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An analysis of the free-electron-laser (FEL) oscillator startup problem in the linear regime is
presented. The model is spatially one dimensional, though many important three-dimensional ef-
fects are included heuristically. The electron beam consists of pulses of arbitrary shape separated by
approximately twice the radiation transit time. The small gain per pass approximation is employed
in deriving an energy rate equation, which describes the evolution of the radiation pulses within the
resonator. The wiggler field is assumed to occupy a portion of the finite Q resonator. In the energy
rate equation, the spontaneous (incoherent) radiation term is represented by a source matrix, while
the stimulated (coherent) radiation term is represented by a gain matrix. The effect of small varia-
tions in the mirror separation are investigated in the context of laser lethargy. Our analysis suggests
possible methods which could substantially shorten the startup times in FEL oscillators. Finally,
our results are compared with the FEL oscillator experiments performed at Stanford University.

I. INTRODUCTION

A number of successful free-electron-laser (FEL) oscil-
lator experiments have been reported.!~* Simple con-
siderations concerning the spontaneous radiation level in-
dicated startup times much shorter than those observed.’
Since a number of experiments utilizing shorter electron
beam macropulses are being constructed or planned, thus,
there is concern that these forthcoming experiments may
be unable to reach saturation. A quantitative understand-
ing of the growth of coherent stimulated radiation from
incoherent spontaneous emission is thus highly desirable.
Published papers on the FEL oscillator had either neglect-
ed the spontaneous radiation,’~?° or had treated them
separately from the stimulated radiation.!> Here we out-
line a classical theory of the spontaneous startup of the
FEL oscillator in the cold, small signal regime. Our
model is spatially one dimensional and therefore lacks
many important features such as transverse gradients as-
sociated with the radiation and electron beam and diffrac-
tion effects. In a one-dimensional model these effects can
only be incorporated in an approximate way by means of
filling factors.

Theories’~28 of the free-electron laser (FEL) have pro-
ceeded from a continuum description of the electron
dynamics, either fluid equations or the Vlasov equation.
For a proper description of the startup of an FEL oscilla-
tor one must take into account the fact that the electrons
are discrete and initially uncorrelated, since it is the ac-
celeration radiation of individual electrons in the wiggler
that provides the initial fields. These initial fields are then
amplified by the collective gain mechanism associated
with the continuum description. This initial radiation,
however, is effectively incoherent in a device in which the
electron density is small and the electrons are randomly
distributed. Thus a statistical theory is required which is
couched in terms of objects bilinear in the fluctuating
quantities so that ensemble averages are nonzero, even
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when the ensemble average fluctuating current density is
ZEero.

The theory described in this work is one dimensional in
space and treats the electrons as governed by the relativis-
tic equations of motion, and the electromagnetic fields as
governed by Maxwell’s equations. This is valid whenever
the rms fluctuation 8N in the number of photons in the
resonator is small compared with the mean number of
photons N. Certainly this is not true initially, and in prin-
ciple, one should treat the problem initially by quantum
mechanics. Failure to do so implies an uncertainty in the
initial phases of the start up. Since one expects
8N ~(N)'? if the electrons are randomly distributed, the
duration of the quantum regime will be short if classical
theory predicts for times short compared to that for
saturation that the photon density

N= [d*r(E>+B?)/(4hor)>>1,

where w; =2y%ck, -is the laser frequency, and h is
Planck’s constant.

This paper presents an analysis of the transition from
the incoherent radiation to the coherent radiation? in an
FEL oscillator. The model of the FEL oscillator is
described in Sec. II. The equations governing the complex
amplitude of the radiation in terms of the particle trajec-
tories are derived in Sec. III; and the equations governing
the particle trajectories in terms of the radiation field are
derived in Sec. IV. The results of Secs. III and IV are
combined in Sec. V to obtain the self-contained radiation
dynamics equations. The equation describing the dynam-
ics of the radiation energy rate matrix is derived in Sec.
VI. The solution of the energy rate equation is obtained in
Sec. VII. The three-dimensional effects of the spontane-
ous radiation are incorporated into the one-dimensional
model through a filling factor in Sec. VIII. The analysis
of the FEL oscillator startup process is now completed.
We examine a limiting case, in Sec. IX, where the electron
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pulse length is long. In the final section, Sec. X, we com-
pare our numerical results with Stanford’s FEL oscillator
data. Finally in this section a number of possible methods
are suggested to shorten the FEL oscillator’s startup time.

