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The dynamic renormalization group yields a value for the critical exponent which we find to be
too large. We believe that the true value is close to the decoupled mode value of 8/157*=0.054.
The error in the renormalization-group calculation comes from the two-term truncation of the € ex-
pansion. The € term that is neglected is of opposite sign and as large as the €* term that is includ-
ed. By avoiding the € expansion entirely, we eliminate any truncation error and achieve greatly im-

proved accuracy.

I. INTRODUCTION

Some years ago Kawasaki' and Perl and Ferrell? found
to single-loop order a logarithmic divergence in the viscos-
ity of a classical fluid near its critical point, with a coeffi-
cient 8/157%=0.054. When exponentiated, this lowest-
order calculation corresponds to a critical exponent of this
same amount, as noted by Ohta and Kawasaki.® Subse-
quently Siggia, Halperin, and Hohenberg* reported the
larger value of 0.065, on the basis of the dynamic renor-
malization group (DRG). This DRG value has been gen-
erally accepted without much question. Our present pur-
pose is to point out that the DRG value does not bear
close scrutiny. We present compelling reasons to believe
that the exponent has to be very nearly equal to the “old”
decoupled mode value of 8/1572. Our goal here is to put
forward a convincing case for our assertion of the validity
of the old values as a good first-order approximation.

The order-parameter critical fluctuations in a classical
fluid near its second-order phase transition are of density
and concentration in the single-component and binary
liquid, respectively. In each case these fluctuations are
carried along by the hydrodynamic shear modes, the fluc-
tuations of which decay because of the viscosity. The
coupling between the transverse velocity and the order-
parameter fluctuations causes the viscosity to diverge
weakly at the critical point. This coupling is sketched in
Sec. II where we observe that the DRG* result of a very
small two-loop effect makes it appropriate to concentrate
on the single-loop graphs. Sections II A and IIB are de-
voted to establishing that the exponent and the universal
amplitude ratio are close to the single-loop values of 0.054
and 1.00, respectively. Section III shows the inadequacy
of a two-term truncation of the single-loop integral in an €
expansion. The error in the DRG* result can be traced to
this truncation. In Sec. IV, we explain the basic reason
why low-order € expansions are not reliable. In Sec. V we
compare our theoretical values for the exponent and for
the universal amplitude ratio with those that can be de-
duced from the high-precision light scattering experiments
of Burstyn and Sengers.’ Section VI is a brief summary.
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II. MODE COUPLING

A. Critical exponent

The magnitude ¢ of an order-parameter fluctuation of

wave number k is given by the critical-point correlation
function

1

K2’
where we use the Ornstein-Zernike® approximation
throughout. The rate of relaxation of the fluctuation is

expressed in terms of the wave-number-dependent dif-
fusion as

gk)=(|¢|*)= 2.1)

L (k)
k2
g(k)

L (k) is the kinetic coefficient representing the random
walk of the inhomogeneities as they are transported by the
Brownian motion of the hydrodynamic shear modes.
Simple physical considerations’ give the k dependence

y(k)=k*D (k)= =k*L (k) . (2.2)

1
L (k) ‘I;—;;rzq ) (2.3)
which permits us to write Eq. (2.2) in the form
y(k)=Npa,k”* (2.4)

where z, is the small critical viscosity exponent, D is the
space dimensionality, and a, is the k-independent ampli-
tude. It is convenient to fix the D-dependent normaliza-
tion factor by
Cp
Ni=—7 2.5)
D ( Zﬂ')D ?

where Cp is the area of the unit sphere in D-dimensional
space. In a similar fashion we can write the k-dependent
viscosity as

z,

n(k)=Npayk . (2.6)
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The fluctuations of the stress tensor, which by the
Kubo formula determine the viscosity, are proportional to

Ty, <3¢31p x| pP3it P'b. 2.7

where ¢T)’ and ¢3, are Fourier components of the order

parameter. The wave numbers P and P’ satisfy the “con-
servation of momentum” condition

