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Evolution of spontaneous and coherent radiation in the free-electron-laser oscillator
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An analysis of the free-electron-laser (FEL) oscillator startup problem in the linear regime is
presented. The model is spatially one dimensional, though many important three-dimensional ef-
fects are included heuristically. The electron beam consists of pulses of arbitrary shape separated by
approximately twice the radiation transit time. The small gain per pass approximation is employed
in deriving an energy rate equation, which describes the evolution of the radiation pulses within the
resonator. The wiggler field is assumed to occupy a portion of the finite Q resonator. In the energy
rate equation, the spontaneous (incoherent) radiation term is represented by a source matrix, while

the stimulated {coherent) radiation term is represented by a gain matrix. The effect of small varia-
tions in the mirror separation are investigated in the context of laser lethargy. Our analysis suggests
possible methods which could substantially shorten the startup times in FEL oscillators. Finally,
our results are compared with the FEL oscillator experiments performed at Stanford University.

I. INTRODUCTION

A number of successful free-electron-laser (FEL) oscil-
lator experiments have been reported. ' Simple con-
siderations concerning the spontaneous radiation level in-
dicated startup times much shorter than those observed.
Since a number of experiments utilizing shorter electron
beam macropulses are being constructed or planned, thus,
there is concern that these forthcoming experiments may
be unable to reach saturation. A quantitative understand-
ing of the growth of coherent stimulated radiation from
incoherent spontaneous emission is thus highly desirable.
Published papers on the FEL oscillator had either neglect-
ed the spontaneous radiation, or had treated them
separately from the stimulated radiation. ' Here we out-
line a classical theory of the spontaneous startup of the
FEL oscillator in the cold. , small signal regime. Our
model is spatially one dimensional and therefore lacks
many important features such as transverse gradients as-
sociated with the radiation and electron beam and diffrac-
tion effects. In a one-dimensional model these effects can
only be incorporated in an approximate way by means of
filling factors.

Theories of the free-electron laser (FEL) have pro-
ceeded from a continuum description of the electron
dynamics, either Quid equations or the Vlasov equation.
For a proper description of the startup of an FEL oscilla-
tor one must take into account the fact that the electrons
are discrete and initially uncorrelated, since it is the ac-
celeration radiation of individual electrons in the wiggler
that provides the initial fields. These initial fields are then
amplified by the collective gain mechanism associated
with the continuum description. This initial radiation,
however, is effectively incoherent in a device in which the
electron density is small and the electrons are randomly
distributed. Thus a statistical theory is required which is
couched in terms of objects bilinear in the fluctuating
quantities so that ensemble averages are nonzero, even

when the ensemble average fluctuating current density is
zer o.

The theory described in this work is one dimensional in
space and treats the electrons as governed by the relativis-
tic equations of motion, and the electromagnetic fields as
governed by Maxwell's equations. This is valid whenever
the rms fluctuation 5% in the number of photons in the
resonator is small compared with the mean number of
photons X. Certainly this is not true initially, and in prin-
ciple, one should treat the problem initially by quantum
mechanics. Failure to do so implies an uncertainty in the
initial phases of the start up. Since one expects
5N-(N)'~ if the electrons are randomly distributed, the
duration of the quantum regime will be short if classical
theory predicts for times short compared to that for
saturation that the photon density

E = I d'r(E +B )l(4hcol ) ))I,
where mL ——2y ek~ is the laser frequency, and h is
Planck's constant.

This paper presents an analysis of the transition from
the incoherent radiation to the coherent radiation in an
FEL oscillator. The model of the FEL oscillator is
described in Sec. II. The equations governing the complex
amplitude of the radiation in terms of the particle trajec-
tories are derived in Sec. III; and the equations governing
the particle trajectories in terms of the radiation field are
derived in Sec. IV. The results of Secs. III and IV are
combined in Sec. V to obtain the self-contained radiation
dynamics equations. The equation describing the dynam-
ics of the radiation energy rate matrix is derived in Sec.
VI. The solution of the energy rate equation is obtained in
Sec. VII. The three-dimensional effects of the spontane-
ous radiation are incorporated into the one-dimensional
model through a filling factor in Sec. VIII. The analysis
of the FEL oscillator startup process is now completed.
We examine a limiting case, in Sec. IX, where the electron
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pulse length is long. In the final section, Sec. X, we com-
pare our numerical results with Stanford's FEL oscillator
data. Finally in this section a number of possible methods
are suggested to shorten the FEL oscillator's startup time.

of the nth mode, and c.c. denotes the complex conjugate.
The vector potential of the linearly polarized wiggler field
is nonzero only in the interval L, o &z &Lo+L and is tak-
en to be