II. FEL OSCILLATOR START UP MODEL

The schematic representation of the FEL oscillator
model used in our analysis is shown in Fig. 1. The resona-
tor defined by plane reflectors at z =0 and L contains the
wiggler magnetic field located between z=L, and
z=Ly+L,. The total resonator losses are modeled heu-
ristically by a Q factor. The highly relativistic pulsed
electron beam enters the resonator from the left at z =0
with axial velocity vyé;. Within the wiggler field the axial
pulse velocity is reduced slightly to vpé,. The electron
beam pulses are spatially periodic with period L,. Al-
though L, is arbitrary in the analysis, it is clear that for
proper matching between the beam and radiation pulses
that L, should be approximately an integer times 2vyL /c.
The radiation pulse in the wiggler field, when overlapping
with the beam pulse, can travel at a velocity slightly less
than c, and the effect is called laser lethargy. It, therefore,
becomes necessary to slightly mistune (shorten) the reso-
nator length to optimize the interaction. This effect is
fully taken into account and is discussed in detail later.
The axial profile of the electron beam pulses are left arbi-
trary but have a characteristic length I, <<L,. The enter-
ing electron beam is monoenergetic with no spread in ei-
ther the longitudinal or transverse velocities. The radia-
tion pulse is assumed to undergo little change in phase
and amplitude during a single pass through the resonator,
i.e., low gain operating regime. The wiggler parameters
are taken to be fixed and space charge effects neglected.
Finally the analysis is performed in the small signal re-
gime, i.e., to first order in the radiation field.

III. REDUCED WAVE EQUATION

We will represent the radiation field within the resona-
tor by a superposition of spatial modes, which are such
that the tangential electric field vanishes on the mirrors.
The vector potential of the radiation field is written as

Arz= 3 a,(Dsin(k,2)e’ "', +c.c. , (1)

n=1

where k, =w,/c =mn/L, a,(t) is the Fourier coefficient

RESONATOR

RADIATION
PULS

WIGGLER

ELECTRON PULSE -
[ 8
r
T
z
s l 1
b -z, )
| | | |
2:0 z:L, z=Lgtly z=L
[ Lg~ 2L -

FIG. 1. Schematic of the pulsed electron-beam FEL oscillator
model.
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of the nth mode, and c.c. denotes the complex conjugate.
The vector potential of the linearly polarized wiggler field
is nonzero only in the interval Ly <z <Ly+L,, and is tak-
en to be

A, (z)=A,cos(k,2); , )

where k,,=2w/l,, 1, is the wiggler wavelength, and
| Ay | >> | Ag |. The one-dimensional wave equation for
Ap, including a phenomenological loss term, is

92 1 9 v 9 |- 47—
4 T T~ 4 T AL bl = *J ’ ’
3z %2 3? %o Ax(zD c &0, G)

where the current density J will eventually be taken to be
linear in Ag,v=0y /Q, oy is the characteristic laser fre-
quency, and Q is the quality factor associated with the
resonator. In the FEL the characteristic laser frequency is
g, =(1 +BOz )Y(Z)ZUOka’ where BOz =v02/c and Yoz
=(1—p%)""2. In (3) the Q is defined in the usual way
such that in the absence of a driving current the elec-
tromagnetic stored energy [proportional to |a,(t)|?] de-
cays like exp(—wrt/Q). Note that in (3) it is assumed
that all the significantly excited longitudinal modes have
the same Q.
The actual discrete beam density is

1 & ~
n(zt) = - jgl 8(z —2(z,;,1)) 4)

and oy, is the cross-sectional area of the electron beam and
Z(z¢j,t) represents the axial orbit of the jth electron. At
t =0 the initial axial position of the jth electron is z, i.e.,
Z(Zoj,t =0)=Zoj.

The fluidlike beam density can be defined as

no(z,t)={n(z1)) , (5)

where the angular brackets ( ) denote the ensemble aver-
age of the enclosed quantity. The ensemble average in (5)
is over uncorrelated charged sheets (electrons). Using (4)
we note that the ensemble average of the densiyt n(z,¢) is

(—1— 3 8z _z~(zo,-,z>))

Op j=1
= [ dzono(20,008(z —Z(zo, 1)) =no(z,0) ,  (6)

where ny(z(,0) is the initial spatial density distribution of
particles. The fluctuating part of the density is given by
n(z,t)—{n(zt)). The effective nonlinear driving current
density is given by

T(z,0)=T (z,6)+ Tinelz,) , (7a)

where _J’c is the coherent current driving the stimulated
radiation (gain) and Tfi,,c is the incoherent contribution due
to the discrete nature of the electrons and is responsible
for the spontaneous radiation (shot noise). The coherent
and incoherent current densities are, respectively, given by

Jo=—|e|VuF.(n(z0) (7v)
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and

Tine=—le | VuFincln (z,)—(n(z,0)], (70)
where

Vp=cB,= |e jxw(z)/yomoc =v,,c08(k2)&) (8)

is the wiggle velocity defined over the region L, <z
<Lo+L,, v,=|e|Ay/(yomec), and yo=(1—v3/
¢?)~172, The usual filling factor associated with the
coherent radiation is F, =0y} /0,, where o, is the trans-
verse area of the resonator radiation mode. The filling
factor associated with the incoherent radiation is written
as Fipo=1fnV'E. Theterm f,, is a loss factor due to the
finite size of the mirror at z=L and is given by
Fm=[270"m /(1 +70Byw)L)* where r,, is the mirror radiusi