P+P =Kk, (2.8)
where K is the wave number of the hydrodynamic shear
mode. ) and p, are the direction cosines of P and P’
parallel and perpendicular to K, respectively. As a conse-
quence of Eq. (2.7), the coupled-mode integral for the
viscosity in the limit of weak divergence (i.e., z,—0) is
proportional to the angular average
1

Sp= (,ulz',uf) =DD12) 2.9
which is of O(D~2) and vanishes in the limit D— oo.
This is because the great circles p)|,, =0 are nodal lines in
the angle integrations of Eq. (2.9) and remove from the
sphere belts which make the biggest contribution to Cp.
For finite D we have 8,=(24)"'=0.04 and
8;=(15)"1=0.07. Thus for the values of D of interest,
8p provides a convenient small parameter.

The usefulness of 8, becomes evident upon examining
the loop expansion of Siggia et al.* It will then be noted
that their result z,, =0.065, as quoted above is actually the
sum z, =z +2z,, where z;=0.069 is the single-loop con-
tribution and z, = —0.004 is the total contribution from
the two-loop graphs. The fact that |z,|/z;=0.06 is
smaller than unity by an order of magnitude is no ac-
cident, and can be traced to the role of 8, in the two-loop
integrals. It is easily seen by examining the integrands of
the two-loop integrals of Siggia et al.* that the additional
vertices of the two-loop graphs introduce corresponding
additional angular factors of the type shown in Eq. (2.9).
It is therefore quite natural that z; =0(8p) and that
2,=0(8%), the general rule being that each additional
loop brings in two more nodal lines in the angular integra-
tions and thus another factor of §,. This permits us to
write the loop expansion for the viscosity amplitude as
bp <1>( )+ 8%)

a, JS (z,,)+ ,  (2.10)
Zn%y Zn@yaq

where as already noted, the smgle-loop, or decoupled

mode, mtegral has the limiting value SpJ ) (O)—SD The

integral is normalized as a function of z, at z, =0 accord-

ing to

J(0)= (2.11)

The usefulness of a loop expansion in powers of §p,
such as that of Eq. (2.10), depends, of course, on having
J and the higher-loop integrals be of O (1). This is sup-
ported by the above plausibility argument. But, if the
skeptical reader prefers, he can regard this as a firmly es-
tabltshed mathematical fact, at least for the coefficients of
82, in consequence of the explicit numerical evaluation of
the two-loop integrals by Siggia er al.* Our general for-
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mulation of the problem differs in no essential way from
that of Siggia et al.* When written for general dimen-
sionality D, our integrals are identical to theirs. The only
true difference is a computational one. Our point is that,
instead of estimating the integrals from a two-term trun-
cation of the Taylor-series expansions in powers of
€=4—D, it is more accurate actually to evaluate the in-
tegrals by setting D =3 at the outset. In other words, in
getting numerical results we completely avoid the € expan-
sion. This paper is devoted to carrying this out for z, be-
cause, as seen in the work of Siggia et al.,* z, is
overwhelmingly the dominant contribution to Zy.
The loop expansion for the relaxation rate amplitude is

1
ay=7—1pzy)+—5—
a a
m andy

—2 12z 2+ (2.12)

Equations (2.10) and (2.12), assuming that the necessary
integrals have been calculated as functions of z,, suffice to
determine both the product a,a, and the exponent z,, to
any desired order in 8p. The ratio of the two equations
gives z,, implicitly as

5

(1)(2 )+ _“p (2)( )
z,,=8D (1) gD (2)

Ip (2,,)—}-;;‘1—7“11_) (Zg)+ -

=2 4085 =z2, 42,4+ , (2.13)
Ip
where
D, 2

I=1§0)= 1 [ 4Psinf 2.14)

