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An analytic nonperturbative treatment of degenerate four-wave mixing is presented to study
Zeeman-coherence effects in phase conjugation. The counterpropagating pump waves are taken to
be orthogonally circularly polarized and interact with different Zeeman sublevels. The nonlinear
medium is modeled in terms of a homogeneously broadened, folded three-level system. Particular
attention is paid to the phase-conjugate spectrum obtained by varying the Larmor frequency associ-
ated with the Zeernan splitting. A level-crossing resonance is found to occur in the saturation re-
gime and manifests itself as a narrow peak or dip depending on various level decay rates. Even for
a purely absorptive system, the Zeeman coupling of the ground-state degenerate sublevels is shown
to produce significant phase-conjugate reflectivities at pump intensities much lower than those re-
quired for a two-level system.

I. INTRODUCTION

Nonlinear optical phase conjugation' is a subject of
considerable interest in view of its potential application in
adaptive optics, real-time holography, and high-resolution
spectroscopy. A powerful technique to generate phase-
conjugate wave fronts is resonant degenerate four-wave
mixing (DFWM). If the four interacting waves have iden-
tical frequencies and polarizations, the two-level model of
Abrams and Lind provides a nonperturbative analysis of
DFWM under one-photon resonance conditions. Since its
introduction this model has been extended in several direc-
tions. In particular, the pump-imbalance-induced
splitting of DFWM spectra has recently been predicted '

and observed by Agrawal et aI.
Under some experimental situations the four interacting

waves, although degenerate in frequency, are chosen to
have nonidentical polarizations. The use of orthogonally
polarized pump and probe beams in the collinear
geometry has the advantage of providing increased in-
teraction length. The counterpropagating pump beams
with orthogonal circular polarizations are necessary for
vectorial phase conjugation and, furthermore, avoid
spatial hole-burning that is known to considerably reduce
the DFWM efficiency. The use of nonidentically polar-
ized optical beams for resonant DFWM, in general, re-
quires that level degeneracy, related to angular momenta
of the atomic or molecular energy states, should be incor-
porated in the theoretical analysis. Recently, the level-
degeneracy effects have been considered' ' with particu-
lar attention paid to the generation of Zeeman coherence
that provides a distinct new mechanism for phase conju-
gation. Motivated by the spectroscopic applications,
Doppler broadening has been of major concern in the pre-
vious work. ' ' There, the analysis is developed using
third-order perturbation theory and therefore ignores
saturation effects.

The purpose of the present paper is to present a nonper-
turbative treatment of DFWM in a homogeneously

broadened medium whose resonance behavior can be
modeled in terms of a three-level system. ' More specifi-
cally, we consider the A configuration where the forward
and the backward pump waves with orthogonal circular
polarizations interact with different one-photon transi-
tions sharing a common upper level (see Fig. 1). The
two-photon coupling of these dipole-allowed transitions
generates Zeeman coherence' ' among the lower-state
sublevels and plays an important role in the description of
DFWM. Experimentally, the situation can be realized us-
ing the J= 1~J=0 transition of an atomic system.
Since Doppler broadening is ignored, the analysis is more
directly applicable to the case of an atomic beam.

The DFWM configuration shown in Fig. 1 should be
distinguished with the one considered in Ref. 14 where the
four waves were assumed to have identical polarizations.
In that case the counterpropagating pump waves form a
standing wave which interacts with both of the one-

LIN

FIG. 1. Illustration of the geometry and the transition
scheme used for degenerate four-wave mixing. Here o.+ and o.

denote right and left circular polarizations, respectively.
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photon transitions. Furthermore, two closely spaced lev-
els of such a three-. level system do not correspond to Zee-
man sublevels but are usually related to hyperfine com-
ponents. The use of Zeeman sublevels has an obvious ex-
perimental advantage for their spacing can be controlled
through a magnetic field.

In order to make the problem analytically tractable the
laser frequency is assumed to coincide with the one-
photon transition frequency. Dispersive effects are, how-
ever, included through the Zeeman splitting of the degen-
erate lower level. Our analysis shows that the Zeeman
coupling of the lower-state sublevels is capable of produc-
ing significant phase-conjugate reflectivities at pump in-
tensities much lower than those required for a two-level
system (with nondegenerate atomic states). In view of the
potential spectroscopic applications, particular attention is
paid to the DFWM spectrum obtained by varying the Zee-
man splitting (i.e., the Larmor frequency) at a fixed laser
frequency. In the saturation regime the line shape exhibits
a narrow level-crossing resonance that manifests as a cen-
tral peak or dip depending on various level-decay rates.
The width of this resonance is related to the Zeeman-
coherence decay rate and can be much less than the natur-
al width of the one-photon transition.

