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Quantum theory of laser-radiation scattering by electrons in magnetic fields
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We consider a system consisting of an electron in a static magnetic field, interacting with

the quantized electromagnetic field, within the nonrelativistic and electric dipole approxima-
tions (with a cutoff in momentum space). The Heisenberg equations of motion are solved

exactly and the time evolution of the electric field is determined. The power spectrum of
the scattered radiation is calculated when the electromagnetic field is initially in a coherent
state. Our results for the line shape of the scattered radiation are shown to be valid for
magnetic fields up to 10' G. The quantization of the electromagnetic field allows one to
consider effects of the natural linewidth and its dependence on the magnetic field. The re-

normalization of the electron mass is included in our treatment, and the results remain finite
when the cutoff goes to infinity.

I. INTRODUCTION

The interaction of electrons, atoms, and molecules
with strong electromagnetic fields has attracted con-
siderable interest in recent times, stimulated by the
possibility of laboratory production of strong mag-
netic fields, by the advent of high-power lasers, by
the development of plasma physics, and by
discoveries in the field of astrophysics.

In fact, laser intensities up to 10' W/cm have
been attained in recent experiments, ' while mag-
netic fields of up to 300 kG continuous or 10 G
pulsed have been obtained in the lab. Furtheriaore,
recent observations of the x-ray binary source Her
X-1 indicate that the distance between Landau levels
in this case is of approximately 58 keV, which corre-
sponds to a magnetic field of the order of 0.5 && 10'

For fields of this order of magnitude, new effects
show up which cannot be predicted with the usual
perturbation techniques. New schemes have thus
been developed, either using modified bases which
include already part of the effect of the electromag-
netic field, 7 or applying semiclassical approxima-
tions, or variational methods, etc.

In the present work, we study the interaction of
an electron with a static and uniform magnetic field,
in the presence of the quantized electromagnetic
field, by means of an exactly soluble model. Exact
solutions were obtained by Redmond' for the
Klein-Gordon and Dirac equations corresponding to
a charged particle moving in the presence of an elec-
tromagnetic plane wave plus a static and uniform

magnetic field parallel to the wave propagation
direction. On the other hand, approximate solutions
for potential scattering in the simultaneous presence
of a laser field and a static and uniform magnetic
field have been presented by several authors. 6'"
This process seems to play a role in the problem of
plasma heating by lasers. ' The corresponding cross
sections exhibit resonant behavior, " which has al-
ready been observed in photoionization experiments
in the presence of strong magnetic fields. '

In all these approximate treatments, the laser field
is considered to be an external field, and the transi-
tion probabilities are calculated taking the potential
as a perturbation and applying Born's approxima-
tion. Consequently, these treatments do not allow
the calculation of the spectrum of the scattered
field, or the study of the system in the resonant re-
gion, when the Born approximation ceases to be
valid and the linewidth of the Landau levels be-
comes important.

The model here considered allows the study of the
line shape of the scattered radiation, in the reso-
nance region, calculated from the electric field
correlation function. The electric field, on the other
hand, is obtained by solving the Heisenberg equa-
tions of motion.

This procedure has been frequently adopted in
quantum optics, ' ' and allows one to avoid the
usual perturbation theory, as developed in the
Schrodinger picture. In particular, a model similar
to the one here proposed was considered in Ref. 16.
It consists of a nonrelativistic isotropic harmonic os-
cillator interacting with the quantized electromag-
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netic field, in the electric dipole approximation
(which is also adopted in our model, as in all of the
above-mentioned approximate solutions). The elec-
tric field in the Heisenberg picture is explicitly
found. Our model is, however, more realistic than
the one studied in Ref. 16; besides that, we calculate
the power spectrum of the scattered radiation and
consider renoinialization effects, which is not done
in that work.

In Sec. II, we define the model and estimate its re-
gion of validity. We show then that it remains valid
for magnetic fields up to 10' Cx, close to the most
intense fields already observed in astrophysics. In
the Hamiltonian defining the model, we introduce a
cutoff in momentum space for the quantized elec-
tromagnetic field, thus avoiding the typical diver-
gences of quantum electrodynamics.

In Sec. III, we calculate the electric field in the
Heisenberg picture, expressing it in terms of the
electron renorrikalized mass. This mass is calculated
by diagonalizing the free-electron Hamiltonian,
which can be exactly done, following a treatment by
Van Kampen, ' discussed in Appendix A. After re-
normalization, we show that the results are practi-
cally independent of the cutoff, remaining finite in
the limit when this cutoff is taken to infinity. In
particular, the fact that we have here an exactly
soluble model allows one to follow in detail the
behavior of the "runaway" solution, which shows up
frequently in problems of this kind. ' This is done
in Appendix B.

In Sec. IV, we calculate the spectrum of the scat-
tered radiation, for the case in which the elec-
tromagnetic field is initially in a coherent state. The

spectrum exhibits a resonance around the cyclotron
frequency, its width increasing with the magnetic
field. In Sec. V, we summarize our conclusions.