II. FEL OSCILLATOR START UP MODEL A (z) =A cos(k z)e„, (2)

The schematic representation of the FEL oscillator
model used in our analysis is shown in Fig. 1. The resona-
tor defined by plane reflectors at z =0 and L contains the
wiggler magnetic field located between z =L p and
z=Lo+L . The total resonator losses are modeled heu-
ristically by a Q factor. The highly relativistic pulsed
electron beam enters the resonator from the left at z =0
with axial velocity voe, . Within the wiggler field the axial
pulse velocity is reduced slightly to vo,e, . The electron
beam pulses are spatially periodic with period Lb. Al-
though Lb is arbitrary in the analysis, it is clear that for
proper matching between the beam and radiation pulses
that Lb should be approximately an integer times 2upL/c.
The radiation pulse in the wiggler field, when overlapping
with the beam pulse, can travel at a velocity slightly less
than c, and the effect is called laser lethargy. It, therefore,
becomes necessary to slightly mistune (shorten) the reso-
nator length to optimize the interaction. This effect is
fully taken into account and is discussed in detail later.
The axial profile of the electron beam pulses are left arbi-
trary but have a characteristic length lb «I b. The enter-
ing electron beam is monoenergetic with no spread in ei-
ther the longitudinal or transverse velocities. The radia-
tion pulse is assumed to undergo little change in phase
and amplitude during a single pass through the resonator,
i.e., low gain operating regime. The wiggler parameters
are taken to be fixed and space charge effects neglected.
Finally the analysis is performed in the small signal re-
gime, i.e., to first order in the radiation field.

III. REDUCED WAVE EQUATION

We will represent the radiation field within the resona-
tor by a superposition of spatial modes, which are such
that the tangential electric field vanishes on the mirrors.
The vector potential of the radiation field is written as

Az(z, t)= g a„(t)sin(k„z)e "e„+cc.
n=1

where k„=to„/c =~n/L, a„(t) is the Fourier coefficient

where k„=2m. /l~, l~ is the wiggler wavelength, and

~
A~

~
&& ( Aii

~

. The one-dimensional wave equation for
Az, including a phenomenological loss term, is

a' 1 e' ~ a A„(z,t) = — J (z, t), (3)
cjz2 ci Qt2 c2 Bt c

where the current density J will eventually be taken to be
linear in Aii, v=tol /Q, coL is the characteristic laser fre-
quency, and Q is the quality factor associated with the
resonator. In the FEL the characteristic laser frequency is
tpt. =( I +Pp )i p up. k, where Pp, ——up, /c and yp,

2

=(l —Pp, ) '~ . In (3) the Q is defined in the usual way
such that in the absence of a driving current the elec-
troinagnetic stored energy [proportional to

~
a„(t)

~ ] de-
cays like exp( —toLt/Q). Note that in (3) it is assumed
that all the significantly excited longitudinal modes have
the same Q.

The actual discrete beam density is

n (z, t) = g 5(z z(z„,t))—I
~b

(4)

(
1 g Mz z(zo~, t))j-

C7b

= f dzpnp(zp 0)5(z —z(zp t))=np(z, t),

and crb is the cross-sectional area of the electron beam and
z(zpj, t) represents the axial orbit of the jth electron. At
t =0 the initial axial position of the jth electron is zpj, i.e.,
Z(Zpj t =0)=Zpj ~

The fluidlike beam density can be defined as

np(z, t) = (n (z, t) ),
where the angular brackets ( ) denote the ensemble aver-
age of the enclosed quantity. The ensemble average in (5)
is over uncorrelated charged sheets (electrons). Using (4)
we note that the ensemble average of the densiyt n (z, t) is

RESONATOR

WIGGLER

RADIATION
PULSE

where np(zp, 0) is the initial spatial density distribution of
particles. The fluctuating part of the density is given by
n (z, t) —(n (z, t) ). The effective nonlinear driving current
density is given by

ELECTRON PULSE
J(z, t)= J,(z, t)+ J;„,(z, t), (7a)

1( 't
I

'I 'II 'I

I l

z=o z= Lo z=Lo~Lw z
L

La —2L 1

FICx. 1. Schematic of the pulsed electron-beam FEL oscillator
model. J,= —)e

~

v F, (n(z, t)) (7b)

where J, is the coherent current driving the stimulated
radiation (gain) and J;„,is the incoherent contribution due
to the discrete nature of the electrons and is responsible
for the spontaneous radiation (shot noise). The coherent
and incoherent current densities are, respectively, given by
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and

J;„,= —
~

e
~

v F;„,[n (z, t) (—n (z, t) )], (7c)

v„=cP =
~

e
~

A (z)/yomoc =v cos(k z)e„

is the wiggle velocity defined over the region L, p (z
&Lp+L, v~ =

~

e
~
A~/(yompc), and yp

——(1—vp/
c )

'~ . The usual filling factor associated with the
coherent radiation is F, =o.k/o„, where cr„ is the trans-
verse area of the resonator radiation mode. The filling
factor associated with the incoherent radiation is written
as F;„,=Qf~~g. The term f is a loss factor due to the
finite size of the mirror at z =L, and is given by
f~ =[2yor /(1+yQ )L] where r is the mirror radius.

