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%'e show that in a gas laser the inhomogeneity in the distribution of amplifying atoms
and the transverse Gaussian distribution of the saturating electromagnetic field give rise to
different lens effects which are generally opposite to each other and influence the line

shapes in different ways, shifting the Lamb dip either to the blue or to the red. For those
laser phenomena which increase one or ihe other of the lens effects, the role of a diaphragm
is of particular importance, since it determines the spatial distribution of the resonant field.
We present here a new method for studying the resonant diffracted field in a laser. Also, we

give a unified description of the various inhomogeneities. Doing away with the usual
method of mean-field approximation, we numerically calculate, for a diaphragmed,
monomode weak-gain gas laser, the intensity, variation of the beam diameter, and the radius
of curvature as functions of the frequency.

INTRODUCTION

During the past two decades, laser theory has
been dominated by the so-called "mean-field approx-
imation, " first introduced by Lamb. ' The model is
based on a hypothetical medium whose gain (due to
the amplifying medium) and losses (due to diffrac-
tion and mirrors) are uniformly distributed. The
field is supposed to be composed of plane waves, but
the field amplitude entering the saturation terms is
taken as a (coordinate-independent) constant. This
approximation has proved to be quite successful in
explaining properties of radiation from gas lasers,
such as, for instance, the celebrated Lamb dip. Ear-
ly theories gave symmetric line shapes, but experi-
ments showed asymmetries which were first attrib-
uted to atomic collisions. Then, after Kogelnik
studied Gaussian beams, Maeda and Shimoda
showed that the corresponding line shapes were
strongly asymmetric. However, in this theory, the
diameter of the mode was supposed to remain uni-
form along the laser axis, so that, again, some kind
of mean-field approximation has been used, this
time along the laser axis. Gn the experimental side,
Garside has shown that the transverse nonuniformi-
ty of the field is at the origin of lens effects which
result in the change of the beam diameter with fre-
quency, thus giving rise to frequency-dependent
losses which, in turn, could explain the observed
asymmetry of line shapes. This has been experi-
mentally confirmed in a single-mode HeNe laser.
Another transverse effect, the inhomogeneity of am-

plifying atoms, was used by Casperson and Yariv to
explain asymmetries which they observed in a high-
gain gas laser.

Asymmetries of line shapes actually originate
from various causes' which may be subdivided into
microscopic (related to atoms) and macroscopic
ones. We will be concerned only with the second
kind.

A theoretical study of resonant self-focusing and
defocusing effects of Gaussian beams in weak-gain
gas lasers has been made recently by Stephan and
Taleb. " It was shown that the two transverse
parameters JY (beam diameter) and R (radius of cur-
vature) vary with frequency. As a consequence, the
measured line shapes vary with the aperture of the
detector. This finding has been experimentally con-
firxrzed.

The aim of the present work is to leave behind the
mean-field approximation and to study a real
monomode gas laser equipped with a diaphragm to
suppress transverse modes, taking into account lo-
calized gain and losses, a nonuniform distribution of
amplifying atoms, and a nonunifornI field.

The new approach makes possible the study of ef-
fects (e.g., infiuence on line shapes) due to

(i) the self-focusing or defocusing,
(ii) the population inhomogeneity,
(iii) diffraction,
(iv) the geometrical parameters of the cavity.
The results are obtained by first setting up the

nonlinear differential equations and then by in-
tegrating them numerically under the boundary con-
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ditions imposed by the mirrors.
They show that, generally, there is a kind of com-

petition between the lens effects due (a) to satura-
tion, and (b) to the transverse distribution of active
atoms. If the effect of (a) is greater (smaller) than
the effect of (b), the maximum intensity of the line
is on the low- (high-) frequency side. Because of
their strong influence on the field, the competition is
very sensitive to the laser properties such as the
geometry (length, radius of curvature of the mirrors,
position of the diaphragm, and diameter of the tube)
or the distribution of atoms dependent on the
discharge current.

The paper is organized as follows. In Sec. I we
review the theory of a Gaussian beam in a nondi-
aphragmed laser. We start from the passive cavity
and, following Lax et al. ,

' we obtain the beam
equation in the paraxial approximation. Using
scaled coordinates we give a simplified treatment of
Gauss-Laguerre modes. Then we consider the cavi-
ty with an amplifying medium and establish the in-
homogeneous beam equation whose solutions are
written as modified Gauss-Laguerre modes. Such
solutions have already been recognized, ' but our in-
terpretation is somewhat different. We show that
inhomogeneities modify the diameter and radius of
curvature of a beam along the laser axis and we ob-
tain equations for these modifications. In Sec. II we
consider a diaphragmed laser and we start with an
empty diaphragmed cavity in order to calculate the
resonant diffracted eigenfield. This field is
developed on the basis of the preceding modes and
we compute the eigenfield having the highest eigen-
value (i.e., having the lowest diffraction losses) along
the laser axis. Equations for the field in the cavity
with an amplifying medium are then given and
solved numerically. In the case of the 3.39-pm line
of Ne, results concerning the dependence of intensi-

ty, radius of curvature, and diameter of the beam on
the frequency are given for various values of those
parameters which are essential in the description of
inhomogeneities. The role of other parameters, also
important in studies of laser line shapes (e.g., the
length of the laser and the length and position of the
amplifying tube), will be studied in later work.

I. THEORY OF A GAUSSIAN BEAM
IN A NONDIAPHRAGMED LASER

It is well understood that the laser phenomenon
owes its existence to those two parts of the experi-
mental setup which are most simply described by
notions as "Fabry-Perot interferometer" (the cavity)
and "amplifying medium. " It is the forrrier one
which allows for constructive interference between
the forward and the backward beam and it is the

latter one which sustains the radiation field by com-
pensating the losses.

Accordingly, the task of describing the geometry
of laser beams is subdivided into two parts. First,
the treatment of a beam from an external source
passing forth and back in a "passive cavity, " i.e.,
one which does not sustain the oscillation. The
medium is characterized by a polarizability which is
independent of the field. Second, the laser in its
proper state of operation, in which the polarizability
of the medium depends strongly on the electric field.

A. The passive cavity

1. Helmholtz equation in the paraxial approximation

By the shape and arrangement of the mirrors one
assures the low divergence (parallelism of rays) of
the laser beam which is necessary for the continuous
production of laser light. This property of the beam
allows to simplify the theoretical treatment by
means of the so-called paraxial approximation.