This paper is organized as follows. The DFWM config-
uration with orthogonally polarized pump beams is dis-
cussed in Sec. II where an expression for the phase-
conjugate reflectivity is obtained in terms of the
intensity-dependent susceptibility and its derivatives. An
analytic expression for this susceptibility is obtained in
Sec. III that also states various assumptions and approxi-
mations involved in modeling the response of the non-
linear medium. Mathematical details of the susceptibility
derivation can be found in the Appendix. Section III also
discusses various physical mechanisms that give rise to
DFWM. The reflectivity behavior as a function of vari-
ous parameters such as the pump intensities, the Zeeman
splitting, and the relaxation rates is considered in Sec. IV
with particular attention paid to the level-crossing
DFWM spectrum. Section V is concerned with vectorial
phase conjugation and polarization anisotropy in the
DFWM response. Finally, the results are discussed in Sec.
VI together with the limitations, the possible generaliza-
tions and the applications of the theoretical analysis
presented here.

II. PHASE-CON JUGATE REFI.ECTIVITY

In the DFWM geometry shown in Fig. 1 the nonlinear
medium is pumped using two orthogonally circularly po-
larized pump beams E& and E2 which counterpropagate
along the z axis. For the sake of definiteness, the forward
and the backward pump waves are assumed to have o.+
and o. polarizations, respectively. The probe wave E3,
propagating along the z' axis at the same optical frequen-
cy m, generates ihe conjugate wave E4 through DFWM
with polarizations orthogonal to that of E3. The probe
polarization can be chosen to be o+ or o- . We consider
the case of o. polarization since a collinear geometry can
be used in that case. The analysis is, however, equally ap-
plicable to the case of o.+ probe-polarization with minor

E= ,' (Eie—~+Ezel)e '"'+ c.c. (2)

consists of the right (o+) and left (cr ) circularly polar-
ized waves, ez and eL being the corresponding complex
unit vectors. In the geometry of Fig. 1 the fields Ei and
E2 are given by

E E +E g ikz+g —Ikz

—E2 +E3—242e ' +A 3e

(3a)

(3b)

where A„ is the slowly varying amplitude of the field E„.
In the continuous-wave (cw) case considered here, ' the

induced polarization P(r, t) can be expressed in terms of
the steady-state susceptibilities as follows:

P = ep(X&E led +X2E2eI )e '"'+c.c. (4)

where eo is the vacuum permittivity and X~ and P2 are the
medium susceptibilities for the right and left circularly
polarized waves. The exact form of X„depends on the de-
tails of atomic interaction and will be considered in Sec.
III. For the time being we leave it unspecified except for
noting that the field dependence of X„(E'&,E2 ) is respon-
sible for DFWM. On substituting Eqs. (2) and (4) in Eq.
(1), we obtain the coupled set

(7 +k )E„' = kX„(Ei,E—2 )E„',

where k =co/c and n =1 and n =2 for o.+ and o. polari-
zations, respectively.

The phase-conjugate reflectivity E. is obtained following
a procedure similar to that of Abrams and Lind and gen-
eralized to account for the orthogonally polarized pump
beams. ' Assuming ~E4

~
&& ~E$

~

and ~E3
~

&& ~E2
the susceptibility X„(E'&,Ez ) is expanded around E& and
E2 and only the terms linear in E3 and E4 are retained.
Using Eqs. (3) and (5) and making the plane-wave ap-
proximation, we obtain

dA„

dz

dA3

dz'

=+ X„(Ai,A2)A„, n = 1,2
ik

1l

= —a3A 3 + l Ic34A 4 (7)

dA4 =a4A 4 + l K43A 3
dz

where the saturated-absorption and the nonlinear-coupling
coefficients are given by

a5 „——( —ik/2)(X„+ ~A„~ X„„),
K34 —( k /2 )A iA 2XP 3

Ic43 ( k /2)A iA 2Xi2

(9a)

(9b)

(9c)

modifications described later.
The four-wave interaction inside the nonlinear medium

is described using the wave equation

1 BE BP
2 B~2

o Bt2

where c is the vacuum velocity of light, pp is the vacuum
permeability, and the total electric field
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and X „=(BX /8
I
A„

I
) is the susceptibility derivative.