II. THE MODEL

H = p ——A(r)
C

2m

+ g f d k(kear(k)ar(k) —(e/rn)S 8, (2.1)

where

co= [k/c,
A(r) =AM(r)+AF(0)

AM(r)= —,BXr,

(2.2)

(2.3)

(2.4)

and A F( r ) is the quantized electromagnetic vector
potential regularized by the electronic charge distri-
bution:

)kr(r)= fP(r')Ar(r+r )der', '

where

(2.5)

We take the electron initially as a finite size parti-
cle, with a charge distribution ep(r). Later on, we
shall take the point-electron limit, after mass renor-
malization. The magnetic field is considered as an
external field, described by a constant vector B, tak-
en along the z direction. The Hamiltonian of this
system is given by (the cgs system is used
throughout)

'2

3

Ar(r)=g f (2m. ) /

' 1/2

[ag(k)ei(k)e'" '+ay(k)eg(k)e '"''],
CO

(2.6)

[ag(k), ag (k ')]=5(k —k ')5i ~, (2.7)

f p(r)d r=l .

In Eq. (2.6), A, is the polarization index, e~(k ) are the polarization vectors, such that (Coulomb gauge)

k.eq(k) =0 .

(2.8)

(2.9)

(2.10)

Notice that the quantization volume is taken to be infinite from the outset.
In Eq. (2.1), the field AF(r ) is taken at r =0, which corresponds to making the electric dipole approxima-

tion. Consistently, we have neglected the interaction of the electron spin S with the magnetic field associated
with A ~( r ).

If g(k) is the Fourier transforirk of p(r),

g(k)= f )pe('r" "rd, '
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then

3

AF(0)=g f
1/2

Ac g(k)[ai(k)ei(k)+ai(k)e i(k)] . (2.11)

[e /8' (2.12)coc r

so that

We examine now the conditions of validity of the
approximations made in the present model.

The electric dipole approximation requires that
the relevant wavelengths be much larger than the di-
ameter of the region in which the electron moves.
In particular, if we take the initial state of the elec-
tromagnetic field as a coherent state, the corre-
sponding wavelength must be large enough so that
this condition is satisfied. Furthermore, since the
electron is not confined along the direction of the
magnetic field, the propagation vector of the initial
electromagnetic field must be orthogonal to B.

On the other hand, the nonrelativistic approxima-
tion requires that the electron's speed be much
smaller than c, at least for the first Landau orbits.
Thus if co, is the cyclotron frequency and rL the ra-
dius of the first orbit, one must have

' 1/2
1

of the Dirac equation with a homogeneous magnetic
field to calculate Compton and Thomson scattering
in the Born approximation, considering the laser
field as an external field.

Besides this condition on 8, one also must impose
an upper limit on the amplitude of the laser field.
In order to do that, one must study with some detail
the motion of the electron, which will be done in
Sec. III B.

The form factor g(k) should also be compatible
with the approximations made so far. It should not
only cut off the contribution of relativistic wave vec-
tors in expressions like (2.11), but also of wave vec-
tors such that krL ) 1. We shall see however that,
after mass renormalization, the solution will be quite
insensitive with respect to the cutoff procedure.

III. THE ELECTRIC FIELD

A. Solution of the Heisenberg
equations of motion

8 ((8„=m c =4.4X10"G . (2.13)

From the Hamiltonian defined by Eq. (2.1) we
derive the following Heisenberg equations of
motion:

This restriction on 8 is not serious, since the critical
field 8„ is much larger than the strongest fields
produced in the laboratory, and still allows the treat-
ment of the magnetic fields observed in astrophy-
sics. On the other hand, the above condition is
equivalent to

r(t) = p(t) ——A(r, t)
PPl C

e- eB
p(t) = p(t) ——A(r, t) X

c 2mc

(3.1)

rL ((A,~ (2.14)

where A,, is the wavelength associated with the cy-
clotron frequency co, . Equation (2.14) shows that,
so long as the relevant wavelengths of the elec-
tromagnetic field be of the order of or larger than
A,„the electric dipole approximation is valid for the
first Landau orbits, if 8 «8„. In particular, for
resonant fluorescence, A, =A,„and the conditions of
validity of the electric dipole and nonrelativistic ap-
proximations coincide.

For more external orbits, the upper limit for 8 be-
comes more severe. However, the conditions of va-
lidity of the electric dipole and the nonrelativistic
approximations remain the same: u =co,r «c or
r «A,„where r is now the radius of an arbitrary
Landau orbit. A treatment valid for 8=8„has
been presented by Herold, ' who used the solutions

' rxa,
2c

(3.2)

ai (k, t) = itoai ( k—, t)

27Tl 8+
m (It co) i~2 g(k)

X p(t) ——A(r, t) e i(k) .
C

(3.3)

Because of the assumption that B is independent of
r, the spin teria' does not contribute to these equa-
tions.