—2i i ’m_n ‘a (H+ a,,(t) sin(k,z)e’ t—f—c,c,
c?

n=1

lﬂC

=41 |e | Bycos(kyz)

b j=1

28(2 —2z(Z0j,1)) — (Fipe — Fo)no(2,1)
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In obtaining f,, we have taken the incoherent radiation
divergence angle to be ~(1/y¢+B,). The origin of the
second term in the expression for F; . arises from the
one-dimensional statistics performed on the uncorrelated
particles. In Sec. VIII we show that this term is glven by
E=04(¥0/70:)® /(AL¥0,)* Where Ay =1, (1+Bo,)~1y5;” is
the characteristic laser wavelength.

It should be emphasized that in our model the electrons
are actually represented by sheets of charge. The surface
charge of each sheet is — |e | /o, and the sheets (elec-
trons) are taken to be uncorrelated.

To obtain an equation for a,(t), the Fourier coefficients
of the radiation field, we first substitute (1) together with
(7) and (8) into the wave equation (3). Taking a,(#) to be a
slowly varying function of time, i.e., | a,/a, | <<®,, there
results on neglecting small terms

O(z ~L0)9(L0 +Lw —z) » 9)

where B, =v,/c is the normalized wiggle velocity, ©(x) is the usual Heaviside unit step function, and the overdot
denotes a time derivative. By multiplying both sides of (9) by sin(k,,z) integrating over z from 0 to L, and keeping the
appropriate resonant terms we obtain

. —y ’IT|€ ‘l)w itk, +k,)z—io,t mc
a,(t)=——a,(t)+ dze "
n 9 n f

> 8(z —Z(2oj,1)) — (Fin. —F, )nolz, t)]

Op j=1
XO(z —Lo)O(Lo+Ly—12) . (10)

To evaluate a,(t), knowledge of the axial orbit, i.e., Z(zgt), is required.

IV. PARTICLE DYNAMICS 'wheref the right-hand side of (12) is evaluated at

The longitudinal particle dynamics are governed pri-
marily by the ponderomotive force resulting from the
beating of the radiation and wiggler fields, see, for exam-
ple, Refs. 21—-27. Keeping only the ponderomotive term
which is bilinear in Aw and Ap and neglecting space
charge effects, we find that the axial dynamics of the jth
electron in the wiggler region, Ly <z <L+ L,, is given by

e 2_3__+v028

Yomoc

§(zoj,t)= —

dz c? ot

X (A, (2)-Ag(z,1)) |2z, » (11)

where v, is the axial electron velocity in the wiggler. By
substituting (1) and (2) into (11) and keeping the appropri-
ate resonant terms on the right-hand side of (11) we obtain

%(Zoj,t)
le | Bwky © —ilk, +k,)z—o t]
= —_— a,(t)e now " tc.c.
2yomo n§1 "
XO(z—-Ly)B(Ly+L,,—2), (12)

z =Z(z(;,t) and we have made use of the approximation
(1—PBy, Vky + Ky, ~2k,,. Within the wiggler field the axial
electron velocity in the absence of the radiation field as
determined by conservation of energy is

0e=vo(1—pB5/4), (13)

where vg is the axial electron velocity prior to entering the
wiggler field. The trajectory of the jth electron prior to
entering the wiggler field is

E(Zoj,t)=2()j+vot ’ (14)

where t <(Lo—zgj)/vo. Within the wiggler the trajectory
of the jth electron is

5(20],1)=2(0)(Zoj,t)+85(20j,t) , (15)
where 7(© (2oj>t) =v0,20;/V0 + (1 =00, /Vg) Lo +vo,t is the
unperturbed orbit and &6z is the displacement due to the
ponderomotive force. Equations (12) and (15) are valid
for times such that the particle is in the wiggler, i.e.,
(Lo—29j)/vg <t <(Lo—2¢j)/vg+ Ly /o, Substituting
(15) into (12) and linearizing we find that the longitudinal
displacement of the jth electron satisfies
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8% (z¢j,t) = — +c.c. S

Lo—zg;+L,, ;
Vo ’

le | Bukw ] ‘ i 4, (t)e ~ knHeo )y +Lo=Lb)  —ithgt

zpi—L
o|¥ =2,
2) oMo

Vo

n=1
(16)

where  Bo, =vo;/¢, Hn=Vok, +ky)— @, =00k, —ck,(1—Bp,) is the frequency mismatch, zu;=v0,20;/v0,
Ly =vo,Ly/vy, and L, =voL,, /vy,. We now invoke the low gain assumption by taking the coefficients a,(?) to be con-
stant during the time the jth electron is within the wiggler region. Integrating (16) twice, using the low gain assumption,
and taking the initial conditions such that the relative displacement and relative displacement velocity are zero at the en-
trance to the wiggler, i.e., 82=56z=0 at ¢ =(Lg—2z¢;)/vg, we find that

le | Bukuw 2, — iUy +hy 25y +Lo—L})
8z (zpjt) = | ———— m (Ol 0j o0
o 27’0"’0 mz—l Fom
i (Lo—2¢;) i 2.
x le xllmt+ iy,,, _ Ov 0j e ip,, (Lo sz)/vo}—FC.C. , 17)
0

where expression (17) is valid for times such that (Lo —z;)/vo <t <(Lo-+ Ly, —20;) /vy and is zero prior to this time in-
terval. Expression (10) together with (17) describes the linear, low gain, longitudinal dynamics of the jth particle within
the wiggler field.

