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First-passage —time distributions and switching statistics in a bistable two-mode laser
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As a result of quantum fluctuations, a bistable system will undergo spontaneous transitions from
one state to the other. For a bistable two-mode laser we present a theoretical analysis of the switch-

ing statistics by treating it as a one-dimensional first-passage —time (FPT) problem for the intensity
of one of the modes. The methodology is also applicable to other bistable systems, such as in optical
bistability. Several new asymptotic results for the small- and large-time behavior of various FPT
distributions are given. The switching-time distrabution is introduced as a weighted integral over
FPT distributions and asymptotic expressions for this distribution are given. Several results of
Monte Carlo computer simulations of the FPT problem are presented.

I. INTRODUCTION

Recently, first-passage —time (FPT) distributions under
the influence of quantum fluctuations in a bistable 1aser
have been dealt with both theoretically and experimental-
ly. ' In these studies the statistics of switching between
the two metastable states was treated as a one-dimensional
FPT problem which led for the corresponding distribution
function to the simple result P ( T)= ( T )
Xexp( —Tj(T)t), at least for values of T that are not too
small (T is the first-passage —time and (T) its mean).
This exponential dependence of T was found in reasonable
agreement with experiment and so was the predicted
dependence of (T) on the pump parameter. ' The FPT
problem has also attracted interest in different but related
contexts, such as the decay of unstable equilibrium states
and the mean first-passage time in optical bistability.

Surprisingly, the behavior of P(T) for small times has
received little or no attention yet. In fact, since P(T)
should in many cases vanish for T =0, substantial devia-
tions of the above-mentioned simple exponential behavior
are to be expected for small T, but no experimental study
yet seems to have dealt with the switching statistics in the
short-time regime. However, this is an interesting regime
since the specific dynamics of the diffusion process rather
than the drift are expected to be crucial here. A test on
whether the switching problem can indeed be treated as a
one-dimensional first-passage problem would, therefore, be
more conclusive in the small-time regime than it will be
for large times.

Although we will deal in this paper with the theoretical
analysis of FPT distributions in a bistable two-mode laser,
the methodology employed, as well as the results obtained,
are also relevant to other bistable systems. Moreover, it
has convincingly been demonstrated that a bistable two-
mode laser is well accessible for experimental studies. Fol-
lowing Refs. 1 and 2, our analysis will also be based on the
assumption that the statistics of the system can be
described by a Fokker-Planck equation for the intensity
distribution of one of the Inodes. For simplicity we will
consider the case in which both modes have equal pump

parameters so that we will be dealing with a symmetric
two-mode system.

In Sec. II the problem will be formulated, various quan-
tities of interest will be defined, and some useful relations
will be derived. Throughout Sec. III our effort will be to
find analytic expressions for the FPT distributions. Since
the basic equation governing the distribution of first-
passage times seems to be too complicated to allow exact
analytic solutions, the emphasis will be on the derivation
of asymptotic results, that is, for small and large times,
respectively. Numerical results for a number of Monte
Carlo computer calculations based on an equivalent
Langevin equation for the intensity of one mode are
presented in Sec. IV and compared with the asymptotic
analytical expressions. In an attempt to increase the read-
ability of Sec. III, a self-consistent part of the theory has
been organized in the Appendix.

II. FORMULATION OF THE PROBLEM
AND DEFINITIONS

For a two-Inode laser operating under bistable condi-
tions, the probability distribution function H(I, t) for the
intensity I (in convenient units) of one of the modes can be
shown to satisfy a Fokker-Planck type of equation

1 d a
2 QI2

—~(I,t) =— [~(I)~(I,t)~ [u(I)W(I, t)],
BI

where &(I)=8I is the diffusion coefficient and %(I) is
the drift coefficient. An explicit expression for A will be
given further on. The corresponding Langevin equation
for the intensity I(t) of the mode under consideration is
given by

I(t)=%(I(t))+X(—t),
dt

where X(t) is the randomly fluctuating Langevin force,
describing the influence of quantum fluctuations. The sta-
tistical properties of X(t) are such that the quantities

1983 The American Physical Society



28 FIRST-PASSAGE —TIME DISTRIBUTIONS AND SWITCHING. . . 2319

t+7
Y(r) =f dr'X(r')

are independent of I; and distributed according to a distri-
bution function g&( Y;r,I) that is characterized by

12- ct& 12

(Y)=0,
( Y') =8Ir,
(Y")=O(r ) (r=3,4, . . ) .. (6)

V(I)

0 0 2 0.4 0 6 0 8 1 2

Furthermore, since I cannot assume negative values, p
should also satisfy

I/a

q&(Y;r,I)=0 when Y( I . —
FIG. 1. Potential V(I) vs I/a for several values of the pump

(7) parameter a as indicated and coupling constants /=2.

All of the requirements (4)—(7) can be met by taking for p
the shifted gamma distribution

Y+I)a—1 —( Y+I)iP
y(Y r I)= (Y& I) —(8)

r(a)p
where a=I/gr and P=8~.