Since the above equations are linear, they can be
solved by the Laplace transform method. We take
for simplicity

g(k) =P~(P'+ k')'" . (3.4)
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When p—+ oo, one has g ( k )—+1, which is the point-
electron limit.

Let x(t), y(t), and z(t) be the Cartesian com-
ponents of r(t), and let r(s) be the Laplace
transfornk of r(t):

2e2P

3mc

/e /8
CO~ =

SPIC

(3.10)

(3.11)

r(s)= f r(tie "dt . — (3.5)

The components x(s), y(s), and z(s) of r(s) are
given by

x(s)+iy(s) =0 (x+. iy )
s +pc

s

+pc
s [s +Pc(1+y)]

(3.6)

(3.7)

where x, y, and z are the unit vectors corresponding
to the directions x, y, and z,

r(t)= f ds e"r(s),2mi. (3.12)

where the contour I is parallel to the imaginary
axis, and to the right of all the singularities of r(s).

One gets then (in diadic notation):

r(t)= f dec"0 g e
(s —$0)(s —si )

and a is the fine-structure constant.
The vector r(t) is given by the inverse Laplace

transform of r(s):

( )
s+pc(1+y)

s+pc 2177C

+ g f g(k)
a~(k)e~(k)

s +ikc

Q(s) =s +[pc(1+y) ice, ]s—ice,pc-,
e r(0) XB p(0)

(3.8) s+pc+e+E'
(s —$0)(s —si )

s +pc+zz
s [s +Pc(1+y)]

(3.13)
a&(k) e,(k)

s —ikc

where

e+ ——e* =(x+iy)IM2, (3.14)

(3.9) and so and s i are the roots of Q (s). One also gets

1 „ p(0) ep(t)= f dec*' + [sr(s) —r(0)]XB
2mi s 2c

(3.15)

1/2
as(k, t)=as(k)e ' ' — g(k)et(k) f dec"

4m. k I" s+i c
(3.16)

B. Electron operators in the
point-electron limit

Up to now, we have considered the electron as
having a finite size. If we now set P~ ao, we get a
point electron. However, in order to proceed to this
limit, one must distinguish between the mass m in
the Hamiltonian (2.1) and the measurable physical
mass of the electron m~. This distinction arises
naturally when one diagonalizes the Hamiltonian
corresponding to a free electron interacting with the
quantized electromagnetic field, which can be done
exactly, after making the nonrelativistic and electric
dipole approximations. In this case, the Hamiltoni-

an is obtained from the one given by Eq. (2.1) by set-
ting AM ——0. The diagonalization of the resulting
Hamiltonian is done in Appendix A, following a
procedure by Van Kampen. ' The following spec-
trum is obtained:

~2 +1
E = g + g f dk RteNst(k),

2m (1+y) ~ i
0

(3.17)

where N~(k) )0. The first term on the right-hand
side of Eq. (3.17) can be interpreted as the kinetic
energy of the electron and the second term as the
sum of the energies of the photons present in the
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m?i ——m (1+y) . (3.18)

several modes of the field. The mass which shows
up in the kinetic energy tekitk is not the original
mass m, but a new value m (I+@),which should be
identified with the physical mass m?i. We have,
therefore,

3m?i c 3

lim si —— [1+O(aa)],P~~ 2e
(3.21)

/e /8
CO~ =

mme
(3.22)

where co,
' is the physical cyclotron frequency, that is,

Since the physical mass m?? should be finite, we re-
quire that when P~ oo, m ~—oo. Our results will
all be expressed in teriiis of the renoriiialized mass
mg.

In particular, after replacing m by its expression
in tex-riis of m?i, one gets (see Appendix B)

a =f?to,'/mac =8/8„,

2e48z
I =

3 [1+O(a a )]
3m?i c

(3.23)

(3.24)

3m?i c
lim Pc(1+y)=-

P—+ao 2e

lim sp ——+iso,'[I+O(a a )]—I
P~ eo

(3.19)

(3.20)

will be identified later on with the spectral
linewidth. For 8 «8„,one has a « 1.

Using these results, and neglecting terms of
O(aa), onegets

lim r(t)= e", r(0)+ lim
ds „.1 s +Pc

t? r 2?ri m s —3m?ic /2e

X p(0) —(e /2c) r(0) X8 ak~(k)e k(k)
s ikc—

E+6 +
S —Sp

e e+ zz, +
S —Sp

(3.25)

The integrand of Eq. (3.25) has poles at s =sp, sp, +iso, 0, and 3m?ic /2e . This last one is much larger
than the moduli of the others, since 3m?ic /2e =10 s '. Its contribution to r(t) is of the fortti
exp(3m?ic3t/2e ), giving rise therefore to a "runaway solution, "which is always eliminated in the literature, in
order to get physical results. ' In Appendix B we discuss in detail the origin of this term and justify its elim-
ination.