The usual starting point for the treatment of laser
beams are the Maxwell equations for the elec-
tromagnetic field E inside the cavity:

curlE = —aB/Bt, curlH =BD/Bt,

divD =0, divB =0,
D=(so+a)E, B=poH .

They give rise to the propagation equation
r

—grad(divE) +b,E= 1 BE
z +PM

C t
(4)

which is to be satisfied by a monochromatic wave
traveling along the axis of a laser tube (aligned with
the z direction):

E( r, t) =F( r )exp[i (kz cot )] . — (5)

In order to allow for emission and absorption pro-
cesses (described phenomenologically by a complex
polarizability a), the electric field (and hence the
quantity F) is assumed to be a complex vector. The
polarizability is written as a =ao+a„, where ao is a
complex constant describing the linear homogeneous
medium, whereas the variable a„may express spa-
tial inhomogeneity as well as the saturation. It
should be noted that in the type of gas laser studied
here we have a ratio of

~
ao/eo

~

—10
A brief discussion of the meaning of Eq. (5) ap-

pears to be indicated. If F(r) were a constant, (5)
would simply represent a plane wave. If F were a
real function of the spatial coordinates, one could
visualize the field E as follows. Consider any
straight line parallel to the laser axis (in particular,
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e.g. , the axis itself). Along such a line, the trans-
verse coordinates x and y are constant and the field
has the forni F(z)exp[i (kz —cot)]. At an instant
t=const this is a wave with wavelength 2m/J k

~

whose amplitude is modulated by the function F(z).
However, for this interpretation to be valid one has
to assume that at any extremum of the wave, the
amplitude function F(z) is less curved than the wave
itself. Otherwise, the wave structure would cease to
exist. It is thus clear that factorizing exp(ikz) in (5)
only makes sense if one demands, in addition, that
the variation of the remaining field F(z) is suffi-
ciently slow in the variable z. Now, as the function
F(z) in Eq. (5) is a complex one and its phase gives
rise to a z-dependent change of the wavelength, we
have not only to demand that the absolute value of
F, but also that its phase varies slowly with z.

Of course, these assumptions are consistent with
the physical nature of a laser beam whose intensity
varies much more in transverse direction than longi-
tudinally, so that transverse and longitudinal deriva-
tives of the field have different magnitudes.

To gain control over the rate of change of F with
z, Lax et al. ' introduced dimensionless coordinates
which were obtained by scaling x and y with Wo,
the beam radius at the waist, and z with the factor

~
k

~
Wo. But this parameter Wo itself resulted

from a theoretical treatment the criticism of which
motivated the investigation. ' We feel, therefore,
that it is more satisfactory to start by assuming that
there is some characteristic length lo given by the
experimental setup, and to identify this length with

I

a suitable physical quantity only after the quantity
has emerged from the calculation. (For a laser con-
figuration which produces a beam having axial sym-
metry, we may, from the outset, consider lo as a
characteristic transverse falloff length. )

The dimensionless quantity [we are using the
symbol:= (or =:) to mean "equal by definition, "
with the ":"on the side of the quantity which is be-
ing defined. ]

p:=c/colo

which is assumed to be much smaller than 1, gives
rise to two separate length scales, one for the trans-
verse and the other for the longitudinal distance. At
the same time, the length lo will be used to intro-
duce dimensionless variables. Following (in essence)
Lax, Louisell, and McKnight' we define new coor-
din3teS

g:=x/lo, g:=y/lo, g:=pz/lo

and, thereby, the differentiation operators

a„=& a,, a„=I a„, a, =pI a, .

As the new coordinate g will no longer be treated
on the same footing as the "transverse" coordinates
g' and rl, Eq. (5) as well as the vectors involved will
now be decomposed into a transverse part Fz. and a
longitudinal part F~. Note that FT is a vector and
Vz is the differentiation operator in the g'g plane.
The resulting equations, obtained from (4), are

VT(V z"FT+pag+g+ip I'g)+(V +p a~+2ia~ k~1 )F—2 2
ro lo a1+ FT,

C E'p

—pap(VT FT) ip 'VT F—T+VrF&
co Ip

2 2

1+
C Ep

In deriving these equations we have approximated
the complex "wave number"

+
2 2—p a,(v, .F, ) ipV, .F,+p—V,F,

E'0

CO +01+
C

1/2 (I+au, )F, . —(12)

by the real quantity co/c. If the terni on the right-
hand side of (8) is rewritten as —k lo —loco a„/Eoc
we notice that the first tei-ia in this expression can-
cels the last teriii on the left-hand side.

Multiplying (8) with p and (9) with p we now get

—V T(p V T FT+p a~F~+iF~)+pv TFT

3 2 , a„
+p a~FT+2ipagFT = —p FT

Ep

These equations are the starting point for the par-
axial approximation: Formal series for the func-
tions FT and F~ (with p as the development parame-
ter) are inserted into (11) and (12), and the coeffi-
cients of equal powers in p are then compared. In
this way one gets a sequence of differential equa-
tions which can be solved by iteration.

According to Eq. (12), E~ is small, of order one,
thus it is small compared to FT. Therefore,
the series can be written as
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2. Gaussian beams and the Gauss-l. aguerre modes

a. General remarks. Under the experimental con-
ditions which are most commonly encountered in
laser physics "oaxial beams in cylindrical tubes-
the use of cylinder coordinates is indicated. Let
they be denoted by p, qr, g. The beam equation (15)
takes the forni (we delete the suffix T as we are deal-
ing from here on exclusively with the transverse part
of the field)

( ~p+p Bp+p (3q) +2l 'Bg)F —0 (16)

This equation is separable in either of the variables

y and g. If we separate the angular variable and use
familiar arguments we find that solutions can be
written as linear combinations

F(p, tp, g) = g c 6 (p, g)exp(imp&),

where 6 satisfies

(8 +p '8 mp +2i Bg)G—=0,
m =0, 1,2, . . . .

The solutions to the differential equation (17) are
numbered by the integer m. For any given m, they
have the following property which, in fact, is due to
an internal symmetry of the equation: If G (p, g) is
a solution to (17) and if a and b are complex con-
stants (with a~O), then another solution is given by

0 1 2 2FT=FT+i FT+p FT+

Fg pF——(+p Fg+ .