V. RADIATION DYNAMICS R.(1)— 17'[e [vw ¢ fL otLy, ”kn“‘kw)z—i“’n'n (2.0)
n - 0\4y ’

We now return to the evolution of the radiation field. Eo
Substituting (15) together with (17) into (10), introducing . (19b)
coefficients b, (t)=k,a,(t), and expanding the 8 functions,
the expression for the time rate of change of the Fourier

coefficients is given by and 6Z(zg;,t) is given by (17). On the right-hand side of

(18), the first term represents the resonator loses, S,(z)
represents the spontaneous or incoherent radiation term,

. v ~
ba()=— b, () + S, () +R, (1), (18)  and the stimulated or coherent radiation is represented by
R, (t). Substituting the linearized, low gain, longitudinal
where orbit of the jth particle within the wiggler field given by
Lo+L, (17) into (6) the stimulated term in (18) can be expressed
S: (f)= —— “w”inc 7r|e va inc f + t(kn+kw)z—imnt as
" LO’b Loy
R,()=3 Gumit)by(1), (20)
2 8(z —2'zqj,1)) —0pnglz,t) |, (19a) m=1
=! | where
G ()= im|e |vakFe iu,—p,, ity K (Lo—L3) 2
T 2ygmgeL Hom
L +Ll:,——v t - . o
LOO_,,O, ’ dzono(zo,())e'(k" Kom )uozzo/u°(1+{il~lvm[l ——(Lo—zo)/vo]—l}em"'[t o ZO)/UO]) , (21)

where L, =L,vq/vo,~L,. The time rate of change of the Fourier amplitude given in (18) can therefore be put into the
form

G (1) — %a,,,,, b, (), (22)

ba(=8,(0+ 3

=1

where S, (1) is the spontaneous radiation source term, G, (1)b,,(t) represents the dielectric response or gain, J,, is the
Kronecker 8, and (v/2)5,,,b,,(1) is the loss term due to the finite Q of the resonator. The matrix G defined by the ele-
ments G, (t) will be referred to as the gain matrix.
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VI. DERIVATION OF ENERGY RATE EQUATION

The total ensemble average electromagnetic energy within the resonator is

_ 3 =, 32 _ [0 RL il *

W ()= fvold r(E2+B2)/87= yo ,21 (b,b}) (23a)
and the electromagnetic power flowing axially within the resonator is

3 __c Zony_ foR & * —ilky —ky Nz —et)  ilk,—k, Nz+et)] o

Pem(z,1)= 7~ fmdA<E><B>_ P ,,,m%; (b,bk e —e 16, +c.c. , (23b)

f

where the brackets {( ) denote the ensemble average over  dition 5(0)=0, we obtain
uncorrelated sheets (electrons) of the enclosed quantity. t NG s
From (23a) and (23b) it is clear that the quantity of real b= [ X0xX~'"8(e)ar’ 27
interest is the energy density matrix € defined by the ele- where X (1) is defined by the equation
ments

€nm (1) ={b, ()b}, (1)) .- (24) X(t)= [g(t)—%l X(1) (28)

In terms of the energy density matrix in (24), the total
electromagnetic energy W,., and the electromagnetic

power P...(z,t), are

URL L
Wem(t)= yom n%e,,,,(t) (25a)
and
- co L3 ik —k. )z —
B, (z,0)= R €, (1) e ik, —k,, )z —ct)
167 =1
_ei(k"—km)(z+ct))é\z+c'c.
(25b)

We now derive the rate equation for the energy density
matrix. Writing (22) in vector notation yields

b(6)=S(t)+ c_‘im—gz b(1), (26)

where [ is the unit matrix. Solving (26), with initial con-
]

~ o~ mTle |y,

(S,(D8 % (")) = [—'—'—“f—
L Op
Lo+L,,—vgt ik —k )
Lo—"():” dZ()no(Zo,O)el " m WozZo

/voe(ZO —Lo+vet")O(L, +L,;, —zo—vpt') .

with initial conditions X(0)=1. The energy density ma-
trix is

e(t)=(b()b (1)) , (29)

where
Tr(e)=(oxL)~" [ d**(E*+B?) /2

and the superscript H denotes the Hermitian conjugate.
Using (27) together with (29) we find that €(¢) satisfies the
rate equation

e(t)= €(t)+2(t)+H.c. , (30)