Pump depletion has been neglected but Eq. (6) takes into
account pump absorption. Considerable simplification
occurs if pump absorption is also ignored. The coeffi-
cients a„and ~ „are then independent of z' and Eqs. (7)
and (8) can readily be solved. Using the boundary condi-
tion that A4 (L)=0, where L is the length of the nonlinear
medium along the z' axis, the phase-conjugate reflectiviiy
is given by

A4(0)
A3(0) a+g cot(gL)

(10)

where

a = (a3+a4 )/2,

g =(K43IC34 —a )
2 1/2

(1 la)

(1 lb)

Equations (9)—(11) complete our description of DFWM
for orthogonally polarized pump beams. Qnce the non-
linear susceptibilities 71 and X2 are known, the coefficients
a„and a „can be evaluated using Eq. (9) and their use in
Eq. (10) yields the phase-conjugate reflectivity as a func-
tion of various system parameters.

III. NONLINEAR SUSCEPTIBILITY

The nonlinear susceptibility X„depends on the details
of matter-radiation interaction. We assume that the laser
frequency ~ is close to the transition frequency co, be-
tween two atomic (or molecular) energy states and the ra-
diation coupling to other atomic states can be neglected.
Each atomic state is (2J+ 1)-fold degenerate owing to its
angular momentum J. For arbitrary J values the density-
matrix formalism generally requires an irreducible-tensor
representation of the density operator. ' ' However, for
the specific case of J= 1~J=0 transition shown in Fig.
1 the resonance behavior can be modeled in terms of a A-
type three-level system. In the absence of a magnetic
field the two lower levels are degenerate and correspond to
m =+1 Zeeman sublevels of the ground state.

In order to incorporate the saturation effects, we require
the steady-state solution of the density-matrix equations
obtained for a three-level system interacting with two ar-
bitrarily strong optical fields. ' These equations and
the details of their solution are presented in the Appendix.
Although a nonperturbative steady-state solution can be
obtained in its most general form so that it incorporates
Doppler broadening, arbitrary level detunings, and arbi-
trary decay rates, a numerical analysis is required to inves-
tigate DFWM. To develop an analytical approach, we ig-
nore Doppler broadening in the following and assume that
the laser frequency ~ is coincident with the one-photon
transition frequency ~, . Dispersive effects are, however,
included by allowing Zeeman splitting of the ground-state
sublevels in the presence of an applied magnetic field.
The inclusion of Zeeman splitting makes it possible to in-
vestigate level-crossing resonance' in DFWM spectra
that may find application in high-resolution spectroscopy.

For the sake of generality, no severe restrictions are im-
posed on the population decay rates y; and the coherence
decay rates y;~ (i,j =0, 1, and 2) except for assuming that

y&
——y2 and yo& ——yoz because of the nearly degenerate na-

ture of the ground-state Zeeman sublevels. The effect of
phase-perturbing collisions on the coherence decay rates is
allowed by assuming

y;, =(y;+y, )/2+yfj,ph (12)

p(1+p+I )+~'(p+pI+r')+ 1+2q I;I,'
(1+p+I) +5 (1+r+I) (14)

and we have introduced the following dimensionless pa-
rameters:

12 r 12
ph

s=
2 F01 V1 XO

2 F01 ] 2PP1—1 =—+
q 'V1

(16)

(17)

The saturation intensity

I- =2e«'yoyo /
I i o (18)

and the resonant unsaturated field-absorption coefficient

ano=&
I pon I fo~/(2Eo~yon) (19)

have different values for the left and right circular polari-
zations if the corresponding transition dipole moments are
different. Here N is the atomic density, fo is the fraction-
al population of a sublevel, and Q, 12 is the frequency
separation of the Zeeman sublevels. The parameter 5 is a
measure of the Zeeman splitting in units of the homogene-
ous line width yo1. The relaxation-rate ratio q=y1/pp
plays an important role. If the degenerate lower level cor-
responds to the system ground state, it is expected that
q ~&1. Since the saturation intensity I,„scales linearly
with q, a three-level system in this specific case saturates
at much lower pump intensities compared to those re-
quired for a two-level system. The collisional decay of
Zeeman coherence is governed by the parameter

where yp~" is the collisional decay rate. It should, however,
be mentioned that the introduction of an effective dephas-
ing rate for Zeeman coherence is an approximation. ' The
pressure dependence of the population decay rates y; can
be easily included.