In the remainder of Sec. IA we will assume that
a/eo is of order 3 in p. (As we are treating here the
case of a passive cavity we could as well put a=O,
but we wish to indicate the degree of generality
under which the following results will hold. )

We then get, in lowest order,

—v'T(VT FT+iFg)+v'7FT+2iagF =0, (13)

i V'—T.Fz. +Fg =0 . (14)

Equation (13), simplified by (14), now gives

V TFT+2t BAFT ——0 .

This equation may be considered as the fundamental
equation of Gaussian beam optics. It will hence-
forth be referred to as the "beam equation, " and any
physically acceptable solution of it will be called a
"beam function. "

In the following we will be concerned with linear-
ly polarized light and the transverse electric field
will have one single component. Therefore, we will
drop the vector notation from here on.

The separation ansatz 6 (u, g) =K(u)H(g) yields
the two equations (c is a complex constant, prime
denotes differentiation in the respective variable)

4uK" 2iuK'+—4K'+cK =0,
2igH' cH =0 .—

(19)

The "simplest" choice for the constant is c = 2i, —
since in that case Eq. (19) will be satisfied by a func-
tion K which is a solution to the first-order differen-
tial equation

2K' iK =0, —
while (20) becomes

1H'+ —H =0.
Disregarding the trivial constants of integration we
get

6 = exp(i—u/2)= —exp(ip /2g) .o 1 . 1
(21)

Now, according to the remark made above, another
solution to the beam equation is given by

G (p, g) = exp[ p /2i(g+b—)]a'(g+ b)

where a and b are two complex constants. They will
be deterinined by the following plausible require-
ments and conventions.

(i) For some value of g, the intensity
~

F
~

has
its maximum on the axis.

(ii) The origin of the g axis is placed at the loca-
tion of the "beam waist, " i.e., that point on the axis
where the intensity is maximal.

(iii) At the origin of the coordinate system, the
beam function 6 takes the value 1, i.e., G (0,0)= 1.

Using (22) one finds for the intensity

G [ap, a (g+b)], 6 being the same function as
before.

b. Axial symmetry G. aussian beams. The case of
axial symmetry is given by m=O and the beam
equation reads simply

(a,'+p-'a, +2i a, )6'=0 .

We proceed to show how the "Cxaussian beam" is
obtained as a simple solution to this equation.

The symmetry of (17) just mentioned allows us to
introduce a new coordinate u:=p /g to replace p.
In the coordinates u, g, the differential equation
takes the form

(4ua'„—2tua„+4a„+2gag)G =0.
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where b is the imaginary part of b E. vidently, (i)
implies b'&0 which means that the intensity is
Gaussian in any cross section /=const. Next one
looks up the minimum of the denominator in (23).
With (ii) one finds that the real part of b vanishes,
so that one may write b = i P —with P & 0. Finally,
one considers (iii) which is merely another conven-
tion, fixing the arbitrary constant contained in F in
such a way that F=l at the position of the max-
imum of the intensity. This yields a p=i

The beam function now becomes

2P p2

2ig+2P 2i g+2P

and the dependence of the intensity on the radial
coordinate is

/F i
-exp

$2+p2

Since the beam is Czaussian in any cross section
/=const, we may define a "scaled beam width" p„
as that value of p at which the intensity is e times
its value on the axis. It thus satisfies the condition

which is then solved to give

(g) =[2(P+g'/P)]'" .

We now remember that the characteristic length
lo, used in the scaling of coordinates, still remains to
be chosen. So we impose on the scaled beam width
the condition that it takes the value 1 at (=0. It is
then seen from (25) that P= —,, so that for the beam
function we get

1F= . exp[ p /(2i g+ 1)]-,2i /+1 (26)

while (25) simplifies to

F= exp(ikr /2q),
qo . 2

q

where q:=z —ik Wo /2 and qo. ——q (0). The so-
defined complex function q(z) is referred to as the
"complex curvature parameter" of the Craussian
beam, a nomenclature justified by the fact that the
real part of 1/q does represent the real curvature of
a wave front near the axis.

Other traditional forins of Eqs. (26) or (28) are ob-
tained by writing q (0)/q (z) either as exp[ —iP(z)]
or as ( Wo/W)exp( —i8).

For convenience, we list some of the frequently
used quantities as functions of the scaled length g:

q/qo= 1+2ig, (W/Wo)2=1+4/2

kWO/q =2i/(1+2ig) .

Equation (28) or any of its numerous equivalent
fornis represent the "fundamental mode" of a
Gaussian beam. Higher modes will be described in
the next section.

c. Gauss Laguerre mod-es The. task of solving
the beam equation (17) under specified physical con-
ditions is greatly simplified by the fact that it can be
reduced to a well-known ordinary differential equa-
tion as follows.

I.et Lz (X) be a solution to the "associated
Laguerre equation"

XL"+(m +1 X)L'+pL =0—, (29)

where m is an integer and p is a real constant. Then
the complex function

m /2+p
Gm(, g):=C " X "I.m(X)

( 1+2g)m/2+@ + I

identified with the characteristic length. The pa-
rameter p in (7) now becomes p =c/co Wo.

One thus finds the familiar expressions for the
beam width,

W(z) = W, [1+(2z/k W,')']'",
and for the beam function,

p„(g)=
~
1+2ig

~

=(1+4/2)'/2 . (27) && exp[ —X(1—2ig)/2] (30)

Equation (26) gives the Csaussian beam function in a
handy and explicit manner in teiiiis of the scaled
coordinates.

The transition to the traditional form requires the
return to the unscaled laboratory coordinates r and
z.

In (25) we let p (g) correspond to the "beam
width" W(z), so that we have p~ = W/lo. The con-
dition p„(0)= 1 gives at once W(0):= Wo ——lo which
means that the beam width at the waist has been

with

X:=2 '/(1+4$')

satisfies the beam equation (17). C is an arbitrary
constant.

Since we are interested only in those solutions G
which are regular on the axis p=0, we accept only
those functions L(X) which can be represented by
power series. And since we exclude solutions which
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1 2p!
8'0 (p+m)!