As a matter of course, both (1) and (2) with (8) are
equivalent descriptions of the statistical properties of the
mode intensity. Equation (2) together with the probability
distribution (8) has been used in the Monte Carlo calcula-
tions to be described in Sec. IV.

The stationary solution to (1) can be written as

where Q is a constant such that % is normalized to unity
and V is the "potential" that can be associated with the
mode. By equating the right-hand side of (1) to 0 and sub-
stituting (9) for H(I},we immediately find

u(I) = &(I)+—, &(I) V(I) . —1 Cg

2 dI ' dI (10)

a
)+1

2 1

(g —1)tt a' (13)

The intensity I~ can be thought of as separating the on
and off states in the following sense: The mode under
consideration will be said to be in the off state whenever
its intensity is found to have a value smaller than I~,
whereas it will be said to be in the on state otherwise.

An important quantity associated with the switching
behavior of the mode is the first-passage time T(I~,I2),
i.e., the time it takes for the intensity, initially equal to Ii,
to assume the value I2 for the first time under the com-
bined influence of drift and diffusion. The distribution of
these times defines a probability distribution function
P(T;Ii,I2) which, by definition, is given by (Iq & Ii )

seen from Fig. 2 that the stable equilibrium states are
characterized by intensities close to 0 (the "off" state) and
close to a (the "on" state), respectively, while the unstable
equilibrium has an intensity close to a/3. Denoting the
latter intensity by I~, we have

A general expression for VII) is given by Eq. (15b) of Ref.
2. Assuming from now on that both modes have equal
pump parameters, the expression for the potential reads

P(T;Ii,I2) = — J dI H(I, T),
0

(14)

V(I)= ——,'(g —1)I + —,'a(g —1)I
—ln I 1 —erf[ ,' (gI a)]], ——

where a is the pump parameter of the mode and g is the
mode-coupling constant. We will assume that g' has a
value between 1 and 2. In Fig. 1 the potential is drawn as
a function of I/a for several values of a ranging from
a =4 to 12, assuming the coupling constant /=2.

Using (10) and (11) we easily find

where H(I, T) is the solution of (1) subject to the condi-
tions

9'(I,O) =5(I I i)—
40

A'(I) =4+2(g 1)I —2a(g' —1)I—
4' exp[ —,'(gI a}]——

1 —erf[ ,' (gI —a)]—'(12}

20

U 0
o

-20
Various plots of the drift coefficient as a function of I/a
are given in Fig. 2 for different values of a, assuming
/=2. Cxenerally, the zeros of 9P(I) correspond to station-
ary solutions of the corresponding deterministic equation
of motion, i.e., I=A (I). For a & 6, and provided that g' is
not too close to 1, there are always three zeros, two of
which correspond to stable equilibrium states while the
other corresponds to an unstable equilibrium. It can be

-40

0 02 04 06 08
I/a

FIG. 2. Drift %(I) vs I/a for several values of a as indicated
and coupling constant /=2.
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III. ANALYTIC EXPRESSIONS
FOR THE FPT DISTRIBUTIONS

A. General results for the moments of P
A~(I„T)=0 .

With the use of (1), (14), (15), and (16) it can easily be
shown that P(T;I„I2) satisfies the adjoint Fokker-Planck
equation (see also Ref. 7)

I'( T;I),Iz )
BT

In order to solve (17) fol P(T;I),I2) lt is convenient to
consider the corresponding moment-generating function

M(z;I„I2)=f dTe' P(T;I&,I2}, (24)

which satisfies the differential equation
—,
' &(I,),+A(I, )- I (T;I„I,), (17)

0
BI) az a

—,&(I)) +A(I)) +z M(z;I„Iz)=0.
BI ar,

(25)
subject to the conditions

P(T;I2,I2) =5(T)
l.

(18} ln view of (18) and (19) we must solve {25}subject to the
cond1tj. ons

and

P(T;O,I2)=98(0) P(T;I),I2)
8

Il ——0

M(z;I2, I2) = 1 (26)

Related to P is another first-passage —time distribution
function p(T;I~ J2) that we will define as

f 'dI a(r)P(T;I, I, )

p(T;Ii,Iz) = (20)

f dI H(I)

where H(I) is the stationary intensity distribution (9). It
is assumed in (20) that 0&I~ &I2. p is the distribution
function of first-passage times at Iz if the initial intensity
is distributed between 0 and I~ according to the stationary
intensity distribution H(I). It can be measured by repeat-
edly counting the time it takes for the intensity, initially at
some value below It„ to exceed the value Iz for the first
time. VVe will refer to p as a switching-time distribution
function.

A useful relation between p and I' can be derived by dif-
ferentiating (20) with respect to T, substituting the right-
hand side of (17), performing one partial integration and,
finally, the use of the fact that H(I) is the stationary solu-
tion of (1), i.e.,

%(0) M(z;I(, I2)
BIi

= —zM(z;O, I, ) . (27)

I2
M(z;I„I2)=exp f dI G{z;I) (30)

Furthermore, since I' is a probability distribution, the fol-
lowing equality should be satisfied for each I between I&

and Iz.