CD p2pl2
with the wave numbers constrained by Eq (2.8) and scaled

tok=1. Ois the angle between P and k. For D =3 sub-
stitution of 8;= 1 and

2

L="-=1.234 (2.15)
into Eq. (2.13) gives
8
=—-7>=0.054. 2.16
T s (2.16)

The O (83) correction to the first-order value of z, comes
from the two first-order self-consistency corrections to

(z,,) and I} ’(z,,) and from the two vertex corrections
J })2)(0) and I$(0). Reported4 computations of these con-
tributions, carried out in the limit D =4, are of the expect-
ed magnitude O(83). It follows that the true value of z,
has to fall quite close to the first-order estimate of
8/1572=0.054. Although they did not emphasize it, this
conclusion was also reached by Ohta and Kawasaki.> Our
purpose here is to go further and to reconcile the DRG
and the mode-coupling calculations by demonstrating the
error in the former.

In a brief paper Garisto and Kapral® advocate a value
for z, between 0.06 and 0.07. This significant deviation
from 0.054 is, according to them, due to a large vertex
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correction. Their result comes from a numerical integra-
tion for zf,,’ J (32)(27,). They state that they carry out this
numerical integration after first making the approxima-
tion z,, =0 in the integrand. But this procedure produces
the divergent integral lim, _o[zy 'J@(z,)], which can
only be made finite by imposing a Debye cutoff, as was
done by Perl and Ferrell® for zg y (3“(27,). With a cutoff
the integral acquires a logarithmic dependence on k,
which cannot be characterized by a single number, as was
done by Garisto and Kapral. The Garisto-Kapral work,
moreover, seems not to take into account the other vertex
correction 152(0).

B. Hydrodynamic limit

The fact that the loop expansion is an expansion in the
small parameter 8, makes possible an accurate calculation
of the order-parameter decay rate y(k,k) in the hydro-
dynamic regime k <<k, where x~! is the correlation
length. This is the opposite regime from that studied in
Sec. IT A, where we were dealing with y(k)=y(0,k). We
similarly generalize Eq. (2.6) to %(x,k), where
n(k)=n(k,k) | «—o, and we define the universal amplitude
ratio R by

kBTK

P (2.17)

lim k ~2y(x,k)=R
k—0
where T and kp are the temperature and Boltzmann’s con-
stant, respectively. From the consideration of Sec. IT A we
see that the two-loop calculation of R is accurate to
0(8%). We therefore expect its accuracy for D =3 to be
better than 1%. In analogy with Eq. (2.12), we have

T F(1) 7(2)
—R =1 I
3 3 (z)+ andy 3 (zy)
8
+ 55 TP+, (2.18)
Andy

where I’ (D") (zy) is the integral [, 1()'”(2,7) in the hydrodynamic

limit. For the one-loop integral to zeroth order in z,, cor-
responding to Eq. (2.14), we have (with the momentum
scaled to k =1)

I _1 d’p sin’0
3 C, 1+p2 pz

— (sin? ©_dp _ 7w
=(sin?0) [ T3 (2.19)
yielding the zeroth-order approximation
R =140(8;) . (2.20)

The O(8;) term comes from (i) I (31)(21,) evaluated to
O(z,) by making the appropriate self-energy insertion,
and (ii) the vertex correction I {2)(0). The effect of space
nonlocality in (i) has been treated by Burstyn et al.,’ while
the effect of nonlocality in time has been examined in de-
tail by the present authors.!® These two effects contribute
0.438; to (i). For (ii) we have found 0.28,, giving the com-
bined first-order result

R =1+0.68;~1.04 . (2.21)
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As stated before, this answer is expected to be accurate to
better than 1%, which renders the value R =1.2 obtained
by Siggia et al.* untenable. Experimental evidence for a
value of R much closer to 1.0 than to 1.2 has been report-
ed by Burstyn, Sengers, and Esfandiari!! and by Giittinger
and Cannell.!?