(31)

i.e., for any value of m it holds that (an asterisk
represents the complex conjugate)

diverge for phoo, we admit only integer values of
the parameter p (the other ones would give rise to
divergent solutions). With that the power series
breaks off at the terna of order p, and the solution is
an "associated Laguerre polynomial" I.z . We recall
the Rodrigues foimula (see, for example, Ref. 15)

L m xX—m
(

—xXm+@)
P

p! dX&

Now the function Gz as given by (30) will be
orthonoirlialized in the (r,y) plane by taking

1/2

d. Backward beams. Up to here the description
of beams has been given with the tacit understand-
ing that they propagate in the positive z direction.
In discussing laser resonators it is useful to distin-
guish between the fields which propagate in the for-
ward (+z) direction and in the backward ( —z)
direction.

There is no difficulty in representing the two
kinds of beams. In Eq. (5) a positive k means a for-
ward beam and a negative k means a backward
beam. With the introduction of scaled coordinates,
however, the quantity

~

k
~

has been absorbed into g
and has thus disappeared from the equations. But it
is clear that in order to pass from a forward to a
backward beam all one has to do is to change the
sign of g in the equations. For the Gauss-Laguerre
modes this simply means to replace the beam func-
tion by its complex conjugate.

A function f (p, g) can be developed into a series
(with fixed m)

f (p, g) = g c~ (g)G~ (p, g)
P

whose coefficients are given by

ep (g)=2m'Wo f f(p, g(G "(p,g)pdp .

In the case where f (p, g) is a beam function [i.e., sat-
isfies (17)] the coefficients c~ are independent of g.
It is this property of the Gz which makes them use-
ful in the treatment of laser beams.

The functions G~ are said to describe the
"Gauss-Laguerre modes" of the laser beam. Under
most experimental conditions the beam has axial
symmetry, a case which corresponds to setting
m=0. Formulas (30) and (31) then specialize to (we
omit the superscript index zero)

1/2

G~(p, g)= 2 (1 2ig)~—
(1+2i g) ~+ '

XL~(X)exp[ —X(1—2ig)/2] . (32)

Note that the lowest-order mode Go is the funda-
mental mode F given by (26). The two formulas
differ only by the normalization factor v'2/n8'0 '.

As the axially symmetric Gauss-Laguerre modes
are widely used, we give also their more familiar
form in terms of the beam parameters and in un-
scaled coordinates (with 8;q, 8 given at the end of
Sec. IA2b)

3. The transverse resonance condition

To have something specific in mind, let us consid-
er the "quasihemispheric cavity" (Fig. 1), i.e., a type
quite often used in laser physics. It has a plane mir-
ror (which we put to the left, at z=0) and a concave
mirror (with radius of curvature 8) at a distance d
to the right. The diameters of the mirrors are much
larger than the beam width, i.e., at present we disre-
gard possible diffraction effects.

When a cavity is brought to resonate one finds in
it a mixture of different modes which all belong to
the same curvature q. The latter is determined by
the position of the beam waist and by the "spot
size" Wo. In the assumed configuration the beam
waist is at the position of the flat mirror. Wo can be
obtained in terms of the parameters R and d:

$VO ——v d(R —d) . (33)

This formula can be derived by means of the
"fiansverse resonance condition" which states that
in the case of resonance the curvature of any wave
front is preserved after a round trip.

The familiar formula for the change of curvature
of a spherical wave front and the conservation of
beam waists under reflection lead to (the indices f
and b refer to the forward and the backward beam)

' 1/2
2

G~(r, z) = 8'(z) 'exp(ikr /2q)

X exp[ i (2p +1)8]1.~—(X) . FIG. 1. Laser geometry, schematic.
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1 1 =0 at z=o,
gb

1 1 2+ =—at z=d.
gy gb R

These two equations, together with
q~(d) =q~(0)+d and qb(d) =qb(0)+d give formula
(33).

B. The cavity with an amplifying medium

1. The inhomogeneous medium

The confinement of an amplifying medium in a
tube results in a nonuniform distribution of the
laser-active atoms. This inhomogeneity has been ob-
served as well in a HeNe laser' as in a high-gain
Xenon laser' at 3.5p. In both cases it was found
that the gain was maximal on the axis as long as the
currents were kept sufficiently weak, but that the
opposite was true for stronger currents.

We will describe the density of active atoms by a
parabolic approximation of the form Xo(1—up ),
where u is an adjustable parameter. According to
the experiment just mentioned u can take a negative
value in a high-gain laser with a strong current, but
in that case, the parabolic approximation is often
not sufficient, especially in the case of a high-gain
laser with plane mirrors.

Now, in accordance with a previous calculation
using plane waves, ' we assume the following ex-
pressions for the polarizabilities at a point (p, g).
For a forward wave,

af (p 0)=[ao+4 I Ey(p 0)
I

'

+I 21Eb(p &)
I
'l(1 —up'»

(saturation gratings) nor the variation of the col-
lision parameters as a function of intensity have
been taken into account. The analysis of the param-
eters p~ and p2 reveal the form of the sub-Doppler
line. '9 Furthermore, we are approximating the sat-
uration term by a quadratic expression, e.g., for the
forward wave

(1—up )
I E&(p, g) I

=(1—.p') IE,(o,g) I" p —2

=:(1—Ap )
I Ef(o, g)

I

The interpolating function A (g) will be determined
in such a way that the two expressions on the right
equal each other on a coaxial surface given by
Mop/8'=p, where p is a constant which has to be
given.

This procedure results in the formula

8'0
exp( —2p ) . (35)8'

We emphasize that the parabolic approximation is
not a Taylor expansion in p . Rather we are intro-
ducing an interpolating function A to represent that
part of the lens effect which is due to saturation. It
is important to note that A must be a function of g
in order to assure the same approximation all along
the laser axis.

The equations to be solved are (11) and (12) with
their counterparts for the backward wave. In their
right-hand sides we need the expressions a„r and a„b
for the nonuniform parts of the polarizability of the
forward and the backward wave. According to (34)
and (35) we can write

for a backward wave,

(34a) a„q coT~(g) p[u——ao+A eoT—~(g)],
a„b eoTb (g) p——[u ao+A—EDTb ( g)], (36b)

ab(P 0) [ao+~2
I Ey(p &) I

'

+~i I Eb(p 4)
I

'](1—u p') .

Expressions for the complex quantities ao, P~, and
P2 can be found in Ref. 18 (where P| and P2 had
been named a~ and a2).