P(T;Ii,I2)= f dT'P(T';Ii, I)P(T T',I,I2), (2—8)

expressing the fact that diffusion from I& to Iz is the same
as diffusion from I~ to some intermediate intensity I, and
from there on to I2. In (28) it is understood that
P(T T'g, I2) =0—if T' ~ T. A direct consequence of (28)
is thai M faciorizes into

M(z;Ii, Iq) =M(z;I),I)M(z;I, I2),
for each I between I] and Iz, and this implies the ex-
istence of a function G(z;I) such that

[N(I)&{I)]=A(I)H(I) .
2 dI

We then arrive at

(21) By s»sti«tion «(30) in (25), and using (21), one can ob-
tain the differential equation

K(z;I) &(I)H(I) K(z;—I)+2&(I)H(I) z=o, (31)

,
' ~(I)a(I)

M
If dI %{I)

p(T;I],Iz) = ——
where E(z;I) is related to G(z;I ) by

K(z;I) =&(I)H(I)G(z;I) . (32)

+(I) )(I] ) I'( T;I„Iz)
BI]

(22)I) 7

2f dI H(I)

where the last equality follows from M(0)=0. By in-

tegrating (22), while using the fact that p(0;I&,Iz) =0 for
I]&Iz, we find

lim[% {I)K(z;I) N(I) ~(I)z]=0 .—

Furthermore, since M(0;I],Iz) =1, we also have

X(0;I)=O.

(33)

(34)

We will solve (31) by writing K(z;I) as a power series in

&n»ew «condition (27), Eq. (31) must be solved subject,
to

&(I))H(I()
p(T;I),Iz}= I - f dT'P(T';I), I2),

2f dI W(I)
(23)

zp

K(z;I ) = g K„(I)z" .
a=1

(3S)

which is the desired relation. By subsitution of (3S) in (31) we find
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K1(I)=2%(I),d

K (I)= g Kz(I)Kq(I) (n =2, 3 4. . . )
1

(36}

p+q =n

(37)

The general solution to (36) is
I

K, (I)=2f dI'W(I')+C, ,

where C, is a constant. In view of condition (33), in
which it should be realized that &(I) is proportional to I,
the constant C~ must vanish, or

I
K, (I)=2f dI'a(I') . (38)

The solution to (37) is

Kp(I )Kq(I )
pq

K„(I)=f dI' (n =2,3,4, . . . )

dI=2f ~ f dI'H(I'), (40)

which is a well-known result. ' ' Higher moments can
be obtained with the use of the general rule

t)"M(z;I1,I2)I,I2 g n (41)

By repeatedly using (39), the moments can be expressed in
terms of multiple integrals, the number of which rapidly
increases with increasing order n. General expressions for
the moments can be found in Ref. 1, Eq. (7).

In Figs. 3 and 4 we give some numerical results for the
mean FPT (T)p I, obtained by numerical evaluation of

()0,,

05-

0
0 0 5

FIG. 3. Normalized mean FPT (T)pI l(T)p, vs I2/a for

a=4, 6, 8, and 12. Absolute values of (T)p,, are 1.77, 3.70,
15.2, and 3850, respectively. Coupling constant g equals 2 in all
cases.

where for reasons similar as for C&, the constants again
vanish. The problem of determining M(z;I1,I2) is, in
principle, solved now, apart from the actual calculation of
the integrals. It follows directly from (30}, (32), and (38)
that the mean first-passage time from I& to Iz is given by

dM(z;I „I2)
11,I2 Bz z=G

I

10 12

8
FIG. 4. ln(T)OI vs pump parameter a for I2 ——a/3 and a,

and /=2.

v ~(g+1)'"
4 (/+I)

and III—a/( I+/) was recognized in (13) as the intensity
separating the on and off state. Taking Iz ——I~, we find
that (T)pI assumes half the value given in the right-

the double integral in (40). The curves in Fig. 3 are all
normalized to the mean FPT ( T )p „while the respective
values of the latter are mentioned in the figure caption.
We recall that for a=4 the potential has one single
minimum, namely, at I=0 (see Fig. 1); for a )8 there are
two well-resolved minima at I=0 and I=a, respectively,
separated by a maximum at I=a/3, whereas the case
a =6 is an intermediate case in which the potential does
have two minima, one of which, however, is not well
resolved yet. It can be seen from Fig. 3 that if the poten-
tial has two well-resolved minima, i.e., the cases a =8 and
12, the normalized FPT starts to increase slowly as Iz in-
creases, but then rises swiftly to 1 when Iq/a ——,

' and
keeps this value in a relatively large interval around
Iq/a =1, until for values of Iq/a well beyond 1 the mean
FPT drastically rises. This behavior reflects the intuitive
idea that once the mode intensity has dwelled from 0 to a
value just across the maximum of the potential barrier, it
is very likely to diffuse further to any value around
I/O = 1, that is, the intensity is likely to be captured in the
potential well around I=a.