I

In obtaining f~ we have taken the incoherent radiation
divergence angle to be =(1/yp+P ). The origin of the
second term in the expression for E;„, arises from the
one-dimensional statistics performed on the uncorrelated
particles. In Sec. VIII we show that this term is given by
g=(Tb(yp/yo ) /(A. L yp ) where A,l. =I (1+Pp ) yp is
the characteristic laser wavelength.

It should be emphasized that in our model the electrons
are actually represented by sheets of charge. The surface
charge of each sheet is —

~

e
~
/oba'nd the sheets (elec-

trons) are taken to be uncorrelated.
To obtain an equation for a„(t), the Fourier coefficients

of the radiation field, we first substitute (1) together with
(7) and (8) into the wave equation (3). Taking a„(t) tobe a
slowly varying function of time, i.e.,

~
a„/a„~ &&co„, there

results on neglecting small terms

2i —g — a„(t)+—a„(t) sin(k„z)e " +c.c.
n 1 C

n

=4'
~

e
~
P„cos(k z) g 5(z —z(zpj, t)) (E;„, F—, )np(z, t) 6—(z Lp)6(Lp+—L —z), (9)

where p~=v~/c is the normalized wiggle velocity, 6(x) is the usual Heaviside unit step function, and the overdot
denotes a time derivative. By multiplying both sides of (9) by sin(k z) integrating over z from 0 to L, and keeping the
appropriate resonant terms we obtain

L
i„(t)= a„(t)+- —I dze " " g |)(z z(zpl, t)) (F;„,—E,—)np(z, t)—

n Ob

& 6(z Lo)6—(Lo+Lu —z) . (10)

To evaluate a„(t), knowledge of the axial orbit, i.e., z(zpj. , t), is required.

IV. PARTICLE DYNAMICS

~ ~

z(zol, t) =—
Pp&l pC

The longitudinal particle dynamics are governed pri-
marily by the ponderomotive force resulting from the
beating of the radiation and wiggler fields, see, for exam-
ple, Refs. 21—27. Keeping only the ponderomotive term
which is bilinear in A and Az and neglecting space
charge effects, we find that the axial dynamics of the jth
electron in the wiggler region, I.p &z (Lp+L, is given by

t'

hei 8 vox 8
Bz c Bt

+

vo. =vo(1 —P /4» (13)

where vp is the axial electron velocity prior to entering the
wiggler field. The trajectory of the jth electron prior to
entering the wiggler field is

z(zpp t) =zpj +vpt, (14)

where the right-hand side of (12) is evaluated at
z =z(zo/, t) and we have made use of the approximation
(1 —Po, )k„+k„=2k~. Within the wiggler field the axial
electron velocity in the absence of the radiation field as
determined by conservation of energy is

where up is the axial electron velocity in the wiggler. By
substituting (1) and (2) into (11) and keeping the appropri-
ate resonant terms on the right-hand side of (11) we obtain

wllel e t ( (Lp
—zpj )/vp ~ Within the wiggler the trajectory

of the jth electron is

(15)

( zl, tz)p

iefP k

yp~p n=1

i[(k„+k )s——co„t)
Q~ t e +C.C.

X6(z Lp)6(L p+L~ —z), —

where z 'o'(zpj, t)=vp, zo1/vp+(1 —vp /vp)Lp+vp t is the
unperturbed orbit and 5z is the displacement due to the
ponderomotive force. Equations (12) and (15) are valid
for times such that the particle is in the wiggler, i.e.,
(Lo —zoq)/vo & t ((Lo zoJ)/vo+L~/vs. —Substituting
(15) into (12) and linearizing we find that the longitudinal
displacement of the jth electron satisfies
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5z(z()J, t) =— /e/P k