III. e EXPANSION

The value of z, reported by Siggia et al.* from their
renormalization-group calculation is inconsistent with Eq.
(2.16), being some 22% too high. As already mentioned
above in Sec. I, this error can be attributed to a too-early
truncation of the € expansion, as we will now demonstrate.

The two-term € expansion of the numerator in Eq.
(2.15) is

1 1 1 5
= ~ ~——+—-—€. .1
= ) 6—e) ~24—10e ~24 T 288 OV
The denominator has the expansion
l+co+c16+ T, (3.2)

L

where for the time being we neglect ¢ € and all higher
terms. The leading term comes from applying the high
momentum approximation p’~p to Eq. (2.14). The angle
average then brings in (sin?6)=1—D"'~2. To find c,
it is useful to compare I, with the simpler integral

. 1 d°p 1
Ip=—| —————-=—+0(e). (3.3)
D CD f P2(1+p2) €
Thus we have
Ip=+Ip+Up—3Ip)
= . = 31
z%ID+l])1_r{14(ID—%ID)=Z—€—+c0 . (3.4
Evaluation of the subtracted integral gives, therefore,
co= Il)iin4(ID—%I_D)
4 2
:__l_f dip smf_é 1 :i’ 3.5)
Co ¥ p* | p? 4p°+1) 8

which yields the two-term truncation of the first-order ex-
ponent as

(3.6)

Evaluated at D =3 or e=1, Eq. (3.6) gives z,=0.069—
clearly much too large and a grossly inaccurate approxi-
mation to the exact first-order value of 0.054.

The two-term truncation is obviously the source of the
error in Eq. (3.6). It is clearly necessary to include at least
one more term in the € expansion. As we shall see, a
three-term truncation of the € expansion enormously im-
proves the accuracy of the calculation of Siggia et al.* and
brings it into agreement with Eq. (2.16). The computation
of the third term in Eq. (3.2) is facilitated by the fact that
I is a convolution integral which can be written in closed
form. This is most conveniently carried out by the
mathematical trick'? of replacing dZp sin%0 by d?+%p /p?
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times an appropriate numerical factor. Thus we find

[T __ D—1 %D /2)
2™ 4 sin(—wD/2) T(D —1)
2
_m_3—e TX2-¢/2) (3.7)
4 sin(me/2) T(3—e€)
from which it follows
1 = 3 1
=t =Y (1)==. 3.
a=7+3; AR 2 (3.8)

The last two terms of Eq. (3.8) cancel because the trigam-
ma function is

2 2
p=4mL@ | )T (3.9)
dx

6

x=1
Substituting Eq. (3.8) into Eq. (3.2) and carrying the ex-
pansion to three-term accuracy gives

8 € & 35

(3.10)

Evaluated at e=1, the last two terms of Eq. (3.10) al-
most exactly cancel one another (the last one being — 2

times the preceding one), yielding

2, =0.056 . (3.11)

This is down 0.013 from the two-term value and now only
4% above the exact value of 0.054. This completes the
demonstration that the error in the calculation by Siggia
et al.* resulted from a too-early truncation of the € expan-
sion. A more complete picture is, however, provided by
the plot of Eq. (3.10) versus € as shown by the dot-dashed
curve in Fig. 1. It should be noted that this has a zero at
€=2.61. The solid curve, representing the exact € depen-
dence of z, that follows from Eq. (3.7), has its zero at
e=2. It is the existence of the zero and the attendant
curving down of the function which has brought its
strength in the vicinity of e=1 down and into good agree-
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FIG. 1. Ceritical viscosity exponent z,, vs e=4—D, where D is
the space dimensionality, in the single-loop approximation.
Solid curve shows the exact function, with the value
z,=8/157"=0.054 for D =3 indicated by the solid dot.
Dashed curve shows the 28% error in the two-term truncation
by Siggia, Halperin, and Hohenberg (Ref. 4) of the € expansion.
Three-term truncation (dot-dashed curve) is more accurate at
€=1 because its zero at 2.6 simulates the e=2 “infrared” zero
of the exact function.
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ment with the solid curve. As discussed in Sec. IV, the
occurrence of the zero is not accidental but is a necessary
consequence of the “infrared divergence” at D =2. Al-
though the actual location of the zero is not correct for
the dot-dashed curve, this three-term approximation is in
qualitative agreement with this basic requirement. This is
not true for the two-term approximation, shown by the
dashed curve in Fig. 1, which is the reason that it gives
much too high a value at e=1. In other words, the under-
lying cause of the error in the Siggia et al.* calculation is
that it completely ignores the infrared divergence of Ip,.