This can also be discussed by means of an approximate
expression for (T)pI that can be derived when the laser

is operating well above threshold, while the coupling con-
stant g' is not too close to 1, or more precisely, when

(g —1)a »1. We then find, at least for values of I2 that
are not too close to 0 nor much larger than a,

( T)p I (g2 1)1/2=—,erfc (Is I2)—(42)
T p g 2

where
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hand side of (43), in exact agreement with a corresponding
result obtained by Ref. 2 [see Eq. (29b) in this reference].

The presence of the erfc function in (42) explains the
shape of the curves in Fig. 3 for large a: in a relatively
narrow region given by ~Is I2—

~

/a (2/{g —1)' a, the
erfc function jumps from 0 to 2. So, for sufficiently large
values of the parameter (g —1)'~ a we can recognize two
well-defined levels for the mean FPT curves and we can
unambiguously define the mean off-on switching time
(T),ff as the value of ( T)p I, corresponding to the upper

level. We therefore propose for the mean switching time
( T ) ff a value that is precisely twice as large as the value
adopted in Ref. 2. The mean switching time is thus twice
as large as the mean FPT for reaching the discriminating
intensity Iz, which is an obvious consequence of the fact
that once the intensity has reached the value I~, the mode
can either be turned on or off with equal probability.
Only when the intensity has passed I~ by an amount of
2/(g —1)'~, the mode can be said to be turned on with
probability almost equal to unity.

B. Asymptotic expressions for I' and p valid for large a

When the potential V(I) has two well-resolved minima,
that is, has a high barrier in between, the integrations in
{39)can be performed after some approximations. If I~ is
the intensity for which the barrier maximum is reached
(see Fig. 5), then the approximate method is based on the
observation that under the above-mentioned circumstances
the function 1/%{I) is sharply peaked at I=IM while the
function f dI'H(I') will depend only weakly on I when I

0
varies around I~. The details of the method are given in
the Appendix and it will suffice here to give the results.
We mention, in addition, that the error made in this ap-
proximation is, roughly speaking, proportional to the
number of integrals involved. This means that expressions
for the higher-order moments thus obtained become less
accurate with increasing order. Gn the other hand, the ac-
curacy will increase with increasing barrier height, that is,
with increasing values of the parameter (g —1)a .

Following the method described in the Appendix we
find, as long as I is not close to 0, the simple result

M(z;O, I)=
)

1

1 —z Tor
where (T)pI is given by (40) with I, =O and I2 I. ——
From (44) it follows immediately that, in this approxima-
tion,

1 TP(T;O,I)=
~ )

exp

According to (29) we can write, for I, (Iz,
M{z;O,I2)

M(z;I„I2 ) =
M(z;O, Ii )

Hence, by substitution of (44), while assuming that both I&
and I2 are not too close to 0, we find

1 —z(T)pi,
~{z;I,,I,)=

1 —z( T)0 I
(46)

or

P(T I„I2)= 5(T)+ 2 exp
p, I~ T pI2 T pI2

(47)

m (z;I),I2 )=

Let us now discuss the validity of these results.
First of all, we notice that the right-hand side of (45)

does not vanish for T=O, but assumes its largest value
there. Since it will take a finite time for the intensity to
dwell from 0 to I2, P(T;O, I2) should identically vanish
for T=O. We conclude, therefore, that (45) makes no
sense for small values of T. This is in agreement with the
observation that the small-time behavior of P(T;O,I2) in-
volves all moments of P, the accuracies of which, however,
decrease with increasing order. A similar reasoning ap-
plies to (47) and, especially, the term proportional to 5(T)
cannot be taken seriously. It will be shown later, when the
short-time behavior is explicitly dealt with, that the delta
function is merely a crude representation of a narrow-
peaked function which reaches its maximum after a time
that is much shorter than the mean FPT.

We will now derive an expression for p(T;I, ,I2). In
view of (23) we can write for the moment-generating func-
tion m(z;I, ,I2) of p

—~(I) )~(I) )
m(z;I), I2)= M(z;I&,I2), (48)

2z f 'dI H(I)

which, after substitution of (46), performing the differen-
tiation, and using (30) and (32), can be written as

K(z;Ii ) M(z;O, I2)
(49)

f dI ~(I) M( OUI~[ )

After substitution of (AS) and (A9) and using (40) we find

1
m (z;I„I2)=

1 —(T)o,i z
(50)

M

FIG. 5. Schematic illustration of the potential when the laser
operates not too close to threshold (a & 6). There are two mini-
ma at I=0 and Iz, which are separated by a barrier. Highest
point of the barrier is reached for I=I~. Approximate values
for I and I„are a /(g+ 1) and a, respectively.

where it is assumed that I~ and I2 are not close to 0,
I~ &I~ and I~ ~I2. Hence we find for p in this approxi-
mation

1 T
p(T;I~, I2)=

~ )
exp

2

{51)

valid for not too small values of T. It can be argued that
(51), although derived under the assumption that I~ is not
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close to 0, is still valid for I~ close to 0. We refer, there-
fore, to the definition (20) of p, which for small I, leads to

f dI H(I)P(T;I,Iz)
P(Z;I„Iz)= ", =P(T;O,I z)

f 'dI a(I)

i.e., a result identical to (51). Therefore, we may safely
conclude that (51) is a good approximation for all values
of I~ &I~ and I~ &Iz, as long as Iz is not too close to 0
and for not too small values of T.