For the contributions of the other poles, since
~

s
~

&&3mRC /2e, PC, one can write

1 s +Pc 1

m s —3m„c /2e3 2= 7

and therefore one gets, in the limit P~ oo,

(3.26)

Spf Sp f

r(t)=r(0) (e+e e '+e e+e ' +zz)+v(0) e+e + „e e++tzz
SO Sp

+ g f ag(k)rg(k)
2?rm?i k k

~+~- S& -a(e —e '
)

sp+ ikc

+ +
(

t()t ikct)+ zz—(1 e ikct) +H—c
sp +ikc

(3.27)
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where we have set

v(0) = p(0) — r(0)&&B
2c

(3.28)

The operator v(0) does not coincide with the ini-
tial velocity v(0) of the electron, since the quantized
electromagnetic field is not present in (3.28). One
has, in fact, the relation

eAF(0)
v(0)= v(0)—

mac
(3.29)

, [v(0) X~,'"—I v (o)],
~c + I

where vz ——u„x+uzy. For I ~0, one gets precisely
the classical expression for the motion of an electron
with the physical mass mz in a static and homo-
geneous magnetic field. On the other hand, for
B=O, one gets from (3.27), as expected,

r(t) = r(o)+ v ( 0)( — f A 0~(o, (')d(',
mac p

(3.31)

where AF(r, t) is obtained from Eq. (2.6) by multi-
pling each a~(k) by e ' ', corresponding to the free
evolution of the electromagnetic field.

The terms in Eq. (3.27) which depend on the elec-

which is easily seen to be satisfied by dr/dt ob-
tained from (3.27).

From Eqs. (3.20) and (3.27), we can see that 1/I
is the lifetime of the system. When t &&1/I, the
terms in Eq. (3.27) which do not depend on the elec-
tromagnetic field operators become

r = [z(0)+u, (0)t]z

(3.32)

with cgp= kpc.
This relation is easily derived by requiring that

&& sin( k r +P ), (3.33)

with

BA (r, t)
E(r) =——

c Bt
(3.34)

One gets then, for the field-dependent part rF(t)
of r(t), using Eq. (3.27):

tromagnetic field operators represent the forced
motion of the electron under the action of the laser
and the vacuum field. Although the average of
these terms in the vacuum state is zero, they contri-
bute to the fluctuations in the position of the elec-
tron, even when the field is in the vacuum state.
These fluctuations turn out to be logarithmically
divergent in the point-electron limit, even after mass
renorinalization. The spectrum will not exhibit this
divergence, however, because it will be defined in
terms of normally ordered operators.

If the electromagnetic field is initially in a
coherent state

~
up & ), with u-„& ——

~

u q 2 I

e'~,
0~ 0 0~ 0 0~ 0

one may introduce the amplitude E,&
of the corre-

sponding classical field through the relation (assum-
ing the light is linearly polarized)

+Eche ip
a&(k)

~

u- ) =-
k p&Ap (~ )

1/2 5( k —kp)5g2
p

0

eE,)

0~ 0 0' 0 mg~p 0

—r'co,'r —rr
Im — — (e ' —e

Mp —Mc +l 1

—l coGr

ia,'r —rr
(e

Q)p+N +/ I
—e )+- -(1—e )

Gr ZZ —I~0

Q)p
(3.35)

For B=O, one gets

eE,)

0' 0

(3.36)

which is just the classical expression for the motion

I

of an electron in an oscillating field
E,&

e z sin(cppt), with the initial conditions
p

rF(0)=0 and rF(Q)=eE,~/m~rpp. From (3.27) and
(3.29) we see that this value of r F(0) yields
r(0) = v(0), as it should be.

For B~O, expression (3.35) exhibits a resonant



QUANTUM THEORY OF LASER-RADIATION SCATTERING BY. . . 2335

terni (as well as an antiresonant one), centered
around coo ——co,

' and with width I . From this ex-
pression, one can extract a condition on the laser
field amplitude, so that the nonrelativistic and elec-
tric dipole approximations hold. In the most critical
situation, when coo ——to,', one has, except for oscillat-
ing factors

A(k, t)= g f (2m) ~

' 1/2
jlc

X[a2(k, t)e'~(k)e'" +H.c.] .

(3.40)

drF ~e ~Ei co El
C

dt mal I I 8 (3.37)

A(R t)=g f (2n. )
~

1/2
Ac

Replacing a2 (k, t) by the expression in Eq. (3.16),
one gets

so that, in order that
~

(drF/dt)
~

&&c, one must
have X [a2 ( k ) e~( k )e' " ""+H.c.]

El« B.
COO

(3.38) +As(R, T) . (3.41)

This is also the condition for the electric dipole ap-
proximation to hold at resonance. For ala&co,', the
condition on E,i becomes less severe.

If Eo is expressed in V/cm and 8 in G, the above
relation becomes

E'g E' g (3.42)

The first terra on the right-hand side of the above
equation stands for the incoming free field, while
As(R, t) represents the scattered part.