But before leaving the € expansion we want to use it to
illustrate the loop expansion in powers of 8, that was dis-
cussed above in Sec. II. To show this qualitatively for the
self-consistent self-energy insertion in the single-loop re-
laxation rate integral it will suffice to work to lowest or-
der in the € expansion. In this approximation, Eq. (2.14)
is replaced by

1 dPpsin®0 3 1

Iz, =—— P ~ 3.12

D (zy) Ch f 2—z”p12 46—z, (3.12)
which substituted into Eq. (2.13) gives

43, 1

Z"IZT(f—Z"I):_l_S(G_Zﬂ) (3.13)
or

z,,=-l% : (3.14)

Thus the first-order insertion has decreased z, by an
amount Az, which, evaluated at e=1, is

1

_ 1 1 1
718 19

=————=0(8)),

3.15
1819 ( )

Az

as expected. This simple example is a prototype for the
other two-loop corrections and serves to illustrate the
essential point of this paper, which is the rapid conver-
gence- of the loop expansion in powers of 8,. This rapid
convergence is qualitatively apparent in Ref. 4. The last
sentence of the note added in proof to Ref. 3, however,
seems to contradict the rapid convergence of the loop ex-
pansion. Unfortunately, no details are given to support
the value put forward there for z,,.

Paladin and Peliti!* have recently put forward the value
Zy= 4—33 =0.070, based on a one-loop calculation. No esti-
mate is given for the error resulting from the use of the lo-
cal approximation in this calculation.

IV. MITTAG-LEFFLER EXPANSION

In Sec. IIT we have demonstrated that the two-term €
expansion is grossly in error because it makes no al-
lowance for the infrared divergence. Inspection of Eq.
(2.14) reveals that the integral diverges at D =2. In the
vicinity of D =2 its asymptotic behavior is governed by
the simple pole

4.1

where €'=D —2. Carrying out a subtraction integration,
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66 1

or appealing to Eq. (3.7), yields the two-term “€’ expan-
sion”
11 1
In=—— 4 — 4.2
D=7 + > 4.2)

To develop an appreciation of the extent to which the €
expansion can be misleading for D =3 problems it is im-
portant to recognize that for D =3 the infrared pole at
€'=0 is as important for I, as the ultraviolet pole at e=0.
In this case e=¢€'=1, so that both poles are equally close.
For this reason it is necessary to treat both of the neigh-
boring poles on an equal basis and to subtract both of
them at the same time, so as to arrive at the function
31 11
K(e)=Ip i 2

analytic in the “physical” range 0<e<2. From Egs.
(3.2), (3.5), and (4.2), the limiting values of K (¢€) are

K(0)=—+

(4.3)

(4.4a)
and

K(2)=%, (4.4b)

respectively. The two-term € expansion for K (€) satisfy-
ing Egs. (4.4a) and (4.4b) is
1 €
K(e)J=——+—.
(€) g T3
Solving for I, from Eq. (4.3) gives then the two-pole
Mittag-Leffler expansion

(4.5)

31 11 31 1 1 1 e
b=ty e tKO=y oty st
4.6)

which does not differ appreciably from Eq. (3.7). The
latter is shown by the solid curve in Fig. 2. Evaluated at
e=1, Eq. (4.6) yields