At first sight, it may seem surprising that p(T;I~, Iz) as
given by (51) is independent of I~. However, this is indeed
to be expected when realizing that the approximations
were made under the assumption of well-resolved potential
wells. This means that H(I) is sharply peaked at I=0, so
that the main contributions to p come from initial intensi-
ties close to 0. It will therefore appear as if by far the ma-
jority of first-passage events at Iz are due to diffusion
from I=O, at least after a short time. So, for not too
small times T the distribution p(T;I~, Iz) will be insensi-
tive for the actual discriminating level I& and, in fact, be
equal to the FPT distribution P(T;O,Iz). For small times,
however, we must expect that p will be very sensitive to
variations of I&, as will be discussed in Sec. III C.

a(I, )
M( s;I—„Iz)=

Xexp[ —Ms(~I~ —~I, )] .

The inverse Laplace transform of (56) yields'0

P(T;Ii,Iz)

H (Iz ) Iz ( ~Ip —~I) )

2v n ~(I() I, Z-3(z

Q exp
—(V Iz ~I& )

4T

which is valid for T~O. The largest value of T for
which (57) will be still a good approximation becomes
smaller as I~ decreases. Namely, it can be seen that all
terms with n & 1 in the expansion (52) diverge as
(sI&) '" " when I& approaches 0. Therefore, (56) is
valid for s »I

&

' and hence (57) is valid for T«Ij.
In order to derive an asymptotic expression for

P(T;0;Iz) we will again use a different method. Namely,
when I is close to 0, the potential V(I) can be approximat-
ed by a linear function,

V(I)=V(0)+BI, (58)

where, according to (11), the constant 8 is given by

C. Asymptotic expressions for P and p
valid for small T e

—a z(4
8 = —,a( —1)+ 1+erf(a /2)

(59)

Since M( —s;I~,Iz ) is the Laplace transform of
P ( T;I&,Iz ) with respect to T, it is useful, when studying
the short-time behavior of P, to obtain an expression for
M( —s;Ij,Iz) that is valid for large positive values of s.
With this in mind we now write, instead of (35), the func-
tion K alternatively as

L„(I)
IC( s;I)=Vs—

n=O

%(I)=4—4M . (60)

The differential equation (25) for M can, therefore, be ap-
proximated by

a' sI) +(1—BI) ) ——M( s;I),Iz) =0, —
BI aI, 4

(61)

This linear approximation for V(I) corresponds to a linear
approximation for the drift A(I). By using (10) we find

By substitution of (52) in (31) we find

Lo(I)= —H(I)v'2&(I)

and

(53)
provided that I~ is close to 0. Equation (61) is Kummer's
equation and is exactly solvable. Assuming now that Iz
is also close to 0, the solution to (61), satisfying (26) and
(27), is given by

s' q
p+q =n

L (I)L (I) N(s /48, 1,8I, )
M( —s;I~ Iz)=

@(s/48, 1,BIz)

L o(Iz)
Lo(I) )

dI
exp Vrs f (I)

(55)

with L, given by (53). Putting M(I) =8I and substituting
for Lo, (55) can be written as

=M(I)H(I) L„&(I) (n =1,2, 3, . . . ) . (54)d
dI

The choice of the minus sign in (53) is required in order to
guarantee the boundedness of M for s~ ~.

By using (32) and by substitution of (52) in (30), while

neglecting contributions to X( s,I) of order 1/v —s and
smaller, we obtain

M( —s;I„I,)

where + is Kummer's function, i.e.,

4(a, b,x )

ax a(a+1)x a(a+1)(a+2)x3
b 1! b(b+1)2! b(b + 1)(b +2)3!

Using the appropriate asymptotic expression for
Kummer's function, we find that

for s »28 and provided that Mz & 1. We will now argue
that (63) is expected to be a good approximation even
when Iz lies outside the region where the potential can be
approximated by (58). Therefore, we choose an intensity I
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M( —s;O, I2 )

—V 2~ exp[ —, V(I) , BI———, V(I—2 )](sI2) '~

&& exp( ~sI2) . (64)

Since V(I) has been approximated by (58), the I-dependent
terms in the right-hand side of (64) cancel consistently and
the result can be written as

M( s;O,I2)—
' 1/2

H(I2)-V Zm
H(0)

(sI2)'~ exp( QsI2) .— (65)