2+pm p

r r t
i—(k„+k )(t:I) +L()—LI) ) —itt„t Zpj Lo Lo Zpj +t"w

a„(t)e " " ' e "+c.c. e +t 6 t-
n=1 Up Up

(16)

where Po, ——UP, /c, )M„=Up, (k„+kw) —tt)n =UP, kw —ck„(1—PP, ) is the frequency mismatch, zPJ ——vo zPJ/Uo,
Lo =Up Lplvo and Lw =vpLw/vo, . We now invoke the low gain assumption by taking the coefficients a„(t) to be con-
stant during the time the jth electron is within the wiggler region. Integrating (16) twice, using the low gain assumption,
and taking the initial conditions such that the relative displacement and relative displacement velocity are zero at the en-
trance to the wiggler, i.e., 5z=5z=0 at t =(Lp —zpj)/vo, we find that

5Z(zoj t)= /e/P k

youp

—i(k +k )(ro +L() L())—
attt(t ptn e

m=1

itt —t . (Lo —zoj ) —ip (Lo —zo )/vpX e -+ ip ~ — —le ' ' '+cc. ,
Up

(17)

where expression (17) is valid for times such that (Lp —zoj ) lvp & t & (Lo+Lw —zoj ) lvp and is zero prior to this time in-
terval. Expression (10) together with (17) describes the linear, low gain, longitudinal dynamics of the jth particle within
the wiggler field.

V. RADIATION DYNAMICS

b„(t)= — b„(t)+S„(—t)+R„(t), (18)

where

I
Uw~ inc () w i(k +k )z ict t—L +L

S„(t)= n w a

I.ah Lo

We now return to the evolution of the radiation field.
Substituting (15) together with (17) into (10), introducing
coefficients b„(t)=k„a„(t),and expanding the 5 functions,
the expression for the time rate of change of the Fourier
coefficients is given by

w c w
d

t (k„+k )s t to„t—77~8 ~ U E Lo+Lw

I. Lo

(19b)

and 5z(zpj, t) is given by (17). On the right-hand side of
(18), the first term represents the resonator loses, S„(t)
represents the spontaneous or incoherent radiation term,
and the stimulated or coherent radiation is represented by
R„(t). Substituting the linearized, low gain, longitudinal
orbit of the jth particle within the wiggler field given by
(17) into (6) the stimulated term in (18) can be expressed

g 5(z z' '(zpj, t)) —crbnp(z, t)—, (19a)
j=1

R„(t)= g G (t)b (t),
m=1

where

(20)

i(p„—p )t i(k„—k )(Lo —Lo )

Nm

L+L' —vt0 w 0 i (k„—k~ )voto/vo ip [t —(Lo —zo )/Vo]X dzpnp(zp 0)e " (1+Iip [t —(L()—zp)/vp] —1Ie ' ' ' ),Lo —vot (21)

where Lw =Lwvp/vo, -Lw. The time rate of change of the Fourier amplitude given in (18) can therefore be put into the
form

b„(t)=S„(t)+ g G„(t) —5„b (t—),
m=1

(22)

where S„(t) is the spontaneous radiation source term, G„(t)b (t) represents the dielectric response or gain, 5„ is the
Kronecker 5, and (v/2)5„b (t) is the loss term due to the finite Q of the resonator. The matrix G defined by the ele-
ments G„(t) will be referred to as the gain matrix.
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VI. DERIVATION OF ENERGY RATE EQUATION

The total ensemble average electromagnetic energy within the resonator is

JY, (t)= I d'r(E'+8') /Sm. =- g (b„b„')
n=1

(23a)

and the electromagnetic power flowing axially within the resonator is

area 16- n, m =1
(23b)

where the brackets ( ) denote the ensemble average over
uncorrelated sheets (electrons) of the enclosed quantity.
From (23a) and (23b) it is clear that the quantity of real
interest is the energy density matrix e defined by the ele-
ments

l
dition b(0) =0, we obtain

b(t) = I X(t)X '(t')S(t')dt'

where X(t) is defined by the equation

X(t)= G(t) I X(—t)—
2

(28)

In terms of the energy density matrix in (24), the total
electromagnetic energy 8' and the electromagnetic
power P, (z, t), are

with initial conditions X(0)=I. The energy density ma-
trix is

O~L, oo

(t) = — —g e„„(t)
4m

e(t) = (b(t)b H(t) ),
(25a)

pvhere

Tr(E)=(o.i(L) ' J d' (rE +B )/2

(29)

P, (z, t)= g e„(t)(e
16m „

i(k„—k )(z+ct)
e, +c.c.

and the superscript H denotes the Hermitian conjugate.
Using (27) together with (29) we find that e(t) satisfies the
rate equation

(25b)
We now derive the rate equation for the energy density
matrix. Writing (22) in vector notation yields

e(t) = G(t) I e(t—)+X(t)—+Hc.
X(t)= I (S(t)SH(t') ) [X(t)X-'(t')]Hdh'