In the above fortxiulas, the "forward" and the
"backward" fields have been separated since they
have quite different amplitudes, as we will see later.
The coefficient P~ takes care of the self-saturation of
a wave, whereas p2 is responsible for the saturation
by an oncoming wave, a phenomenon from which
the Lamb dip originates.

The description of the saturated medium has been
simplified since, e.g. , neither the spatial harmonics

Tg (g):= E&(o,g) I

'+
I

E (o,g) I

',
6'0 6'0

E~(o,g)
I

'+ '
I
E,(o,g)

6'0 60

(37a)

(37b)

We then get the following equations for the trans-
verse and the longitudinal field components of the
forward wave (we delete here the subscript f to un-
clutter the notation):

VT(pV rFT+8 B&—F&+r'F&)+VV TFT

+p B~FT+2ipB~FT —p FT——,3 2 ( 0'nf

6'0
(38)

where we have introduced the auxiliary functions of
a single variable
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p—B~(VTFT ) i—pV TFT+p V TFg

CXf1+ Fg . (39)
Ep

Similar equations hold for the backward field.
The equations are to be considered within the

framework of the paraxial approximation. The
reasoning is similar to that of Sec. IA1, and we
conclude as before that F~ is of order one in the
development parameter p.

I

However, we now relax the smallness condition on
a„/eo and require only that it is of order two in p
(and not, as assumed in Sec. I A 1, of order three), or
even greater than that. For instance, in the case of a
HeNe gas laser working at 3.39p the order of mag-
nitude is 5 X 10 for p, and 5 X 10 for ao/ec.

With that assumption, Eqs. (38) and (39) give the
following in lowest order (as only transversal com-
ponents of order zero enter the equations, we delete
the subscript T and the superscript zero in the beam
function). For a forward wave

2

V Ff(p, g)+2iB~Ff(p, g)= — W Tf(g) p —u +ATf(g) Ff(p, g),
C E'p

(40)

for a backward wave

2

VTFy(p, g) —2 Bye(p, g) = — Wo Ty(g) —p u +ATb(g) Fb(p, g)
C 6'p

(41)

The first teriri in the square bracket on the right-
hand side corresponds to the case of a homogeneous
medium while the second one, due to its dependence
on the radial coordinate, describes the lens effects.

Notice that, for positive u, the lens effect due to
saturation (proportional to Pt, P2) is opposite to the
one due to the distribution of atoms (proportional to
ao). These effects are illustrated in Fig. 2.

2. The inhomogeneous beam equation

Despite all previous simplifications (40) and (41)
still constitute a coupled system of nonlinear partial
differential equations. The problem of solving this
system is greatly facilitated by the fact that a suit-
able substitution converts it into a system of ordi-
nary differential equations.

We write for the forward and the backward beam

It is seen that ref and gf describe, respectively, the
modification of the beam diameter and the radius of

n-1 I( n-g

I

the empty cavity.
ef represents the modification of the longitudinal

part (phase and amplitude) of the field, while —,ref
describes the modification of the transverse part
(complex curvature, i.e., R and 8'). The new trans-
verse parameter is then

1 c 1 . c 1+ 2 gf ———+2i
qf ~WO R ~ 82

Ff(p, g) =Fof(p, g)exp i ef —7/f
p'
2

Fb(p, g) =FOI, (p, g)exp i Eb+-p'

(42a)

on axis
off axis

(42b)

where Fof and Fob are Gaussian beam functions
[satisfying (40) and (41) with vanishing right-hand
side] and where Ef, ref, eb, and gt, are (as yet un-
deteiiriined) complex functions depending on the
real variable g.

The approach is based upon the idea" that the
presence of an amplifying medium results in a modi-
fication of the Gaussian mode which was found in

FIG. 2. Lens effects due to the inhomogeneity of (a)
the saturation and (b) the distribution of amplifying
atoms. (a) On the high-frequency side,

~

n —1
~

increases
away from the axis, causing the optical length to be
greater in the outer regions. This amounts to the action
of a diverging lens. For low frequencies one finds the
contrary. (b) The number of amplifying atoms decreases
away from the axis, resulting in a lower value of

~

n —1
~

in the outer regions. This amounts to the action of a con-
verging (diverging) lens on the high- (low-) frequency side,
giving lens effects opposite to those of (a).
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curvature due to the lens effects and are dependent
on frequency. Previously, the modifications had
been terrified "R effect" and "W effect."'

When (42) is inserted into (40) one finds for the
two beams the ordinary differential equations

feet, nicely observed in a recent experiment. In the
present work we will use (43) and (44) together with
a simplified expression for the field amplitude in or-
der to compute the z dependence of various relevant
variables.

1 co
eb +i t)b ——— WOTb,

c

(43a)

(43b)

II. THEORY OF A DIAPHRAGMED
LASER WITH AN AMPLIFYING

INHOMOGENEOUS MEDIUM
t'

4i 2 co 2 CXp

gj+ . rjf+rif ——— Wo u +ATf1+2i C &p

4i 2—
Ib ~ Ib+ Ib

1 2ig—

(44a)

Q) 2 p2

Wo u +ATb
t

6'p

(44b)

Equations (44) describe the evolution of the trans-
verse parameters rjf, rib along the axis. For an opti-
cally thin medium, the case we are interested in, rI
is much smaller than 11 and can, therefore, be
neglected. The equations are still nonlinear and they
are coupled via the functions T.