=~ v
G(1)— 21

where
0= [ (SO N X(OX -1 dr

and H.c. denotes the Hermitian conjugate of the preceding
terms. It can be shown that the ensemble average of
S, (£)Sy, (¢) can be expressed as

2 2
Finc pibnt, ittt iUy —kp NLo—L)

(31)

By noting the limits of integration as well as the arguments of the Heaviside functions in (31), it is clear that the en-
semble average (S,(2)S ;,(¢)) is nonzero only for ¢t —t' < L,, /vo,, i.e., when there is an electron sheet in the wiggler. It
can be shown that in this interval X(£)X —!(z')~I if the gain per pass is somewhat less than unity. Hence the source

term of the energy rate Eq. (30) is simplified to

20~ [ (S0F")ar .

(32)
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The elements of (32) take the form
2.2
S (=i mle|vy | Finc o Ut =t iy =Ry XLo—L)
L Op
L0+L|:;_”0' ik, —k, Wo,zo/vg 1 i, [t —(Lg—24)/v4]
x fLO_%, dzono(zg,0)e’ " 'm unl(1—e'tm ). (33)

This completes our formal derivation of the energy rate equation given by (30).

VII. REDUCED ENERGY RATE EQUATION

Due to the complicated structure of both the gain ma-
trix (21) as well as the spontaneous source matrix (33), it is
convenient to further reduce these terms to a more
manageable form. To this end we define a time variable
ty, such that zy is the time that the center of the Nth elec-
tron pulse enters the wiggler field, that is

ty=[(N—=1)Ly+Ly]/ve ,

where N is a nonzero positive integer. During the electron
pulse propagation through the wiggler field, the indepen-
dent time variable is

(34)

t=tN+T )

where 0<7<L, /vy,. To simplify the gain matrix and
spontaneous source matrix in (21) and (33) we note that
these matrices involve integrals of the general form

’
L0+Lw —vyt

ik, —k,, Wo,zo/v
Inm(t)= fLO—vot n 'm 2 0z°0 Oan(

dZOno(ZO )e t,Zo) .

(35)

The generic integral in (35) can be evaluated for two
representative electron pulse shapes of characteristic width
I, given

I,,m(lN+T)= an[tN +T,—(N—1)L,,]nol,,

Xe—i(k,,—km)uv-—l)uo,l.,,/uopnm ’ 36)
where
- — 2
Kz_l"_e [k =i My 741 , Gaussian profile
Prm =\ sin[(ky — kp )y /2] . (372)
ko kb2 square profile .
(37b)

The expression in (37a) is for a Gaussian electron beam
pulse shape, i.e.,

—(22y/1,)?

n0(20)=noe ) (38a)

while the expression in (37b) is for a square pulse shape,
ie.,

—Ib/ZSZQSIb/Z

, otherwise .

ng ,
n0(20)= 0 (38b)
Using the result contained in (36), together with (34), both
the gain matrix and the spontaneous source matrix can be

I
reduced to
~ Y —ilk. — _
il wp (kpy — K XN — 1)L,
G (ty+T1)= gfzﬂikwcﬂe ' b
a o )
> nmfnm et(un #’")T[1+(i,um7'—l)em’"r]
Hm
(39a)
and
i Iy wim —itk — _
im 'p @pMo ik —kp N — DL
znm(tN‘i‘T):TZ Lo, 3: i2nc ’
a I .
>< __nﬂ.,)n_mel('u’l ,‘lm)‘l'(l_—_el‘um‘r) s (39b)
Hm
where

Cpm =expl —i (k — ko )(1—Bo)By 'Lo]

and wj =41 | e | >ny/my is the peak beam plasma frequen-
cy. In obtaining (39a) and (39b) we replaced v,/ /v by
ly.

In the absence of “laser lethargy” exact resonance be-
tween the electron beam pulses and the radiation pulses
occur when the mirror separation is equal to L, /(28,)
where f3, is the normalized axial pulse velocity outside the
wiggler field. This condition implies that the round trip
of the radiation pulse, if it were traveling at ¢, equals the
beam pulse period. However, since the radiation pulse
velocity, in the wiggler region when overlapping with the
electron pulse, is slightly less than c, it is necessary to have
the mirror separation slightly less than (L, /28,) for op-
timum overlap of the beam and radiation pulses.’~!°
With this in mind we define the mirror separation to be

L=L,+5L, (40)

where L,, =L, /(23¢)>> |8L |. In (38) and (39) the only
term sensitive to slight variations in the mirror separation
is the common leading term exp[ —i(k, —k,, (N —1)L,].
Substituting (40) into (39a) and (39b) and assuming 8L
small we find that the gain and source matrix elements be-
come