Let us discuss the conditions under which this expression
is valid. Since we have used (63) with I2 I and (56) wi—t—h
I& ——I, the conditions are s »2B, s »I ' while BI&1
and I &I2. Since the condition s »I is already implied
by s »2B and BI & 1, we conclude that (65) is valid for
s »2B and BI2 & 1.

between 0 and I2 such that I is large enough that
M( —s;I,I2) is given by (56) and small enough that
M( —s;O, I) can be approximated by (63). Assuming that
such a value of I can indeed be found, we can now use (29)
and write

M( —s;0,I2 ) =M( s;0,I—)M( s;I,I—2 ),
where M( —s;O,I) is given by (63) and M( —s;I,I2) by
(56). The result can be written in the form

By taking the inverse Laplace transform of (65) we
find"

1/2
H(I2) —I2 I2

P(T;O,I2)-2 exp W). )g4

(66)

where 8'& ~ &/4 is Whittaker's 8' function. Using the
asymptotic expansion of Whittaker's function for large ar-
guments, we readily obtain

I2 l4T—
P( T;O,I2 ) —— I2 (67)

2 H(0)
)

T~

which is valid for T«1/2B and as long as BI2&1.
Equations (57) and (67) are the desired asymptotic expres-
sions for P. The important difference between the two ex-
pressions is that P( T;O,I2) has a T proportionality
whereas P(T;I~,I2) is proportional to T ~ . Since they
are both proportional also to, in fact, the sam. e exponential
factor, the former distribution rises relatively faster than
the latter as T increases from 0. This difference in
behavior is related to the fact that at I~ ——0, there is no
diffusion while the drift will always push the intensity ini-
tially in the direction of I2. If, on the other hand, I& is
well above 0, then there is always a chance that the inten-
sity will initially decrease, that is, move away from I2, so
that it will take a relatively longer time to reach I2.

Let us finally derive asymptotic expressions for
p{T;I„I2). Substituting (57) in (23) and performing the
integration over T, we find

H{I2) I2 ~I2 ~I,
~(I, ) I, 2~T

4I) H(I))
p(T;I, ,I2)= J"dI a(I) ~I&

After performing the differentiation and using (21), the final answer can be written as

(68)

2[%(I,)H(I )]' (I,I )'
p( T;I],I2)=

J 'dI H(I)

(V I2 V I&)—
4T A(I) ) —2 ~I~ —~I)

2~T (69)

This expression is valid for T«T] and I2 &I]. For
I& ——0 we have, according to (20),

p( T;0,I2 ) =P( T;O,I2 ), (70)

where P(T;O,I2) is given by (67). According to (69), the
dominant contribution to p(T;I&,I2) is, apart from the ex-
ponential, proportional to T ', whereas for p(T;O, I2)
this proportionality factor is T . The difference between
the two p distributions is therefore more pronounced than
between the P distributions.

As an illustration of the various asymptotic results
some plots are given. In Fig. 6 we have drawn the P and p
function as given by the small-time asymptotic results (S7)
and (69), respectively, as well as the corresponding large-
time exponentials. The parameter values are a =6, g =2,
I& ——1, I2 ——2, (T)0 &

——0.52, and (T)02——1.61. The FPT
distribution P is sharply peaked and assumes values much
larger than the exponential. Such overshoot effects tend

I

to become larger when It, and I2 are closer to each other,
in which case the peak tends to become higher and nar-
rower. In fact, the 5 function in {47) is a crude representa-
tion of this narrow peak. For the switching time p, the
small-time peak behavior is mostly washed out.

In Fig. 7 we have drawn the FPT distribution P,(T;O,I2)
given by (67) and the corresponding exponential (45) with
parameter values a=6, /=2, I2 ——0.5, and (T) =0.18. P
is seen to approach the exponential closely without show-
ing the narrow and high peak as in Fig. 6. A slight
overshoot, however, is expected in view of normalization
considerations. In Sec. IV we will confront the asymptotic
results with various histograms obtained by numerical
simulation of the FPT problem.

IV. NUMERICAL RESULTS

The algorithm used in the numerical simulation of the
diffusion process described by the Langevin equation (2) is
given by
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0.1 0.2
I

0.4

FIG. 6. P and p curves for a =6, /=2, I~ =1, and Iq ——2.
Solid P curve is the small-time asymptotic result (57); the dashed
P curve is the corresponding large-time exponential, that is, the
second term in the right-hand side of (47). Solid p curve is the
small-time asymptotic result (69) and the dashed p curve is the
corresponding exponential (45). Exponentials are based on the
calculated values ( T)p 1

——0.52 and (T)p z
——1.61.

I(r+r) =[At(I(r))+8Y]r, (71)

where Y is distributed according to the one-parameter
gamma distribution

form of y when the shape parameter I/8&»1 —precisely
half of the actual first-passage events are counted.