(30)

b(t) =S(t)+ G(t) I b(t)—— (26)

where I is the unit matrix. Solving (26), with initial con-

and H.c. denotes the Hermitian conjugate of the preceding
terms. It can be shown that the ensemble average of
S„(t)S~(t)can be expressed as

(S.(t)S (h') ) =
2 2~

I
e

I uw +inc ip t ip t' i(k——k )(L& I.&
)—1' e n ptt 0 0

I, ob

I
0 to 0

n m Os 0 0dzono(zo 0)e " . e(zo —Lo+uoh )e(Lo+L~ —zo —uot') .
LO —v0t

(31)

By noting the limits of integration as well as the arguments of the Heaviside functions in (31), it is clear that the en-
semble average (S„(t)S~(t)) is nonzero only for t t' (~L/uoi. e., when the—re is an electron sheet in the wiggler. It
can be shown that in this interval X(t)X(t )=I if the gain per p'ass is somewhat less than unity. Hence the source
term of the energy rate Eq. (30) is simplified to

X(t)= J (S(t)S (t'))Ch'.
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The elements of (32) take the form

x„~(t)= i
2 2

I uw Fine i(p —p )t i(k —k )(Lo I.—o )n m e n m 0 0

0'b

Lp+L ' —ppt '("n m)oooo~"o —
(1 'i'm(' (~o o)~oo))

Zona Zo 8 Pm —e 0

Lo "0
(33)

This completes our formal derivation of the energy rate equation given by (30).

VH. REDUCED ENERGY RATE EQUATION

Due to the complicated structure of both the gain ma-
trix (21) as well as the spontaneous source matrix (33), it is
convenient to further reduce these terms to a more
manageable form. To this end we define a tiine variable
tiv, such that t'ai is the time that the center of the ¹helec-
tron pulse enters the wiggler field, that is

reduced to
2

g tb ~b 2 —i(k„—k )(N —1)Lb
G„~(t~+'r) = —— Po k~cF, e

Xo

+nm Onm

Pm

(39a)
t~ = [(N —1)Lb+Lo]/uo (34)

and
where N is a nonzero positive integer. During the electron
pulse propagation through the wiggler field, the indepen-
dent time variable is

X„~(t)v+~)=
2

l 7T ~b ~b~o 2 2 —i(k —k )(N —1)LbUI' eI gb

I„~(tN+r) = F„~[t~+~, (N —1)Lb]n—()lb
i (k~ k~ )()V i )Uo+b IuoX~ Pnm ~

where

(36)

V ir —[(k„—k )ib/4)i2'
sin[( k„—k )lb /2]

(k„—k )lb/2

Gaussian profile

square profile .
(37a)

(37b)

The expression in (37a) is for a Gaussian electron beam
pulse shape, i.e.,

2 pirb)'
np(zp )=n()e (38a)

while the expression in (37b) is for a square pulse shape,
i.e.,

t =tN+W,

where 0&v &L~/up, . To simplify the gain matrix and
spontaneous source matrix in (21) and (33) we note that
these matrices involve integrals of the general form

I
0 w 0 i (k„—k )up~0/up

dzono(zo)e " ' ' 'F.~(t»o)
Lp —Upf

(35)

The generic integral in (35) can be evaluated for two
representative electron pulse shapes of characteristic width
lb given

X e " (1—e™~),(39b)

where

a„=exp[ —i(kn —k )(1—Po)yo 'Lo]

and o)b 4n.
~

e
~

no——/mp is the Peak beam Plasma frequen-
cy. In obtaining (39a) and (39b) we rePlaced up lb/up by
lb.

In the absence of "laser lethargy" exact resonance be-
tween the electron beam pulses and the radiation pulses
occur when the inirror separation is equal to Lb/(2pp)
where Pp is the normalized axial pulse velocity outside the
wiggler field. This condition implies that the round trip
of the radiation pulse, if it were traveling at c, equals the
beam pulse period. However, since the radiation pulse
velocity, in the wiggler region when overlapping with the
electron pulse, is slightly less than c, it is necessary to have
the mirror separation slightly less than (Lb/2pp) for op-
timum overlap of the beam and radiation pulses.
With this in inind we define the mirror separation to be

L, =JL +61. ,

where L =Lb/(2po) »
~

5L,
~

. In (38) and (39) the only
term sensitive to slight variations in the mirror separation
is the common leading term exp[ i (k„—k—)(N —1 )Lb].
Substituting (40) into (39a) and (39b) and assuming 5L
small we find that the gain and source matrix elements be-
con1e

