, for example, A, becomes

P =1—p f dr [c(r)+PP(r)] (37)
Bp

rather than the usual expression in which PP(r) is absent.
Equations (31), with sphere diameter o adjusted to

satisfy (19a), have been solved for the OCP at ten values
of

(38)

where a is the ion-sphere radius, i.e.,

—,+pa =1 . (39)

Table I lists the computed free energy, internal energy,
and inverse compressibility, along with the required o for
each value of I . Also shown are the corresponding ther-
modynamic quantities obtained from a recent parametri-
zation of extensive Monte Carlo (MC) data constructed by
Slattery et a/. ' The computed free and internal energies
are seen to be essentially exact; differences with the MC
values are generally less than 0.1%. The inverse compres-
sibility data, while a great improvement over HNC values,
do not share the same degree of success; at I =100, for
example, the error is 6.3%. An example of the structural
data obtained from the solutions is given in Fig. 1, which
compares the computed pair-correlation function g (r)
with Monte Carlo results' ' for I =100. The agreement
is seen to be very good. [The odd dip in the computed
g(r) curve at r =2o=3.10a is an artifact of the hard
sphere Bo(r). It appears to be a reflection of the analytic
deficiencies of the VW go(r) as mentioned above. ] These
calculations are based on a grid of 2048 points with an in-
terval size 4r ja =0.01. Additional details of the numeri-

TABLE I. Exact (Ref. 13) and computed thermodynamics of the OCP.

o/a
P(A /N)—

Exact Comp.

—P( U/X)
Exact Comp.

—p(&p/&p)
Exact Comp.

10
20
30
40
50
60
70
80
90

1.2072
1.3318
1.3956
1.4369
1.4669
1.4901
1.5089
1.5246
1.5379
1.5497

7.102
15.297
23.713
32.238
40.833
49.475
58.152
66.856
75.582
84.327

7.092
15.284
23.698
32.224
40.818
49.461
58.138
66.843
75.571
84.316

7.996
16.670
25.442
34.259
43.103
51.966
60.842
69.729
78.623
87.524

7.990
16.666
25.440
34.259
43.106
51.970
60.848
69.737
78.636
87.539

2.619
6.498

10.414
14.345
18.287
22.235
26.189
30.146
34.105
38.068

2.793
6.606

10.326
13.996
17.642
21.265
24.881
28.485
32.105
35.680
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I.8—

l.2—

12 '6

p(r) =4@ 0 o

j
r l'

where e and o. set the energy and length scales, respective-
ly. The results below are reported in the reduced units

p =po. and T =kT/e. The free energy, pressure, and
internal energy have been computed from Eqs. (14), (22),
and (23), respectively. For the compressibility we have
used the standard relation

0.6— P =5 '(k~O)=1 —pc(k~O) .
Bp

!41)

0.0
O.O l.5

I

5.0
r/a

I

4.5 6.0

FIG. 1. Computed (line) and MC (circles) pair-distribution

function for the OCP at I = 100. The anomaly in the full line at
r =3a is attributable to the VW fitting procedure for the hard-

sphere system (see text).

cal procedure are given by Ng. '

Finally, it is worth noting that the OCP results reported
above are notably better than those of an otherwise identi-
cal calculation using the PY equation for the hard-sphere
functions. ' This demonstrates the necessity of actually
implementing the requirement of thermodynamic con-
sistency of the reference system that was implicit in the
derivation presented in Sec. II.

B. Lennard-Jones potential

As an example of a short-ranged potential typical of in-
sulating liquids, we have applied this procedure to the
well-known LJ fluid characterized by the potential

Our results are summarized in Table II. The pressure
and internal energy are compared with the simulation
values obtained by Verlet. ' For all cases considered, the
difference between the present calculations and simulation
studies are comparable to the uncertainties in the simula-
tion data. As seen in Table II, we compare the free energy
and compressibility values with the semiempirical equa-
tion of state for the LJ fluid originating with Levesque
and Verlet. ' The agreement for these quantities is some-
what less impressive, but nevertheless is far better than the
results obtained with the standard integral equations.
Note that the free energies are always (by calculation)
above the desired results. If the exact free-energy func-
tional (14) was used to compute A from the g's obtained
by this method, the free energy is required to be above the
exact value. The fact that this inequality still appears to
hold in practice suggests that approximation (15) is indeed
an accurate treatment of the free energy. Better results
for the compressibility (correct to about 1%, for T") 1)
can be obtained by differentiating the pressure given by
Eq. (22) along a given isotherm. This makes clear the fact
that thermodynamic inconsistencies, though markedly re-
duced, have not been entirely eliminated.

Figure 2 compares the pair-correlation function g(r)
with simulation data for conditions near the triple point.

TABLE II. Computed thermodynamics of the LJ (first lines) compared with simulation and
equation-of-state results (second line). Equation-of-state derived values are in parentheses.

p(p/p)P T 0 p(A /N) p( U'"/x) p(aq/a) )

0.85

0.75

0.65

0.65

0.45

0.45

0.40

0.719

1.071

1.036

2.557

1.552

2.935

1.424

1.0196

0.9S37

1.0019

0.9963

0.9619

0.9576

0.9471

0.9438

—4.712
(—4.91)

0.964
(0.85)

—2.160
(—2.2S)
—2.240

( —2.30)
0.185
(0.11)

—0.769

0.088

—0.872

0.424
0.36
4.364
4.36
0.852
0.89

—0.155
—0.11

2.136
2.14
0.552
0.57
1.377
1.38
0.382
0.38

—6.116
—6.12
—4.240
—4.25
—5.166
—5.17
—4.522
—4.52
—3.786
—3.78
—2.982
—2.98
—2.608
—2.60
—2.728
—2.73

22.9
(27.4)
16.6

(17.4)
10.5
(9.7)
3.73

(3.16)
6.67

(6.58)
1.143

2.67

0.461
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Lennard- Jones
the error is substantially reduced. As is the case for QCP,
there is a small irregularity at r =2o.. It is less pro-
nounced for the LJ potential though, and disappears rap-
idly with decreasing density.

IV. SUMMARY

2.0

0.0
0.0 I.O 2.0 5.0

FIG. 2. Computed (line) and molecular dynamics (circles)
pair-distribution function for the LJ at p =0.85 and
T*=0.719.

The approach to simple liquids described in this paper
is based on a "universal, " widely tested representation of
the bridge function B(r), coupled with the fundamental
condition of free-energy minimization. It is thus an en-
tirely first-principles approach that can be used with any
potential. It is interesting to note that, when applied to
the hard-core fluid, this procedure yields a minimum free
energy for precisely the true hard-sphere diameter. The
"computed" results are then just those of the
reference —hard-sphere system. Numerical tests of the
method for the long-range Coulomb and short-range LJ
potentials produce excellent agreement with simulation
data for both the thermodynamics and structure of these
models. Thermodynamic consistency, however, is only
partially achieved. Qur results clearly suggest that future
improvements in the parametrization of the hard-sphere
pair-distribution function g (r ) are necessary.

The agreement is very good, though there remains a small
but discernible error in the region from the first minimum
to the second maximum. The results at lower densities
share the same qualitative deficiency but the magnitude of
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