This problem can, in principle, be overcome by multi-
plying the number of numerically obtained first-passage
events by a certain factor, but an extra complication is
that this factor will depend on the step number in a com-
plicated way. Namely, in those cases in which an "un-
detected" first-passage event took place, the numerical in-
tegration is continued, whereas it should have been ter-
minated. It can be seen that the calculation of the correc-
tion factor in the nth step involves n repeated incomplete
gamma-function integrals and, therefore, becomes very
complicated, if not impossible. We were able to avoid this
calculation by following a more pragmatic way of inter-
preting the results, in which the numerically obtained
first-passage histogram is not compared with the corre-
sponding analytic expression P(T;I„I2) but rather with
I'(T;Ii,I2+6), where 6 is a positive intensity shift, the
value of which will depend on the actual value of the time
interval step ~.

In order to discuss the effect of such a 5, it should be
realized that in the ideal case of an infinitesimally small ~
in (71), the probability that I&Iz will be vanishingly
small. In the calculations, however, v. is always given a
finite value and this means that after each integration step
there remains a finite probability density H(I) for I &I2.
This probability density will be a decreasing function of I,
but it will be vanishingly small only when I—I2 is larger
than, say, one diffusion length, or, I—I2 & +&(I~)r. It
will, therefore, appear as if the numerically obtained re-
sults correspond to the FPT distribution at I2+6, where
6 will be of the order of Q&(I2)r.

These ideas were fully confirmed by the numerical re-
sults. In all cases good agreement between the analytic
and numerical results could be achieved in this way, where
the optimum value of 6 was usually between 0.25 and 0.75
diffusion lengths.

It is instructive to realize that, since b, cc v r and since
the FPT distributions P(T;I„I2) are very sensitive to
small variations of I2, the convergence of the calculated
first-passage distributions when ~ is taken smaller and

y(Y)= Y ~' 'e /1 (I/8v. ) (72)

and z is the time interval step. Starting at t=0 with in-
tensity I„ the algorithm (71) is subsequently used until
after n steps the intensity becomes larger than Iq (I2 & I~ )
for the first time, or until the total number of steps
exceeds a given value ¹ In the first case we conclude that
a first-passage event at I2 took place at a time T between
(n —l)r and nr. In the second case we can only say that
T&N~. Thus, a histogram can be obtained by repeating
the above-described procedure M times, where M is a large
number. It should be emphasized however, that the limit-
ing form of this histogram when M —+ 00 may systemati-
cally differ from the actual first-passage histogram. This
follows from the observation that after each step only
those events are counted for which the intensity exceeds
I2. However, there will be more of them, since all first-
passage events that were directly followed by diffusion
backwards to a value below I2 are erratically discarded in
this way. For instance, it can be shown that if tp(Y) is a
Gaussian distribution —which is, actually, the asymptotic

0.05
I

0.1

1

0.15 0,2

FIG. 7. P curves for a =6, /=2, I, =O, and I2=0.5. Solid
curve is the small-time asymptotic result (67) and the dashed
curve is the corresponding large-time exponential (45) with
(T)pp 5=0.18.
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FIG. 8. FPT histogram and corresponding asymptotic func-
tions for a =6, /=2, I~ ——0, Iq ——0.55, and the time interval step
~=0.005. Total area of the histogram is 0.58 and the total num-

ber of first-passage events contributing to the histogram is 5803.
Continuous solid curve is P(T;0,0.55) as given by (67) and the
dashed curve is the exponential (45) with ( T)pp 55=0.20.

FIG. 10. FPT histogram and corresponding asymptotic func-
tions for a=6, /=2, I~ ——0, Iq ——2.2, and r=0.01. Total area of
the histogram is 0.40 and the total number of contributing
events is 2595. Continuous solid curve is P(T;0,2.2) as given by
(67) and the dashed curve is the exponential (45) with

( T)p2 p=1.91.

smaller is very slow, which, in practice, leads to a conflict-
ing confrontation between desired accuracy and comput-
ing time. Keeping the total number of first-passage events
contributing to one histogram constant, the difference be-
tween the actual and the calculated distribution decreases
by a factor f at the cost of a factor f in computing time.

The numerically obtained histograms together with the
asymptotic results for the corresponding FPT distribu-
tions are depicted in Figs. 8—13. All figures refer to the
case a =6 and /=2 but differ in the combinations I~ and
I2. The continuous solid curves represent the small-time
asymptotic results and the dashed curves are the large-
time exponential results for the FPT distributions. In Fig.
8 we have I& ——0 and I2 ——0.55. The solid curve is
P(T;0,0.55) as given by (67). The exponential (dashed
curve) is given by (45) in which for ( T) the corresponding
calculated value was taken as indicated in the figure cap-
tion. The agreement between the histogram and P is good
for values of T up to 0.06, but from there on they differ
systematically. This is indeed to be expected, since (67) is

a good approximation only as long as T «1/28
=1/(g —1)a =0.167.

A similiar behavior can be seen in Fig. 9 where Ij ——0
and I2 ——1.2. The exponential is seen to agree well with
the histogram for T) 1. There is also good agreement
with the P curve, even for values of T up to 1/28=0. 167.
FPT results for I& ——0 and I2 ——2.2 are shown in Fig. 10.
In summary we have found that the FPT distributions
from Ij ——0 to I2 show a steep increase proportional to
T exp( I2/4T) in —the limit of small T, an exponential
tail for large T, and a slight overshoot of the exponential
for intermediate values of T.