2

G„(t~+r)= —— P k cF,a„p„
yo

n p
—lb /2 &zp & lb /2

0, otherwise . (38b)
2i+ n —m)(N —1)5L/L

Xe

Using the result contained in (36), together with (34), both
the gain n1atrix and the spontaneous source matrix can be

X-
Pm

[1+(ip r 1)e" ]—(41)
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Ib 77
~

e
~

11pU~
&n~(r)v+&)= +nmpnm+inc

Loi,

2in(n —m)(X —1)5L/L
Xe

T

i(p p )~ (~ ~/'p sin(pnv/2)
X~e " e

p„~/2
(42)

The rate of change of the field energy density matrix
given in (30), together with the expressions for G„and
Xn in (41) and (42), can be still further reduced by invok-

ing the low gain per pass approximation. The low gain
per pass assumption implies that e changes slightly during
a single pass of the radiation pulse. Hence, by taking
E(1~+7 ), where r (L~ /Up to be nearly equal to e(t~ ) on
the right-hand side of (30), we can integrate (30) together
with (41) and (42). Doing this we find that the elements
of e at time t~+~ are given approximately by

e n(tz+r)=(1 vr)e—n~(t~)+S„m(t&, r)+ g [G«(t»r)ei~(t&)+e«(tx)G~I(tv, ~)],
I=]

(43)

where
2—l b ~b 2 2i+ n —m)(X —1)5L/L

Gn (t»r) = Gn (t~+r')dr'= ——

Pn k cI', e c)'n~pn g„(r)Nl7l & P PlNl 32 L w w c (44a}

and

np~w 2 2im(n —m)(X —1)6L/LS„(t~,r) = [X„(t~+r')+H.c.]dr'= I';„,e a„p„h„(~),
2L I ob

(44b)

where

EX~ Pl ){x„—x )

gn~(r)= 2 e " 1+ sinx„—e " x„
X~X~ X~

sin(x„—x )

Xn Xm

2lX—x ePl

and

hn~(r)= [ [sin x„+sin x —sin (x„—x~)] i [sinx„co—sx„—sinx cosx —sin(x„—x )cos(x„—x~)]]
XnXm (45b)

aild xn =)M r/2 = [Up k —ck ( 1 —Up /c)]7 /2. Note that
since h„~ is Hermitian, so is the spontaneous source ma-
trix S„~ in (44b). The fact that S„ is Hermitian is siin-

ply a consequence of the fact that e„~ by definition is
Hermitian [see (24)]. Setting r=L~/Up, in (43) gives the
energy density matrix after the Xth beam pulse has trans-
versed the wiggler. The results obtained by numerically
solving (43) for various experimental parameters will be
presented later.

VIII. SPONTANEOUS RADIATION SOURCE TERM

The spontaneous radiation source term in (44b) has been
obtained from a one-dimensional analysis of the wave
equation. Because of the one-dimensional character of the
analysis the spontaneous source term does not properly
represent the incoherent radiation source. A proper
three-dimensional treatment of the spontaneous radiation
is necessary to properly consider the statistics of discrete
uncorrelated particles as well as to separate the "velocity"
and "acceleration" (radiation) electromagnetic fields. p

The present one-dimensional treatment represents the elec-

lb ir le ~
npu, sin(p„r)

&nn(tN+&) =2
Lob pn

(46)

where we have used the expression for Xn~ in (44b} and
are considering a square-shaped electron beam pulse, i.e.,

t

trons as uncorrelated charged sheets and not as point par-
ticles. To correct for the one-dimensional limitations of
our analysis of the spontaneous source term we have in-
cluded in the incoherent current density (7c), a filling fac-
tor which contains the term ~g. This term is included so
that the total emitted spontaneous radiation agrees with
the well-known value obtained from Larmor's formula.
%'e have justified this procedure by performing a proper
three-dimensional treatment of the spontaneous source
term; this three-dimensional analysis will be published
elsewhere. To obtain the factor g in the spontaneous
source term, i.e., in the filling factor F;„„wecompare the
total emitted radiation energy from (43) with that ob-
tained from Larmor's formula with the loss terms f~ set
equal to unity and v=0. From (43), the diagonal elements
of e satisfy
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2 2

C
(47)

The velocity of a single particle in the wiggler is
v=uo, e, +U cos(k vo, t)e„. Using (47) we find that the

I

p„„=l. We now want to compare (46) with Larmor's ra-
diative formula. The total instantaneous power radiated
from a single particle is

total energy radiated during a time r &L /uo„by a beam
pulse consisting of lbnoob particles, is

W-=
3 2 lbno~b(po k-U-) r (48)2

C yO

The total spontaneous electromagnetic energy within the
resonator is given by (25a) with oz replaced by ob. Sub-
stituting (46) into (25a) gives

obL ~ &L "o. 21b ir
~

e
~

nou~ sinp, „i
W,m(r~+w) = f dn f dr F;„, + W,~(rb ),4~ I. Lo.

b
'"' P„

(49)

where we have approximated the sum by an integral. In-
tegrating (49) over r and n gives

g«(r) =G«(tv +r)+ G„'„(tv+a)

P~k~cF, rW N C

'2
s1IlX~

(53a)
2W, (t~+r)='W, (t~)+ — F;„,7. .