FIG. 2. Single-loop integral I, vs e=4—D, where D is the
space dimensionality. Solid curve shows the exact function,
with the value I;=7"/8 indicated by the solid dot. The 30% er-
ror of the two-term truncation by Siggia, Halperin, and Hohen-
berg (Ref. 4) of the € expansion is indicated by the dashed curve.
Although the three-term truncation (dot-dashed curve) is better,
it also does not take into account the infrared divergence at
€=2, a shortcoming that is rectified by the two-pole Mittag-
Leffler expansion. The latter agrees with the solid curve, within
the accuracy of the plot.
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I= 4.7)

NI

=1.25,

only 1.5 % off the exact value of 1.234 of Eq. (2.15). By

comparison, the two- and three-term truncations of the €

expansion yield, according to Egs. (3.2), (3.5), and (3.8),

the much smaller values of +=0.875 and +=1.125,
respectively. The latter value comes from setting e=1 in
31 1 €

h=%ctsty-

It is interesting to note that the third term in Eq. (4.8)

provides the further constant

K'0)=1,

(4.8)

4.9)

where the prime denotes differentiation. This makes it
possible to determine one more term in Eq. (4.5). But be-
cause the two-term expression for K (e€) already satisfies
Eq. (4.9) it follows that the €* term in the Taylor series for
K (€) vanishes.

The good accuracy of the truncated Mittag-Leffler ex-
pansion of Eq. (4.6) results from the fact that the poles of
I, that have been neglected are relatively far from the
physical point e€=1. These are simple poles at
€=—2,—4,—6,..., and double poles at €=4,6,... .
They are sufficiently far removed that they are well
represented in the physical region 0 <e<2 by a rapidly
convergent Taylor series in €. This advantage of the
Mittag-Leffler expansion has been demonstrated by us'> in
detail for the A transition in liquid helium.

The above considerations can be extended to z,, itself.
z,(€) has no poles along the negative € axis and its first
pole for € >0 comes at e=3. As noted in Fig. 1, the in-
frared pole at €e=2, which “spoils” the € expansion for I,
is converted into a zero of z,(€). The fact that the nearest
pole is farther from e=1 for z,(¢€) than for I, evidently
accounts for the fact that the three-term e-expansion error
of 4% for z,(€) is smaller than the corresponding 10% er-
ror in the three-term € expansion for I,. But in any case,
it is clear that a truly accurate determination of z, de-
pends upon a proper evaluation of /3 in which account is
taken of the effect of the infrared pole.

To summarize this section, we have demonstrated from
general considerations why the € expansion cannot be re-
lied upon to give accurate results. Although the error in
the two-term expansion of Siggia et al.* is immediately
evident from a comparison of Eq. (3.6) with the exact
value of Eq. (2.15), our goal here has been to provide a
more basic understanding of how this error comes about
and why, in a sense, it is inevitable.

V. EXPERIMENTAL SITUATION

Burstyn et al.!! have reviewed the various experimental
determinations of the universal amplitude ratio and have
emphasized that R is much closer to 1.0, the single-loop
value, than it is to 1.2, the value put forward by Siggia
et al.* The measurements of Burstyn et al.!! give
R =1.0210.06, which is compatible with our result in Eq.
(2.22) of R =1.04£0.01.

Turning now to the critical exponent, the most direct
determination of z, comes, of course, from the tempera-
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ture dependence of the hydrodynamic viscosity. But this
requires first the subtraction of the noncritical back-
ground. Unfortunately, although the latter is not singular
at the critical point, it generally has nevertheless a rather
strong temperature dependence. It is not always possible
to estimate a priori the latter in an unambiguous fashion,
which renders the subtraction and the ensuing extraction
of z, from the remainder somewhat uncertain. An addi-
tional experimental problem is that the hydrodynamic
measurements bring the fluid out of equilibrium. The
perturbation is more severe the closer the critical point is
approached.