Using that

E,l «3X10 8=3X10 8
COc

(3.39)
and that

jt d 0-„(7L—kk )e' " '

so that, for 8= 10' G, one should have
Eo«3X10' V/cm. For smaller magnetic fields,
the resonance becomes sharper, and the maximum
allowed laser amplitude is consequently reduced.

C. Electric field in the point-electron limit

)
sin(kR)

( I 3RR )
cos( kR ) sin(kR)

k R

(3.43)

The vector potential at an arbitrary position R is
given by

where k=k/~ k ~, R =R/~ R ~, R =J R ~, and
k =

~

k ~, one has, after integrating over k,

As(R, t)= f [sr(s) —r(0)] (3 RR)e*"—
Rc 2+i

r

s(t —R/c)
+ c (jL —3RR)

cRs

st es(t —R/c)

R 2s 2
(3.44)

In terixis of r(t), one gets, from this expression,

A (R, t)= (3 RR) r t ——+ (3—3RR) r —t ————f r(t')dt'
Rc c R2 c R

(3.45)
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The scattered electric field is given by

1 BAs(R, t)
Es(R, t) = —V P(R, t)

c t
(3.46)

~ ~

Es(R, t) = — ~ (I—RR )
Rc

T ~

d(t —R /c) d(t —R /c)
R c

+
R

Since we have adopted the Coulomb gauge, we
must use, for P(R, t), the instantaneous Coulomb po-
tential

.(3RR —7L)+
R

(3.50)

P(R, t) =
/
r(t) —R[

(3.47)

AA ++
eR (3RR —I )

R R
(3.48)

where d(t) is the electric dipole moment at time t:

d(t)=er(t) . (3.49)

We have then

Furthermore, in order to be consistent with the
electric dipole approximation, one should expand
—V P(R, t) in multipoles, keeping only the monopole
and dipole teints:

This equation should be compared with the classi-
cal expression for the electric field produced by an
oscillating dipole. Except, of course, for the
monopole ternt, the two expressions coincide. This
is not surprising, since this result was obtained from
Eqs. (3.1) and (3.3), which are linear; therefore, the
noncommutability of the operators involved does
not have any consequence in getting Eq. (3.50). One
should also notice that this result does not depend
on the potential acting on the electron, since this in-
formation appears only in Eq. (3.2). As in the clas-
sical case, the noncausal contributions coming from
A(R, t) and P(r, t) exactly cancel.

The explicit time dependence of Es(R, t) in the
point-electron limit is obtained by replacing r(t) in
Eq. (3.50) by expression (3.27). For simplicity, we
assume that the detector is sufficiently far from the
source so that only the radiation part of Es(R, t) is
relevant:

E„d(R,t) =— r t ——.(I—RR) .
Rc

(3.51)

We get, finally,

Rc

so(t —R/c) g ~ ~ so (t —R/e)+ v(0) (SoE+e e '+$0Ee+e ')

)/2 3

+ g f ~q(k)t~(k)
2m my 2 k

(soe +co e ' ' ')2 so(t —R /c) 2 —i u(t —R /c)
so +i c0

)(
+ )2 o + 2e iso(t —8/(—))

s (t —R/c)

so+

—~mzze-' "-R/' +H C (3.52)

This expression greatly simplifies when t &&1/I . In this limit, one gets
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e 2g1
/2

F (R t) = ()( —RR) g f d'kk' ' ag(k)eg(k)e
27rltrrr c R

E'+ E'

so+ rkc

E'+ zz +H.c.
so +rkc

(3.53)

These results will now be used to calculate the power
spectrum of the scattered radiation.

IV. THE PO%"ER SPECTRUM

As usual, we define the power spectrum in teiins
of the counting rate ru(t) of a photoelectric detec-
tor. ' For a broad-band detector, one has '

ru(t) =Regs„&G„"„'(R,t;R, t),
p, v

(4.1)

where the coefficients s„„depend on the characteris-
tics of the detector and G„"„'(R,t;R', t') is the corre-
lation tensor for the electromagnetic field:

G&'„'(R,t;R', t') =Tr[pE„' '(R, t)E'„+'(R', t')] .

(4.2)

In Eq. (4.2), p is the density matrix for the elec-
tromagnetic field, and E'+' and E' ' stand for the
positive and negative frequency part of E, respec-
tively.

From (3.52), (4.1), and (4.2), one can explicitly cal-
culate the time-dependent spectrum of the radiation,
for any given p, by convoluting the electric field
with an appropriate filter function. For brevity,
however, we assume that t &~1/I, so that the tran-
sient ter-nis become unimportant. We also assume
that the field is initially in a coherent state, so that
p =

~

u k & ) ( u -„&
~

. For definiteness, we take it
0~ 0 0~ 0

to be linearly polarized. The circular polarization
case can be treated along similar lines.