2 c 1 —o,

(50)
Ib rr ie

i
noU

S«(r) = FineL Lob
slllX~

7 (53b)

Comparing (48) and (50) we find that, for f = 1,

F~2
VO

VOz

6

(~l.ro. )'

where A,L is the laser wavelength A.L ——1 /(1+po, )yo, .

IX. LONCx BEAM PULSE LIMIT

A limiting case which can be fully evaluated analytical-
ly is that of a long pulse beam, i.e., 1b &L. Although this
limit is not necessarily directly applicable to either
planned or completed pulsed beam FEI oscillator experi-
ments it does represent an interesting limit of the more
realistic configurations. If the electron pulse widths are

comparable but somewhat less than the mirror separation
I., the gain matrix as well as the spontaneous source ma-
trix in (44a) and (44b) approach a diagonal form. This
can be seen by noting that for Ib &I., the matrix defined
by p„~ and used in (44a) and (44b) approachs (v'ir/2)5„
for a Gaussian beam pulse and 5„~ for a square-shape
beam pulse where 5„ is the Kronecker 6. The diagonal
forms of (44a) and (44b) is reasonable in this limit, since it
is the off-diagonal elements, in particular the term
exp[2iri(n —m)(N —l)5L/L~ ], which are responsible for
the laser lethargy effect and when the beam width is suffi-
ciently long this effect is unimportant. In this limit a sin-
gle longitudinal mode analysis would suffice.

Therefore, the energy rate equation in (43) together with
(44a) and (44b), for long beam pulses, takes the form

de«(t) = (g„„/hr v)E„„(r)+S„—„/b t,
dt

(54)

TABLE I. FEL oscillator parameters at Stanford University.

Beam parameters

Beam energy (yo —1)moc
Total gamma yo
Axial garnrna yo,
Peak current I~
Pulse width lb

Pulse separation Lb
Beam radius rb

43 MeV
85
69

1.3 A
1 mm

25.4 m
0.25 mm

Wiggler parameters

Wiggler wavelength I„
Wiggler amplitude (helical)

8„=2m' /I
Wiggler length L

3.3 crn
2.3 kC»

5.3 m

Resonator and radiation parameters

and x„=p„r/2. In obtaining (53) we have assuined a
square-pulse shape. Note that in g«(r) and S«(r), r
ranges from 0 to L~/Uo, . Since e«changes little from
pulse to pulse we may transform (52) into a first-order
temporal differential equation. Since t~+i t~+Lb——/vo,
(52) can be written as

e„„(t„+r)= [1 vr+g„„(r)]c„„(r„—)+S„„(r),

where the diagonal gain and source matrix elements are,
respectively,

Resonator length L
Resonator losses (round trip)
Radiation wavelength A,L

Spot size ro
Beam-filling factor F,
Incoh. rad. loss factor f
Rayleigh length ~ro/A. J

12.7 m
1.5%
3.3 pm
0.167 cm
0.017
0.05
2.71 m



2308 P. SPRANGLE, C. M. TANG, AND I. BERNSTEIN 28

IO

IO

IO

o 104

R
v& P

A

ULSE

CTRON-
M PULSE

IO
CL

O IO
IU

IO

IO

-I
IO 0

I

50 IOO
I

I50 200
NUMBER OF PASSES

FIG. 2. Peak power of the radiation pulse as a function of the
number of passes for Stanford FEL oscillator experiment with
various detuning parameters 5L.

where At =2Lblup, g«, and S„„are to be evaluated at
r =L~ lup, and we have replaced the discrete time parame-
ter t& with the continuous parameter t Integr. ating (54)
yields

e„„(t)=
g„„—v At

(It„„vent)ti—at
e

X. NUMERICAL ILLUSTRATIONS, EXPERIMENTAL
COMPARISON, AND DISCUSSION

Our numerical illustrations are directed toward a com-
parison of the FEL oscillator experimental results report-
ed in Ref. 4. In addition, we suggest methods, which
could substantially shorten the oscillator startup time.