2

~ i oy,
Gum(ty +7)= Ef—y—o—ﬁ"’kwcﬂa”’"p""‘

2im(n —m)(N —1)8L /L
Xe imn m
iy, —pp )T .

e . ip, T
X [ 1+ lipr—1)e "]

Hm

41)
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and

I, 7|e |2n0v3,
znm(tN+T)= ——L— Lab

2
nm an inc

e2i1r(n —m)N —1)8L/L,,

sin(u,7/2)

ei(p" ~Hpm )fe ip,, /2
UnT/2

X T 42)
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The rate of change of the field energy density matrix
given in (30), together with the expressions for G,, and
3., in (41) and (42), can be still further reduced by invok-
ing the low gain per pass approximation. The low gain
per pass assumption implies that € changes slightly during
a single pass of the radiation pulse. Hence, by taking
€(ty +7), where 7 <L, /vg,, to be nearly equal to €(zy) on
the right-hand side of (30), we can integrate (30) together
with (41) and (42). Doing this we {ind that the elements
of € at time ¢y + 7 are given approximately by

6nm(tN"{'T)z'(l""VT)enm(l‘N)"*'Snm(tN”r)"'“ 2 [Gnl<tN’T)EIm(tN)+6nl(tN)G;nI(tN’T)] ’ (43)
I=1
where
T —ily o} 2im(n —m)(N —1)8L /L
Gnm(tN,T)z fO Gnm(tN+T')dT’= —:éfby—z-ﬁikwcp‘c e fm(n —m) manmpnmgnm(T) (44a)
and
T , , by 7 le|*novy L, dintn—mN—DBL/L,
Spum (I, 7) = fo [Zm(ty +7)+H.c.dr'= - Lo, Fle o Prim P (7). (44b)
where
i X i (x, — sin(x, —x,,) i
& (T)=——" e 14— sinx,,——e'(x" x"')x,, e —xmezm" , (45a)
XpXm Xn Xn—Xm
and
Ap (7)== - { [sinx,, +sin?x,, —sin?(x, —x,, )] —i [sinx,cosx, —sinx,, cosx,, —sin(x, —X,, )cos(x, —x,, )]}
n+m
(45b)

and x,=p,7/2=[vo,k, —ck,(1—vgy,/c)]7/2. Note that
since h,, is Hermitian, so is the spontaneous source ma-
trix S, in (44b). The fact that S, is Hermitian is sim-
ply a consequence of the fact that €,, by definition is
Hermitian [see (24)]. Setting 7=L,, /v, in (43) gives the
energy density matrix after the Nth beam pulse has trans-
versed the wiggler. The results obtained by numerically
solving (43) for various experimental parameters will be
presented later.

VIII. SPONTANEOUS RADIATION SOURCE TERM

The spontaneous radiation source term in (44b) has been
obtained from a one-dimensional analysis of the wave
equation. Because of the one-dimensional character of the
analysis the spontaneous source term does not properly
represent the incoherent radiation source. A proper
three-dimensional treatment of the spontaneous radiation
is necessary to properly consider the statistics of discrete
uncorrelated particles as well as to separate the “velocity”
and “acceleration” (radiation) electromagnetic fields.*
The present one-dimensional treatment represents the elec-

Itrons as uncorrelated charged sheets and not as point par-
ticles. To correct for the one-dimensional limitations of
our analysis of the spontaneous source term we have in-
cluded in the incoherent current density (7c), a filling fac-
tor which contains the term V'€. This term is included so
that the fotal emitted spontaneous radiation agrees with
the well-known value obtained from Larmor’s formula.
We have justified this procedure by performing a proper
three-dimensional treatment of the spontaneous source
term; this three-dimensional analysis will be published
elsewhere. To obtain the factor £ in the spontaneous
source term, i.e., in the filling factor Fj,., we compare the
total emitted radiation energy from (43) with that ob-
tained from Larmor’s formula with the loss terms f,, set
equal to unity and v=0. From (43), the diagonal elements
of ¢ satisfy

I, m|e|nov; , sin(u,7)
€nn(ty +T)=2—L_ Lo, inc Ln s

(46)

where we have used the expression for X,,, in (44b) and
are considering a square-shaped electron beam pulse, i.e.,
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Pnn=1. We now want to compare (46) with Larmor’s ra-

diative formula. The total instantaneous power radiated*®:

from a single particle is

me—zi*l-ro[ (FXV)]. 47
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total energy radiated during a time 7 <L, /v, by a beam
pulse consisting of lyngo, particles, is
6
1 |e|? Yo
ng = ? c 3 lbnoab(BOkauw )27' . (48)
Yoz