Because of the difficulties described above, there is
some advantage to inferring z, from light scattering
linewidth measurements. These yield the nonlocal dif-
fusion coefficient

D (k,k)=k ~?y(K,k) (5.1

as a function of k and k. Because these measurements can
be carried out very close to the critical point, their inter-
pretation is much less sensitive to the background subtrac-
tion and nonequilibrium problems associated with the hy-
drodynamic measurements. At the critical point

D(0,k) k¥ (5.2)
with the exponent
J=1+z, . (5.3)

Away from the critical point Burstyn and Sengers® were
able to determine values of a k-dependent generalization
of y by fitting Eq. (5.2) to the linewidth data from three
different angles, for the same value of k. From general
considerations we expect y to be a function of

K (T =T, (5.4

where T, is the critical temperature and v is the correla-
tion length critical exponent. For this reason we have
plotted in Fig. 3 the Burstyn-Sengers’® data versus
(T —T.)*, with the temperatures measured in mK and
with v set equal to 0.63. The straight-line fit to the data
confirms the expected linear dependence on «? in the vi-
cinity of the critical point. The intercept of
y=1.05%+0.02 is, according to Eq. (5.3), consistent with
our theoretical expectation and constitutes good verifica-
tion of Eq. (3.16), within the accuracy of the measure-
ments (as shown by the error bars). It should be noted
that the largest value of y actually measured by Burstyn
and Sengers® was 1.048 at 7—7T,=0.3 mK. Their in-
ferred value of y at. T =T, was 1.06+0.02 because of an
extrapolation which was linear in T — T, instead of ac-
cording to Eq. (5.4).

VI. SUMMARY

The purpose of our paper has been to establish that
high-precision calculations can be performed for the criti-
cal dynamics of a classical fluid. This involves abandon-
ing the popular € expansion and evaluating the loop in-
tegrals directly in three dimensions. The existence of the
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FIG. 3. Effective diffusion exponent data of Burstyn and
Sengers (Ref. 5) vs (T —Tc¢)?, where the temperatures are in
mK. v=0.63 is the correlation length critical exponent. Extra-
polation of the straight line fit to the critical point gives
y=142z,=1.051 in exact agreement with the theoretical predic-
tion, Eq. (3.16).

small expansion parameter 8 independent of €, which is a
special feature of this problem, makes the loop expansion
for D=3 converge rapidly. A two-loop calculation yields
accuracy to O(8p). Because 8;=-5, the accuracy of a
two-loop calculation is of the order of 1%. In this scheme
the critical exponent z, is near 8/ 1572=0.054 and the
universal amplitude ratio is R =1.04. We contend that
the corresponding values advocated by Siggia, Halperin,
and Hohenberg,4 namely, 0.065 and 1.2, are erroneously
high. The error in z,, is due to their use of the inaccurate
two-term € expansion of the single-loop relaxation rate in-
tegral, which overestimates the value of the integral by
28%. Because the second-order contribution to z, is
smaller by more than one order of magnitude, the € ex-
pansion error in it is acceptable. Correcting only the
first-order contribution would yield a corrected net ex-
ponent of z,, =0.050. If we, on the other hand, assume (as
indicated by our own second-order calculations) that the
second-order contribution has about the same error as the
large first-order term, then we can apply the correction
factor of 0.054/0.069=0.78 to the quoted DRG result* to
obtain the net corrected exponent as z,, =0.051. Obvious-
ly the way in which the second-order contribution is han-
dled has only the minor effect of 0.001 on z,. The impor-
tant thing is to base the calculation on an accurate first-
order contribution, since this is by far the predominant
part. Once this is done, the best estimate for zy, within
the present theoretical framework, is only slightly below
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the old decoupled mode value of 8/1572.

In closing, we take note of a so far unexplored source of
error in the calculation of z,. This results from Eq. (2.1)
and from the neglect of the anomalous dimension ex-
ponent associated with the fourth-order interaction term
in the Ginzburg-Landau free-energy functional. Clearly
more work needs to be done on this point.
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