Under these conditions, one gets, using Eq. (3.32),

G~'„'(R, t', R, t) = e co
E,ix„(I—RR ).

2ltlirc R

r
A A

so —1 coo

+
so —IMo

zz+ —EMo
e*-„x„.(I—RR )

0

+ E+ E' zz+ ~ . + .so+~~o ~o +E~o ~~o

i coo( t' —t) (4.3)

The correlation tensor is seen to depend on time
only through the difference t' t, which is charac--
teristic of a stationary process. Besides that, one
sees that only one Fourier component is present in
the above expression, with frequency coo equal to the
frequency of the incident field, which is characteris-
tic of an elastic process.

In order to parametrize the polarization vectors
which appear in Eq. (4.3), we choose the vectors x„
to coincide with the vectors ei, e2, and R, where R is
the unit vector corresponding to R, e2 is a unit vec-
tor orthogonal to R and contained in the plane
deteriained by the vectors R and B, and ei is such
that @iXe2——R (see Fig. 1). Since ko was assumed
from the outset to be orthogonal to B, one can
choose the x axis parallel to ko and the z axis paral-
lel to B, without any further lack of generality. We
denote by 9 the angle between e -„& and the y axis.

0 0
Our results will be expressed in terms of the fol-

detector

FIG. 1. Geometry of the system. ko is the wave vector
of the incident field, and e2 is orthogonal to R and con-
tained in the plane deterxnined by R and 8, while
El =62 QR.
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lowing functions:

CO
Ii(co) =

I +(co—co,')
CO

1" +(co+co,') (4 4)

co(co~ —co) co(co+co~)I2(co)=, —l, 2
. (4.5)

I 2+(co —co,') I +(co+co,')

sii ——s22 in Eq. (4.1).
If the polarizer is oriented along ei, one gets, in

terms of the angles 8, 5, and P (see Fig. 1)

2 2
2 2

wi (t) =si 1
— E~~cos 8
4mlic R

I, (cop) 1+ -sin25
c~e shall consider three different cases. » the

first two, we assume there is a polarizer in front of
the detector, with polarization direction along e, or
e2. In the third case, we assume there is no polarizer
and the detector is isotropic, that is, s 12 ——s21 ——0 and

—I2 (cop) cos25— sin25

For a polarizer oriented along ez, one has

(4.6)

2

w2(t) =sz2 2 E,~
cos 8cos p Ii (cop) 1 —— sln25 +I2(cop)

4m~c R ~c c
Sli125

+ sln28 sin2$ I i (cop), cos5+I2(cop) sln5 — ccls5
c c

+4Slil P Sill 8

(4.7)

If no polarizer is present, and if the detector is iso-
tropic, w (t) will be given by the sum of the two ex-
pressions above, with s i i

—sl2.

w (t) =s
1 i TrG' "=w i (t)+w2(t) . (4.8)

For 8—+0 or cop ~&co,', one gets from (4.6)—(4.8)

w(t) = E,csin g',
mac R

$))
4 (4.9)

2 2 2
e cEcl

sin g.
8'lT

(4.10)

where g is the angle between e- and R. This ex-
oXo

pression is proportional to the classical expression
for the time-averaged power per unit solid angle ir-
radiated by an electron in the presence of a plane
electromagnetic wave, in the electric dipole approxi-
mation

magnetic field plays no role. In this case, the field
amplitude to be used in (4.9) should be E,tsin8, the z
component of the applied electric field, and g' should
be replaced by P, the angle between the detector and
the z axis.

Expressions (4.6) and (4.7) exhibit a resonance for
cop=co with linewidth I . Close to resonance, when

~
cop —co

~

(I, the dominant contribution is the one
proportional to Ii(cop), which has approximately a
Lorentzian shape.

The functions I i(co) and Iz(co) are plotted in Figs.
2 and 3, for magnetic fields ranging from 10 to 10'
G, close to resonance. By choosing convenient
units, one can make all graphs for I i (co) to coincide,
within graphical precision, for all magnetic fields
considered, and so long as one is close to resonance.
The same is valid for I2(co). In Table I, we display
some typical values of 8 and the corresponding
values of co,', I and I /co,'.

Qne should also notice that in Eq. (4.7) there is a
terin independent of the frequency cop. Its coiltribu-
tion to w2(t) is equal to

2

E,csin P sin 8 .
$22

4 mlle R

Comparison of this expression with (4.9) and (4.10)
makes it clear that it originates from the oscillations
of the electron along the z direction, for which the

Even though the model here considered is a very
simplified one, it still has some relation with physi-
cal reality and it allows a detailed analysis of the
resonant scattering process. The model is also in-
teresting in that it allows an exact renormalization
procedure, after which the calculated spectrum
remains finite, in the point-electron limit. In partic-
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1/2

Aa(0)= g f dkg(k)vk(app(k)gMq-app(k)gpp],
M= —i

(A2)

[a~(k),a~ (k')] =5MM 5(k —k')

—(x+iy)/V2, M =1
gM ——'Z, M =0

(x iy )/—V 2, M = —1,
satisfying

(A3)

(A4)

~p2 2
H= + AF(0) +HF, (A 1 1)

2m' 2m

g I

where Az (0} and HF have the same form as in
Eqs. (A2} and (A6), respectively, but with a~(k) in
place of a~(k).