The total spontaneous electromagnetic energy within the

The velocity of a single particle in the wiggler is resonator is given by (25a) with oy replaced by o,. Sub-
V =0,&, +v,cos(k,vg,t)éx. Using (47) we find that the stituting (46) into (25a) gives
I
® <L, /v, 20, m|e | 2ngv? sing, 7
Wty +7)= dn L e w g2 | SEAT L (), (49)
1 0 L Loy Hn
where we have approximated the sum by an integral. In- g,,,,(T)——G,.,,(tN +T)+ Gy (ty +7)
tegrating (49) over 7 and n gives . 2
__1lbob 26 g2k CF, 7-3 S (53a)
2 Iyngvl TTA6 Ly x ’ 2
Wem(tN+T)=Wem(tN)+_J——J— Lo chT Yo n g
¢ (1—PBy,) 2 2 . 2
I, ™|e|*ngvg , |sinx,
(50)  Swlm)="—p - Finc (53b)
Comparing (48) and (50) we find that, for £, =1, and x,=p,7/2. In obtaining (53) we have assumed a
6 square-pulse shape. Note that in g,,(7) and S,,(7), T
F =~ 9 , (51) ranges from O to L, /v, Since €,, changes little from
Yoz | (Apyor)? pulse to pulse we may transform (52) into a first-order
temporal differential equation. Since ty 1=ty +L, /vy,
where A, is the laser wavelength A, =1, /(14 Bo; )3, (52) can be written as
de,, (1)
IX. LONG BEAM PULSE LIMIT :’l,"t =Gy /At —V)Epn (1) +Spn /AL , (54)

A limiting case which can be fully evaluated analytical-
ly is that of a long pulse beam, i.e,, [, <L. Although this
limit is not necessarily directly applicable to either
planned or completed pulsed beam FEL oscillator experi-
ments it does represent an interesting limit of the more
realistic configurations. If the electron pulse widths are
comparable but somewhat less than the mirror separation
L, the gain matrix as well as the spontaneous source ma-
trix in (44a) and (44b) approach a diagonal form. This
can be seen by notmg that for /, <L, the matrix defined
by p.m and used in (44a) and (44b) approachs V'/2)8,m
for a Gaussian beam pulse and §,, for a square-shape
beam pulse where §,,, is the Kronecker 8. The diagonal
forms of (44a) and (44b) is reasonable in this limit, since it
is the off-diagonal elements, in particular the term
exp[2mi(n —m)(N —1)8L /L,, ], which are responsible for
the laser lethargy effect and when the beam width is suffi-
ciently long this effect is unimportant. In this limit a sin-
gle longitudinal mode analysis would suffice.

Therefore, the energy rate equation in (43) together with
(44a) and (44b), for long beam pulses, takes the form

Enn(tn +T)=[1—vT+ 8 (D)€ (tn) +Spn(T)

(52)

where the diagonal gain and source matrix elements are,
respectively,

TABLE 1. FEL oscillator parameters at Stanford University.

Beam parameters

Beam energy (yo— 1)moc? 43 MeV
Total gamma ¥y, 85
Axial gamma ¥, 69
Peak current I, 1.3 A
Pulse width /, 1 mm
Pulse separation L, 254 m
Beam radius r, 0.25 mm
Wiggler parameters
Wiggler wavelength [, 3.3 cm
Wiggler amplitude (helical) 2.3 kG
B,=2mA,/l,
Wiggler length L, 53 m
Resonator and radiation parameters
Resonator length L 12.7 m
Resonator losses (round trip) 1.5%
Radiation wavelength A, 3.3 um
Spot size ry 0.167 cm
Beam-filling factor F, 0.017
Incoh. rad. loss factor f,, 0.05
Rayleigh length 7r3 /A, 271 m
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- 8L=-0.00! cm
g _=ol64

8L=-0.002 cm
g, = o7

S8L=-0.0005 cm
g, = 0.35
5 8L=-0.0015 cm

g, = 0.53

SL=0
g =0

8L=-0.0025 cm
g, = 0.063

INSTANTANEOUS PEAK POWER (W)

o 50 100 50 200
NUMBER OF PASSES
FIG. 2. Peak power of the radiation pulse as a function of the
number of passes for Stanford FEL oscillator experiment with
various detuning parameters 8L.

where At =2L;,/vg, 8, and S,, are to be evaluated at
7=0L,, /vy, and we have replaced the discrete time parame-
ter ty with the continuous parameter ¢. Integrating (54)
yields

Snn e(E'"‘ —vAtt/At

€pn(t)=—"—(
i Zan —v AL

1), (55)

where €,,(t =0)=0. For times less than a growth time,
ie., t <At/(g,, —v AL,

€nn (D) =8y (t /AL + (8, —v ADE2/2 (A1)?) . (56)

X. NUMERICAL ILLUSTRATIONS, EXPERIMENTAL
COMPARISON, AND DISCUSSION

Our numerical illustrations are directed toward a com-
parison of the FEL oscillator experimental results report-
ed in Ref. 4. In addition, we suggest methods, which
could substantially shorten the oscillator startup time.