A.pproximatesolutions of these equations in the
case u=0 and p=1 show" that self-focusing and
self-defocusing effects depend on properties of the
medium and on boundary conditions. Properties of
the medium are reflected in 11f by a dispersion-
shaped function and in ref by a symmetrical func-
tion of frequency. Boundary conditions influence
these quantities much less, but it is important to
note that they give rise to an asymmetric part of the
function ref. The reason for the importance of this
fact is explained by Eq. (43) which expresses ef as a

function of ref and Tf. Remarking that ef' is that
part of the differential gain which describes satura-
tion, we see that ej' depends on rjf alid Tf. Now,
the nonsymmetrical function appearing in 11f will

give rise to a nonsymmetrical saturation curve and
this, in turn, will result in an asymmetrical line
shape. We have experimentally verified this predic-
tion' at 3.39@ using a segmented tube working at a
high current in order to decrease the inhomogeneity
in the distribution of atoms. In that paper, evidence
has been given that the R effect and the "Garside ef-
fect" add together to give an asymmetry such that
the maximum of intensity is on the low-frequency
side of the line. This can be measured using a small
area detector near the mirror on the laser axis. If
the total output energy of the laser is measured with
a large area detector, this asymmetry is considerably
decreased by the W effect which almost cancels the
R effect. What remains is essentially the CJarside ef-

A. Resonant field distribution
in an empty diaphragmed cavity

In order to assure the single-mode operation of a
laser it is necessary to suppress the Gauss-Laguerre
modes of higher order, i.e., for m and p&0. Experi-
mentally this is achieved by placing a diaphragm in-
side the cavity. It causes increased losses for the
higher modes simply because it limits the spreading
of the beam. However, the modes themselves are
changed by the diffraction effects induced by the
diaphragm. Every new mode is characterized by its
own proper amplitude and phase distribution. An
appropriate means for their description are the
Gauss-Laguerre modes and it is the aim of this sec-
tion to develop the corresponding method of calcu-
lation.

We first consider an empty cavity with the dia-
phragm at the location of the concave mirror (Fig.
3). As the cavity is axially symmetric we are dealing
with beams having axial symmetry. Thus, any field
inside the cavity can be decomposed with respect to
Gauss-Laguerre modes Gz (:=Gz).

In order to foririulate the resonance condition we
need the notion of the "round-trip operator" W.
Consider the changes a wave front undergoes during
a round trip inside the cavity: A phase change at
every reflection by a mirror, a change of curvature
upon reflection by the concave mirror, and the dif-
fraction by the diaphragm. The round-trip operator
summarizes the changes of the field during a round
trip by giving the final field in terms of the initial
field. The resonance condition will, of course, state
that the proper wave mode does not change during a
round trip, in other words, that it is an eigenvector

FIT+. 3. Diaphragmed laser.
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of the round-trip operator.
As before, we use the indices f and b to distin-

guish between the forward and the backward field.
The concave mirror is at z =d, the radius of the dia-
phragm is denoted by b. The reflectances are denot-
ed r~ for the plane and rz for the concave mirror.
We write the equations of this paragraph in the
coordinates r, z.

Let the field at the position of the mirrors be
given by the following expressions:

Ff(r, O) =g f~G~p(r, O),
P

Fb(r, O) =g b~Gb~(r, O),

Ff(r, d) =g f&G~&(r,d),
P

Fb(r, d)=gbpGbp(r, d) .
P

(45b)

Equation (45) allows one to calculate the coefficients

br ——J Fq (r, d)Ger (rd)de,
as integrals over the infinite surface z =d. Using
(46) we get

b

b& 2mr& r d——r Ff(r, d)G~&(r, d)
0

=2ere J r dr g fqGIq(r d)Ger('r d)

The conditions imposed on the field by the dia-
phragm are

r~Ff(rd) for r & b
(46)

9F~ ——rz rzexp(2ikd 2i—Od )A~ . (47)

The proper modes of the cavity are the eigenvec-
tors of this operator. They are complex since the
operator is complex. The same holds true for the
eigenvalues each of which is then characterized by
an amplitude (absolute value) and by a phase.

The eigenvector belonging to the "largest" eigen-
value can be found by the iteration method of Caul-
field et al. As the diameter of the diaphragm is
increased, this vector approaches the fundamental
Gaussian mode and in that sense it may be regarded
as the fundamental mode of the diaphragmed cavity.
The following treatment is concerned with this fun-
damental mode.

After having deternbined the coefficients fz one
can also compute the b~ and thus obtain the intensi-
ty distribution for the field corresponding to the
fundamental mode. Figure 4 shows various intensi-
ty distributions which have been calculated for
demonstration purposes. The calculation of the
field was done under the assumption that during a
round trip the losses were completely compensated
by the amplifying medium whose gain was taken to
be constant inside the tube. In Fig. 4(b) one notices
that the maximum of the intensity is not at the posi-
tion of the plane mirror, but occurs in the backward

Defining the symmetric matrix elements
Xb

A =exP[ —2((F ~q)()e] f e Lr(X)Lq(X)dX

we can write

b~ =r~exp(2ikd —2i8„)g A~f, .
q

r
r

r
r

FORW D FIELD

(b&

We recall the foiix2ulas Hd
——arctanv'(R —d)d and

Xb 2b /No, .—— where Wd. ——W(d)
= WII&R /(R —d).

At the plane mirror, the condition of reflection is
r~b~ =f~. Thus, a field of the form (45) and reflect-
ed by the plane mirror will be transformed into a
field g f~ G~~(r, O) with

f& rzrzexp(2ikd 2i Od )g——A~fq . —
q

As the resonance condition states that after a round
trip fz ——kfz holds for all p, we get for the elements
of the round-trip operator

DISTANCE TO PLANE MIRROR (c m )

FIG. 4. Resonant diffracted field distribution along the
laser axis with the diaphragm (a) on the plane mirror, (b)
on the concave mirror. Curves were calculated through
the use of (a) 100 Laguerre polynomials, (b) 60 polynomi-
als. We have noted that the greater the number of poly-
nomials, the better the definition of the curves. Step
width in the calculation is 4 mrn, corresponding to 100
steps along the length of the laser. These curves are com-
parable to those obtained in the study of diffraction phe-
nomena outside a resonant cavity (Ref. 21).
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beam which also contains other oscillations due to
diffraction. In contrast, the forward beam shows a
more regular behavior. The curves exhibit the
familiar features of light diffracted by a circular
aperture. ' One also notices that the converging
power of the diaphragm is added to that of the con-
cave mirror, a fact which explains the shift of the
maximum of intensity to the right. Similarly, Fig.
4(a) shows the distribution of intensity, calculated by
the same method as before, in the case where the
diaphragm is at the plane mirror. Here, the max-
imum of intensity appears on the forward beam, giv-
ing a diffraction figure which is different from the
previous one.