In Eq. (All), the field and electron coordinates
are already decoupled. The Hamiltonian is not yet
diagonalized in the field coordinates, however.

Let us now introduce the canonically conjugate
variables

eM eM '=5MM' ~

In terms of electric dipole wave operators, the free
field Hamiltonian can be written as

+1
q(k)—:g [aM(k)e~+aM (k)e M]/(2k)'

M= —1

(A12)
+1

Hp= g f dk kapp(k)aM(k), (A6) and

neglecting the higher-multipole modes, since they do
not couple with the electron.

We will now apply to H a unitary transformation
which will decouple the field and electronic vari-
ables. Let U be given by

U =exp( —ie p.H/m~ ), (A7)

2

ma=m+ f g (k)dk

so that

[q;(k),qj(k')] =0, [p;(k),p~(k')] =0,
[q;(k),pj(k')]=i515(k —k') .

Then

(A13)

(A14)

+1
p(k ) = i g —[a~(k)eM a~ (k)—eM ](k/2)'~2

and H is the Hertz vector:
1/2

2 +' - dkf g(k)[al(k)gM

Ap(0)= f dkkg(k)q(k),
3m

Hp= —, f dk[p p(k)+kq (k)],

(A15)

(A16)

—a~(k)eM] .

(A9)

p

H + —, f dk =f dk'A(k, k')q(k) q(k')

The transformation (A7) is the generalization of
the so called "space translation transformation" to
the quantized field case. It is easy to see that
p'=—U pU=p and that

+ —, f dkp (k),

where

(A17)

2a~(k) =aM(k)—
377

' 1/2
eg (k)

~k p'e~ .

(A10)

~ (k, k') =k'5(k —k')+a(k)a(k'),
with

a(k) =2ekg(k)/(3mm )'

(A18)

(A19)

From (A8) and (A10) one can show that, when ex-
pressed in terms of the new canonical variables, H
becomes

The problem of diagonalizing H is therefore re-
duced to finding the principal axes of the quadratic
form in q(k) which appears in (A17). In order to do
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that, we must diagonalize the continuous matrix
A (k, k'). Its eigenvalue equation is in fact a
Fredholm integral equation of the second kind,
homogeneous and with degenerate kernel, which
can be solved exactly:

sx(k, s)= f dk'd(k, k')x(k', s)

=k x (k s)+a(k) f dk'a(k')x(k', s),

~ dkK g (k)
o K —k

+ f dkk g (k)S(k —K)=3ssms/s)ss.

(A28)

In the point-electron limit, the first term on the
left-hand side of (A28) vanishes, and one gets

(A20)

where x(k, s) is the eigenvector corresponding to the
eigenvalue s.

The solutions of (A20) are given by

K =3m-mii /2ze',

that is,

s =K =(3r).mz/2A, e )

(A29)

(A30)

x (k,s) =a(k)P 1

S— 2 +A6(s —k )

(A21)

where P= dk'a(k')x(k;s) can be considered as
0

a noinkalization constant, deterniined by the require-
ment that

Since A, is arbitrary, we conclude that any s & 0 is al-
lowed: For positive s, one gets a continuous spec-
trum.

In terikis of x (k,s), one can write the following re-
lation between the coordinates q(k), p(k) and the
new coordinates q '(k), p '(k) which diagonalize H:

q(k)= f dKx(kK )q'(K)

X ~$ X ~$ = S —S (A22)

while A, is an arbitrary real constant. In Eq. (A21),
H stands for "the principal part thereof. "

Insertion of (A21) into the expression for P yields

+x (k, —k[) ) q '(Ko),

p(k)= f dKx(kK')p'(K)

+x (k, —Ko ) q '(K[) ) .

(A31)

(A32)

f dk a (k)
s —k

+k, f dk a'(k)S(s —k'), (A23)

It is easy to see, by using (A20) and (A22), that H
indeed becomes diagonal when expressed in terms of
p

' and q '. One gets, in fact,
~ s 2

+ —, f dK[(p ')'(K)+K'(q ')'(K)]

which determines the eigenvalues s.
For s &0, the second term on the right-hand side

of (A23) does not contribute. One gets, then, setting
2s= —Ko,

4e dk k g(k) (A24)
3mm

Expressing m in terms of m~, as in Eq. (A8), one
gets

f ~ dk Kog(k) 3m.mii

0 K +k 4e

In the point-electron limit [g (k)~1], one gets

Ko ——3m', /2e'

and therefore

(A25)

(A26)

s = Ko ———(3mii—/2e ) (A27)

One has therefore only one negative eigenvalue. For
s & 0, setting s =K and using (A8), one finds'

+-,' [(p )'(K. ) —K.'(q )'(K.)] . (A33)

The condition for p
' and q

' to satisfy the same
commutation relations as p and q is

f dKx(k, K')x(k', K')

+x (k, —Ko)x (k', Ko) =5(k —k—'),
which is recognized as the completeness relation for
the eigensolutions x (k,s).