The parameters of Stanford’s FEL oscillator is given in
Table I. In the FEL oscillator experiment a helical
wiggler field was used. Since the present analysis assumes
a linear wiggler it becomes necessary to multiply B,, in

10.2

4o

ASYMPTOTIC ENERGY GAIN

o

J— ' L
-3.0 -2.0 -1.0 o
MIRROR DETUNING LENGTH 8L (IO_3

FIG. 3. Asymptotic energy gain (¢y >>2L /v,() of the radia-
tion pulse as a function of 8L for the Stanford FEL oscillator
experiment.

cm)

RADIATION PULSE

AT t=t +L,/V.
RADIATION NoTwTzo

AT t=ty

ELECTRON-

R
|
r/BEAM PULSE

|
|
|
|
|
|
I

RADIATION POWER (RELATIVE UNITS)

AXIAL DISTANCE RELATIVE. TO THE ELECTRON PULSE
FIG. 4. Radiation pulse power relative to the spatial profile
of the electron pulse (square) at the entrance of the wiggler
(t=ty) and exit of wiggler (¢t =ty-+L,/v,0), where N >>1
denotes the electron pulse number for the Stanford FEL oscilla-
tor experiment with 8L = —1.0%x 1073 cm.

Table I by V2 in order to be consistent. The peak power
within the resonator as a function of the number of beam
pulses that have passed through the resonator is shown in
Fig. 2 for six values of the resonator mismatch length
OL =L,,—L,/2B,. Figure 3 shows the asymptotic gain
as a function of &8L. The mirror mismatch
8L = —1.1X 1073 cm corresponds to maximum gain but
not maximum saturated power. Maximum saturated
power occurs for 8L between 0 and — 1.1 1073 cm. The
range in 8L for nonzero gain is —3.0Xx 10~3 cm < 8L <O,
in fair agreement with the experimental range of
2.5% 1073 cm. The maximum calculated multimode (fin-
ite beam pulse) power gain is 0.16 whereas the single mode
(continuous beam) yields a value of 0.25. Finite beam
pulse effects therefore reduce the linear gain by approxi-
mately 60%. The maximum experimental gain is 0.10.
Figure 4 shows the spatial distribution of the electron
pulse (square) and the radiation power pulses at the en-
trance and exit of the wiggler for 8L = —1.0x 1073 cm.
Upon entering the wiggler the radiation pulse slightly lags
the beam pulse, while exiting the wiggler the two are com-
pletely overlapped. The asymptotic energy spectrum of
the radiation, Fig. 5, is narrower and shifted with respect

STIMULATED - RADIATION SPECTRUM

SPONTANEOUS—
RADIATION
SPECTRUM

ENERGY (RELATIVE UNITS)

= s =
[Kwvoz=cki1= By, ] Ly, 72 v,
FIG. 5. Asymptotic energy spectrum of the radiation pulse
for the Stanford FEL oscillator experiment with 8L
=—1.0x10"%cm.
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to the spontaneous radiation spectrum.

Equation (43) suggests that one can roughly compute
the relationship between Py, the peak power in the resona-
tor after the Nth pulse, to Py, the power emitted spontane-
ously, by assuming a constant average gain per pass g. An
elementary calculation yields when N >>1 and g<<1,
Py/Py=N —1+4+(14+gN =N +exp(gN). Clearly when
gN >>1 the result is very sensitive to small changes in g
and N. If one takes the experimental values correspond-
ing to the maximum observed final power of
Py=2.7% 10" W within the resonator, N =540 and the
computed spontaneous power of P;=6.5X10"2 W, one
finds that g =0.037. The experimental value of linear
gain is 0.067. In view of the sensitivity to changes in N
and g the results are not inconsistent. Moreover this ef-
fective value of g is smaller than the linear gain predicted
by the present model which is reasonable since nonlinear
effects and initial beam thermal effects must lower the
gain. Unfortunately the currently available data is inade-
quate to make other detailed comparisons with this
small-signal theory.

Our analysis suggests possible ways to substantially
shorten the oscillator startup time while maintaining high
saturated power levels. The first approach takes advan-
tage of the fact that the maximum linear gain and max-
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imum saturated power occur for different values of SL,
which we will, respectively, denote by 8L, and 8L,. By
slightly increasing the frequency of the rf accelerating
field, w,.., during the startup period, i.e., decreasing the
beam pulse separation, the value of 8L, could be varied
from an initial value of 8L to the value of 8L,, thus, de-
creasing the startup time while maintaining high final
power levels. The required fractional increase in w,. is
| 8L, —8L, | /L, ~107° for the parameters of Refs. 3 and
4. The same effect may also be realized by simply chang-
ing (increasing) the mirror separation during the startup
period. Another possible method of decreasing the startup
time would be to simply increase that part of F;,. associ-
ated with mirror losses, i.e., increase f,,. This could be
accomplished by increasing the effective size of the mirror
located at z =L. The additional extension of the mirror
would necessarily have a different curvature. This last ap-
proach should make it possible to contain a far larger por-
tion of the incoherent radiation.
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