B. Diffraction effects in a gas laser.
Numerical calculation

We consider a diaphragmed laser with axially
symmetric geometry and an axially symmetric inten-

sity distribution in it. The fields are written as a su-
perposition of Cxauss-Laguerre modes:

Ff (p, P) =P f&Gyz (p, P )exp [ i—( mfa
—,p p—fp)],

p (48a)

Fb(p, p) =g b~Gb~(p, g)exp[ —i(eb&+ , p r—ib~)] .
p (48b)

The complex functions ef&(g) gfp(g) eb&(g)
gb (g) represent the change of a mode p due to the
laser action. The coefficients f~ and b~ are obtained
from the resonant field of the empty cavity and are,
therefore, independent of the coordinates. Equa-
tions (48) thus generalizes (42) which applies to the
case p =0. We will use (48) as an ansatz for the nu-
merical solution of the basic equations (4Q) and (41).

So, we insert (48) into Eqs. (40) and (41) and con-
sider the resulting equations. After some algebra we
find for their left-hand side

& +—~ +2 &g Ff(p, g)=g f Gf (p, g) p[ —(ef ——,p'gf )]

4i 2 p —1X ~(&fJ +&qfJ ) —P gf~+ . gfJ +'gfJ + P1+2i I.p gfp o (49)

A similar equation would have to be written for the
backward field. Evidently, the last term in the large
square brackets vanishes when p is zero, giving back
the terms on the left-hand side of Eqs. (43) and (44).
Also, for small values of p, the term behaves as p .
If the terna would be neglected, the equations would
be decomposable into a set of pairs of equations
identical to the pair (43) and (44). On the other
hand, if the telIxi is retained, the splitting of the
equations into tei-its which are either independent of
p or proportional to p would be impossible and the
advantage of the method would be lost.

Physically, the term in question is responsible for
the variation of the figure of diffraction with fre-
quency. Since the medium is optically thin and,
consequently, that variation is small, we will drop
the term from the equations. Moreover, we will as-
sume that the active medium will change each mode
in the same way. This amounts to assuming that
ey& ef and ritz -'tif for all p, and similarly for the
backward beam.

We now can write (48) in the form

Ff(p, g) =exp[ —
& (ef , p ref )—]g f~Gft, (p, g), —

(50a)

=Efexp[i ( kz rot) i cf—]Vf (z—),
Eb(D,z) =Ebe' "Ff(O,z)

(sla)

=Ebexp[i ( —kz cot) i eb]—V—b(z), (51b)

where Ef and Eb are constants and where we have
defined

Vf(z):=g f~Ggp (O,z),

Vb(z): =g bb Gbp(O, z) .
p

From Eqs. (43) and (51a) we obtain the following
difference equations (dz is the step size to be chosen
for the integration):

~
Ef(o,z+dz)

~

2
Vf(z +dz)=

i
Ef(O,z)i

f z

The expressions for the fields Ef(O,z) and Eb(O, z)
needed on the right-hand sides of (43) and (44) then
take the form

Ef(O,z) =Efe Ff(0 z)

Fb(p, g) =exp[ i(eb+ —,p —7ib)]g b~Gb~(p, g) .

(5Q

r

Xexp —2dz k'+ —
2 + Tf

c If co g

co p'0 2c
(52a)
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X:=
~
Ef(d) ~, Y:=rjf(d) Z ~

—gf(d) .

We are looking for those values X, Y,Z for which the
functionals L,M, N vanish.

To determine a suitable starting point for the ap-
proximation we first calculate values Xi, Yi,Zi by
using a mean field (E ) approximation" for the
center of the line, getting

(ao/e—o) + ( A, /4md)ln( r~.rg )
~ ~

(p'i+ p~)/eo

F( ——

Zi ————,A 8'OTf'= —3Wo(p'i+ p2) i
E

~

/4eo .

Using Eqs. (52) and (53) we now find the values
Li,Mi, Ni at z=0. In the next step we calculate
L2,M2, N, at a po int X2 ——Xi+dX, Y, = Y„Z,=Z, .
This gives the partial difference quotients

aL/aX =(L2 L i )/(X2 —Xi )—,
aM/aX = (M2 —M i )/(X2 —Xi ),
aN/ax=(N, —N, )/(x, —x, ) .

Similarly, variations of Y and Z yield the other
difference quotients. When Z is varied we have to
recalculate the functions Vf(z) and Vb(z) and the
eigenvalue A~.

One arrives then at the linear system

x' aI. /ax aL, /aY aI. /az dx
Y, = Y + aM/ax aM/aY aM/az

z aN/ax aN/aY aN/az dz

Xi

Zi

The values obtained for X, Y,Z are closer to the solu-
tion and will be used as initial values in a repetition
of the procedure. Three loops are sufficient to ar-
rive at a relative precision of 10 . The solution ob-
tained for the central frequency is now used as ini-
tial values in a similar calculation for a neighboring
frequency, and so on. The calculation is ternunated
when the intensity reaches the value zero.

We have not yet calculated the optical length of

and the boundary conditions lies in the fact that the
latter depend on the solution itself, so that we are
dealing with a self-consistency problem. We will at-
tack that problem by using Newton's approximation
method. It will be applied to find the zeros of the
quantities

L:=
I
&f(0)

I

'/
I
Ei (o)

I

' —
I ~~

I

',
M:=iaaf(0)+gb(0), N:=rIf(0)+gb(0)

considered as functionals of the variables

the laser which would permit us to study the non-
linear displacements of the frequency (push-pull ef-
fect).

Numerical results

The numerical results we are going to describe in
this paragraph correspond to a HeNe laser operating
at 3.39@. For the atoms we have taken a ratio of
y,&/kUM —0.3 where y,b is the inverse lifetime of
optical coherence and kUM is the half-width of the
Doppler profile. These data fix the plasma disper-
sion function' which appears in the expressions for
the coefficients ao, Pi, and P2. The geometry of the
laser is given by R =60Q mm and d =4QQ mm.

Our main objective is to illustrate two important
theoretical results: First the variation of line shapes
due to the inhomogeneous distribution of amplifying
atoms, and second the variation of line shapes with
the inhomogeneity of the field.

Experimentally, the first type of inhomogeneity
can be varied by changing either the diameter of the
tube or the intensity of the discharge current. We
will give three series of curves (Figs. 5—7) all corre-
sponding to the same data with the exception of the
parameter u [cf. Eq. (36)]. An increase of u means
an increase of the degree of inhomogeneity of active
atoms.

Figure 5 corresponds to a value of u =8'o/4
which is consistent with a tube of 4-mm diameter
and a parabolic distribution of amplifying atoms
which vanishes at the boundary. We have drawn
five curves, numbered 1 through 5 in each series,
which correspond to five values of the indicated
round-trip gain for the amplitude.