In (A33), one gets a normal mode with negative
energy. It shows up because, in the point-electron
limit, the mathematical (or "bare" ) mass m goes to
—ao, in order to keep mii finite, so that H is no
longer positive definite. The usual approach to this
difficulty is to discard this mode, on the grounds
that it does not represent a physical mode and there-
fore would never be excited.

If one follows this procedure, then one gets from
(A33) the following spectrum for H:
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F. = + Q f dk kN~lk),
2mR

where P is a real vector and NM(k) &0. The quanti-
ty NM(k) is the eigenvalue of the operator
a M(k)aM(k), where aM(k) and a M(k) are defined in
terms of q'(k) and p'(k) as in Eqs. (A12) and
(A13). From (A35) it is quite natural to interpret
m~ as the physical mass of the electron.

APPENDIX 8

SOte, where so and s i are the roots of the equation

S2+ [Pc (1+y) i—co, ]s i c—o,Pc =0 . (81)

mR—2e 2 ieB
s + pmiic+

C C
s +ieBp=Q,

~e analyze now the dependence of so and si with
respect to the cutoff P, after mass renormalization.

Rewriting Eq. (Bl) in teiilis of mii, we get

The solutions obtained for r(t) and E(R, t) con-
Slttain time-dependent teiixis proportional to e and which has as solutions

(82)

2e PS= 2 mii-
3c

I,eB
mii pc+ +

C

2
3 2 1/2

ieB Sie P B+
C 3c

(83)

with the square root defined so that it is positive
when the radicand is real and positive.

Let us first analyze the root corresponding to the
plus sign in (83), which we shall call so. Defining a
parameter y by

Since y « 1, one can write

I = —,aaco,'[1+O(y, a a y)]
2e4B'

, , [1+O(y',a'a'y)],
3m' c

(BS)

y =coq/pc (84)

2Qcxco I—
3(1+y )

2Q cx
+O(co,'a a ) .3(1+y')'

where co,'=
~

e
~
Blmiic, we see that y &&1 so long

as pc »co,', which should be valid for any reason-
able cutoff. Of course, one must still have
Apc & m~ c, which can be satisfied so long as
irido,'/mac «1. This last condition will hold if

In teiirks of y, one has, from (83),

so ——+2ico,' I l iy +[(1+iy ) ——,—iaa]'

(85)
where

a =irico,'/misc =B/B„
and a is the fine-structure constant.

Expanding (85) in terius of the parameter
aa(1+iy), one gets

I

2aay 4a a2(2+y )
so = + l coq 1 + 3(1+y') 9(1+y')'

so the linewidth changes quadratically with B.
One also gets from (87) a frequency shift which is

given by

2aa(2+y )+co
3(1+y') 3(1+y')

(89)

1 iy + (1+iy)—S) =—

Sia a

It is interesting to notice that, as ph oo, y~0 and
bco,'=Sco,'a a /9. Therefore, after mass renollllali-
zation, one does not get a divergent energy shift,
when the cutoff goes to infinity. This is in contrast
with the perturbation theory result for the nonrela-
tivistic hydrogen atom, which yields a logarithmic-
ally divergent energy shift. On the other hand,
I =2e B /3miic [1+O(a a )] when P~oo.

It should be clear from the above expressions that
so is rather insensitive to the value of p, as it ranges
from a value much larger than co,'/c to infinity.

Let us now study the behavior of si, the other
root of Eq. (81), which is given by

misc a/2A'

The real part of so corresponds to the linewidth I . (810)
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tong -"- — a~2

Res,

corresponding to a decay time of the order of 10
s. On the other hand, for P~ ao, we get

23m&c 4[I+—,a a ——,ia a+0 (a 3a3)],
(B12)

For a relativistic cutoff, I3&—m~c/fi, one has y=a
and

Res&- —mac /A'= —10 s2 21 —1 (B1 1)

FIG. 4. Dependence of s~ on the cutoff P, as it ranges
from mac/A to infinity.

so that Resi —10 ~ s '. In this case, si gives rise to
the "runaway solution, " which should therefore be
identified with the solution which for pz —mac/irt
decayed rapidly to zero. In Fig. 4 we sketch the tra-
jectory of si as p changes from m~c/irt to infinity.

The above analysis suggests a more consistent ap-
proach towards tackling the runaway problem. One
should first discard the corresponding terIIi when
P (Pz, since it decays rapidly to zero, and only then
should one set P~ao, since the remaining solution
is rather insensitive to the value of P in the range Pz
tO OO.
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