Let us now turn to FPT results for cases with I~&0,
which are shown in Figs. 11—13. The shape of the histo-
grams and the positions of the maxima are well represent-
ed by the small-time asymptotic formula (57). Note, by
comparing the differences in the horizontal and vertical
scales of the three figures, the enormous narrowing and in-
crease of height of the peaks as I j and I2 approach each
other. The height of each maximum can best be compared

P

0.5-

I

0.5
I

1.5

1 2

0, 12

3 4 5 6

IO

J
7 B 9

FIG. 9. FPT histogram and corresponding asymptotic func-
tions for a =6, g'=2, I& =0, Iq ——1.2, and r=0.025. Total area
of the histogram is 0.97 and the total number of contributing
events is 9741. Continuous solid curve is I'(T;0, 1.2) as given by
(67) and the dashed curve is the exponential (45) with

(T)p i 2=0.73.

FIG. 11. FPT histogram and corresponding asymptotic func-
tion for a =6, /=2, I, =1, I2=2.07, and r=0.001. Total area
of the histogram is 0.23 and the total number of contributing
events is 1727. Continuous curve is P(T;1,2.07) as given by
(57).
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f I I and I is not too close to 0 then [H(I')] ' as-
mes its maximum at I'=I, while Ki( anI') and N(I')

show only weak variations for I &I. We
write, to a first approximation,

Ki (I)' '= u(r) ~o w(r') '

and, by using the same arguments,

(A2)

Io

FIG. 12. FPT histogram and corresponding asymptotic func-
tion for a=6, /=2, I&=1.75, Iz —2.018, and v=10 . Total

is 0.47 and the total number of contribut-area of the histogram is . an
'1.75 2.018) asing events is 4700 Continuous curve is P(T;1.

given by (57).

~~T~ which is the value ofwith the quantity (T)i, I, l( )oi, ,
the corresponding exponentia,

'
1 i.e. the second term in the

~ dIright-hand side of (47) for T~0. These values are in i-
cated in the figures.
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APPENDIX

The approximate method for performing the integra-
tions in the ng t- an si

'
h -h d ide of (39) is based on the observa-

tion that i e poh f th tential minima are separate by a ig
barrier, the function ~f ' [&(I)] ' will show a steep mcrease

I=I a sharp maximum at IM and a steepfI'OIII =0 to
decrease from I=IM to I=a. Accor ing o
n =2 we have

Ki (I)""'"=~(r) ~ ~(')
'n

( =1,2, . . . and 0«I &IM) . (A4)

dr'
&(I ) Jo H(I') ' (A5)

or, generally,

h I &I &a we can apply a similar approxima-In t e case
1 caked attion. The integrand in (Al) is now sharp y p

I'=IM, so that, to a first approximation,

r dI'K] (I
&(I')H(I')

Ki(4r)" I dr'I M J'
n —1

( =1,2, . . . and IM &I &a) . (A6)

We can now substitute these expressions in the right-hand
side of (35) and carry out the summation.'on. This leads to

I, oo

200—

]O4+

K(z;I)= .

0«r&r
2zK i (I)
~(r) ~ ~(r')

K] (IM )z

2zrc, (IM)
&(I ) 0 H(I')

G. 13. FPT histogram and corresponding y pin as m totic func-FI
tion for a =6, /=2, I~ =1.

ut-is 0.39 and the total number of contribu-area of the histogram is . an
ing events is . on

'
3898 Continuous curve is P(T;1.9,2.00 ) as giv

by (57).

(A7)

Consistent with the former approximations, we can write
(A7) also as
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E(z;I)=

X](I)z
t dI'2zK, (I')1— ' ~(I')~(I')
X,(I~)z

IM &I &a .t dI'2zKt(I')
~p ~(I')~(I')

t dI'2zK, (Ist) 1

&(I')H(I') t dI"2zK, (I")1— &(I")H(I")
t dI'2zKI (I') 1

~p W(I')%(I')
1

t' dI"2zK(I")
Jo W(I")H(I")

Substitution of (A8) in (30), with the use of (32), yields, for (A10)

t dI'2zKt(I')I 1 1

dI "2zKt (I")1—
V (I")H(I")

1 1

t dI'2zKt(I') 1 —z(T)pt1—
p &(I')H(I')

Similarly, for IM &I & a, we can write

I.et us now qualitatively discuss the accuracy of these re-
sults. First of all, we had to exclude values of I close to 0.
The precise lower bound on I follows from the require-
ment that [H(I)] ' should be, roughly speaking, an order
of magnitude larger than [H(0)] '. Hence, the lowest
value of I for which the approximation still makes sense
will decrease when the pump parameter increases.
Secondly, the number of approximations used to evaluate
K„(I) increases with n and so will the error. Therefore,
(A9) and (A10) will become less accurate with increasing z.
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