The parameters of Stanford's FEL oscillator is given in
Table I. In the FEL oscillator experiment a helical
wiggler field was used. Since the present analysis assumes
a linear wiggler it becomes necessary to multiply 8 in

where e«(t =0)=0. For times less than a growth time,
i.e., t & b,tl(g« vent), —

e„„(t)=S„„{tlat+(g„„vent)t—'l2 (b, t)') .

AXIAL DISTANCE RELATIVE TO THE ELECTRON PULSE

FIG. 4. Radiation pulse power relative to the spatial profile
of the electron pulse (square) at the entrance of the wiggler
(t =t~) and exit of wiggler (t =t&+L /U, o), where X &&1
denotes the electron pulse number for the Stanford FEL oscilla-
tor experiment with 5L = —1.0)& 10 cm.

Table I by v 2 in order to be consistent. The peak power
within the resonator as a function of the number of beam
pulses that have passed through the resonator is shown in
Fig. 2 for six values of the resonator mismatch length
5L =L Lb l2Pp. —Figure 3 shows the asymptotic gain
as a function of 6L,. The mirror mismatch
5I. = —1.1&10 cm corresponds to maximum gain but
not maximum saturated power. Maximum saturated
power occurs for 5L between 0 and —1.1 && 10 cm. The
range in 5L for nonzero gain is —3.0X10 cm &5L &0,
in fair agreement with the experimental range of
2.5 && 10 3 cm. The maximum calculated multimode (fin-
ite beam pulse) power gain is 0.16 whereas the single mode
(continuous beam) yields a value of 0.25. Finite beam
pulse effects therefore reduce the linear gain by approxi-
mately 60%%uo. The maximum experimental gain is 0.10.

Figure 4 shows the spatial distribution of the electron
pulse (square) and the radiation power pulses at the en-
trance and exit of the wiggler for 5I. = —1.0&& 10 cm.
Upon entering the wiggler the radiation pulse slightly lags
the beam pulse, while exiting the wiggler the two are com-
pletely overlapped. The asymptotic energy spectrum of
the radiation, Fig. 5, is narrower and shifted with respect

0. !

W

—2.0 —I.O

MIRROR DETUNING LENGTH SL ( lO cm)

00 0

Ekwvoz
—ck(l Poz)j Lw/2 voz

FIG. 3. Asymptotic energy gain (t»&2L/U, o) of the radia-
tion pulse as a function of 5L for the Stanford FEL oscillator
experiment.

FIG. 5. Asymptotic energy spectrum of the radiation pulse
for the Stanford FEL oscillator experiment with 5L
= —1.0X 10 cm.
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to the spontaneous radiation spectrum.
Equation (43) suggests that one can roughly compute

the relationship between I'&, the peak power in the resona-
tor after the Kth pulse, to Po, the power emitted spontane-
ously, by assuming a constant average gain per pass g. An
elementary calculation yields when X»1 and g «1,
Ptt /Pp =X—1 + ( 1 +g)+=% +exp(gN). Clearly when
gX »1 the result is very sensitive to small changes in g
and X. If one takes the experimental values correspond-
ing to the maximum observed final power of
I'& ——2.7&10 W within the resonator, %=540 and the
computed spontaneous power of Po ——6.5&(10 W, one
finds that g =0.037. The experimental value of linear
gain is 0.067. In view of the sensitivity to changes in N
and g the results are not inconsistent. Moreover this ef-
fective value of g is smaller than the linear gain predicted
by the present model which is reasonable since nonlinear
effects and initial beam thermal effects must lower the
gain. Unfortunately the currently available data is inade-
quate to make other detailed comparisons with this
small-signal theory.

Our analysis suggests possible ways to substantially
shorten the oscillator startup time while maintaining high
saturated power levels. The first approach takes advan-
tage of the fact that the maximum linear gain and max-

imum saturated power occur for different values of 5L,
which we will, respectively, denote by 5L j and 5L2. By
slightly increasing the frequency of the rf accelerating
field, co„„during the startup period, i.e., decreasing the
beam pulse separation, the value of 5L, could be varied
from an initial value of 5L i to the value of 5Lq, thus, de-
creasing the startup time while maintaining high final
power levels. The required fractional increase in co„, is

~

5L i 5L2—
~
/Lb = 10 for the parameters of Refs. 3 and

4. The same effect may also be realized by simply chang-
ing (increasing) the mirror separation during the startup
period. Another possible method of decreasing the startup
time would be to simply increase that part of F;„,associ-
ated with mirror losses, i.e., increase f . This could be
accomplished by increasing the effective size of the mirror
located at z =L. The additional extension of the mirror
would necessarily have a different curvature. This last ap-
proach should make it possible to contain a far larger por-
tion of the incoherent radiation.
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