Figures 5(a)—5(c) describe, respectively, the inten-
sity on the axis as it can be measured by a small area
detector near the concave mirror, the variation of
W(d), and the variation of R (d), i.e., the radius of
curvature of the Gaussian beam at z =d. The medi-
um fills the entire cavity. The diaphragm is placed
on the concave mirror, its diameter is 2b =2.6 mm,
so that b/W(d)=1. 36. Since the value of u is
small, the saturation effect overpowers the effect
due to inhomogeneity of the active population and
the maximum of the intensity is found on the side of
lower frequencies, as usual in the case of pure self-
focusing or defocusing effects. " In Fig. 5(b), the
variation of W(d) shows a form of dispersion
which agrees with previous calculations" and exper-
iments. ' In that figure, 8'(d) denotes the value
for the passive cavity. The variation of R (d), which
is the cause for the asymmetry of the gain, has its
extremum on the side of low frequencies.

Figures 6 and 7 give the same type of results as
Fig. 5, however, for parameter values u = Wo/(0. 9)
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FIG. 8. Distribution of the diffracted field along the
laser axis (a) when the diaphragm is on the plane mirror
and (b) when it is on the concave mirror. Curves are
drawn for various frequencies. (a): 100 Laguerre polyno-
mials, b/Wo 1.3, ga——in 1.42, u =$Vo/1. 4, p=1.5. (b):
60 Laguerre polynomials, b /W(d) = 1.36, gain 1.45,
u = S'o/0. 81, p=1.5.

(Fig. 6) and u = Wo/(0. 85) (Fig. 7). Figure
6(a) shows an evolution of the line shape: With in-
creasing gain the curves become more and more
symmetric. This is due to an increase of saturation
inhomogeneity which overcomes the effect of the in-
homogeneity in the distribution of amplifying
atoms.

Figure 7(a) shows the line shapes in the case
where the population inhomogeneity is large: The
maximum of the intensity is now on the side of the
higher frequencies.

The three figures 5, 6, and 7 show that the inho-
mogeneity of the population plays an important role
in the foririation of line shapes. This effect has been
observed in experiments by Abraham and Kranz
using the 3.5-)tt,m line of Xe. They found that a
variation of the discharge current can give rise to a
change in the asymmetry of the line. The theory
presented in our work furnishes an explanation for
this observation: In the case of weak currents, the
population inhomogeneity is large and one finds the
maximum of intensity on the high-frequency side.
If the current is increased, the population inhomo-
geneity decreases and the intensity maximum shifts
to the low-frequency side. One would expect that
the same phenomenon should be observed also with
the 3.39-pm line of Ne. First observational results
which we have obtained confirm this expectation.

0
The situation is different for the line at 6328 A since
there, because of the much smaller diameter of the
mode, one would need a very large population inho-
mogeneity to observe the effect.

We have made calculations identical to those
whose results are described above, but for the case
where the diaphragm is placed on the plane mirror.
The results are qualitatively the same as before,
apart from the fact that one now has a different dis-
tribution of the field in the cavity. Figures 8(a) and
8(b) which give the distributions of the on-axis in-
tensity for different frequencies in the two cases,
show that the variation of rl' is too small to intro-
duce a noticeable dependence of the diffraction fig-
ure on the frequency and that the essential
phenomenon is a translation of the intensity with
frequency. We think that the variation of the figure
of diffraction with frequency could be obtained if
the terni

p(p, g) p[ (efp —i p gfp)]

X 4ip(1 Lp )/Lp )—rlfp

which occurred in Eq. (49) and which we have
neglected in the numerical calculation could be tak-
en into account.

The curves of Figs. 4 and 8 show that two regions
should be distinguished in a diaphragmed laser:
One region on the side of the plane mirror where the
intensity is increased, and the other region on the
side of the concave mirror where the intensity is
much weaker. The existence of these regions sug-
gests calculations for the two cases where the ampli-
fying medium, instead of filling the entire cavity, is
placed in one or the other of them. We have adapt-
ed the program to these cases simply by setting
ao ——P~ ——P2 ——0 in the regions in which there is no
amplification. We thus consider a situation where
the amplifying tube has just half the length (200
mm) of the cavity. The diaphragm is placed on the
side of the plane mirror. Figure 9 shows the results
when the tube is placed in the region of high intensi-
ty on the side of the plane mirror. Figure 9(a) shows
the intensity curves: The saturation is strong and
the maximum of the intensity is on the side of the
lower frequencies. Figure 10 shows the results for
the case in which the tube is placed at the concave
mirror: Due to the dominating effect of the popula-
tion inhomogeneity, and to different boundary con-
ditions, the line shapes show an asymmetry in the
opposite sense. In both cases the same sets of pa-
rameters were used. We also remark that between
the two regions there should be a position of the
tube where one would obtain quasisymmetric line
shapes, but where the asymmetry would be particu-
larly sensitive to changes of the discharge current,
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dinal inhomogeneity of the saturation. Finally, we
have calculated the line shapes corresponding to a
variety of experimental conditions. On the basis of
our results we can predict that line shapes change
with the different types of inhomogeneities which
exist in the amplifying medium and which them-
selves depend on macroscopic physical parameters
of the laser such as the diameter and the form of the
tube, position of the tube in the cavity, curvature
and reflectance of the mirrors, distance of the mir-
rors, position and diameter of the diaphragm,
discharge current, and pressure and composition of
gases. When the beam diameter becomes compar-
able to a characteristic length describing the inho-
mogeneity of the population, the line shapes are very
sensitive to the parameters mentioned before, as has
been shown, for instance, in the case of the 3.39-pm
line in Ne, or the 3.52-pm line in Xe. For lines in

the visible range as, e.g., the 632.8-nm line of Ne,
the diameter of the mode in much smaller and the
asymmetry of the line is, in general, deteiinined by
the self-focusing and defocusing effects.

Our study explains some recently observed phe-
nomena. Abraham and Kranz discovered a
change of asymmetry of the 3.52-}Mm line of Xe with
a variation of the discharge current. We have made
the same observation on the 3.39-pm line of Ne.

This work thus demonstrates the important role
played by macroscopic inhomogeneities in the ex-
planation of line shapes.
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