With the above-mentioned simplifications it is possible
to obtain, without further approximations, the following
analytical nonperturbative expression for the medium sus-
ceptibilities X1 and X2 corresponding to o.+ and a polari-
zations, respectively (see the Appendix for details):

2~np +5+1 (p+i 6r )I31+1+6' (1+ p+I )+i5(1+r+I )

(13)
where upper or lower sign is chosen for n =1 and n =2,
respectively. The saturation denominator D is given by

D =1+(1+q)(I& +I2 )
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p=y~~2/yi while the parameter r )q
' defined by Eq.

(16) takes into account collisional dipole dephasing.
Using third-order perturbation theory, Lam and

Abrams' have identified three distinct grating mecha-
nisms for DFWM which they term the normal-
population, the cross-population, and the Zeeman-
coherence mechanisms. It is of interest to identify the
contribution of each mechanism in the nonperturbative
treatment presented here. To the lowest order in pump in-
tensities Ii and I2, the susceptibility X1 from Eq. (13)
takes the form

2&o 6+i
. Xi— 2 2 1+5 —(q+ 1 )I1

( 1 +52)2

q+-- 1+i6
I2 . (20)1+p+i5(1+r)

The self-saturation term (q+ 1)I1 is related to the
normal-population mechanism and for the polarization
configuration of Fig. 1 it does not contribute to DFWM.
The cross-saturation term has two separate origins. The
term proportional to qI2 arises from the cross-population
mechanism while the other is related to the Zeeman-
coherence mechanism. Since q=yi/y0 can be much less
than unity, the Zeeman-coherence contribution to DFWM
usually dominates. The nonlinear coupling coefficient ~43,
responsible for the conjugate-wave generation, can be ob-
tained using Eqs. (9c) and (20) and is given by

a10(I1I2) q(5+1)
(1+5') (1+5 )

+ 5(1+r)+ i(1+p )

(1+ p )'+ 5'( I+~)'

It is easy to verify that, within the framework of third-
order perturbation theory, the coupling is maximum for
5=0. It will be seen in Sec. IV that when the saturation
effects are included, the DFWM response peaks at
5=q . Equation (21) clearly shows the two contribu-
tions to the coupling coefficient. The term proportional
to q is due to the cross-population mechanism while the
last term arises from the Zeeman-coherence mechanism.

IV. REFI.ECTIVITY BEHAVIOR

In this section we investigate the dependence of the
phase-conjugate reflectivity R on various parameters of
interest. To illustrate the main qualitative features of the
reflectivity behavior in a transparent manner, we assume
that the small-signal absorption coefficient is the same for
opposite circular polarizations and set a

&p =o.2o —=cfo.
Furthermore, in this section we restrict ourselves to the
case of equal-intensity pump waves and take Ii ——I2—=I~.
We also ignore collisional dipole dephasing so that r =1/q
from Eq. (16). In the following we choose a0L =5.

Figure 2 shows the variation of the reflectivity R with
the pump intensity Iz for several values of q and 5 after
choosing p=0. For finite values of p, the collisional de-
cay of Zeeman coherence reduces R in magnitude but the

IO-1
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FIG. 2. Variation of the phase-conjugate reflectivity R with

the pump intensity I~ (normalized to the saturation intensity) for
several values of the Zeeman-splitting parameter 6. The param-
eter q denotes the ratio of lower to upper level relaxation rates.

qualitative behavior remains unchanged. The reflectivity
curves are reminiscent of a similar behavior observed for a
two-level system. The reflectivity peaks when the pump
intensity is of the order of saturation intensity (Iz —1) and
decreases with the further increase of Iz owing to the
saturation effects. We note that higher values of R are ob-
tained at lower values of pump intensities when q « 1 (the
saturation intensity scales linearly with q). This is often
the case, in practice, if the lower atomic state corresponds
to the system ground state. Dispersive effects are mani-
fested in Fig. 1 through finite values of 5 arising from the
Zeeman splitting. In general, as 5 increases, the reflectivi-
ty peak decreases in height and shifts towards higher
values of the pump intensity. However, when q «1, the
maximum reflectivity R is obtained for 5&0, indicating
the importance of saturated dispersion in three-level sys-
tems.

From the viewpoint of spectroscopic applications, it is
of considerable interest to investigate detailed features of
reAectivity spectra obtained by recording the DFWM
response as a function of the Zeeman-splitting parameter
5. Since DFWM provides yet another nonlinear technique
to probe a three-level system, a narrow central resonance
might be expected to occur under appropriate conditions.

The literature is vast' on the subject of narrow non-
linear resonances in three-level systems and many dif-
ferent nonlinear techniques (resonance fluorescence, probe
absorption, stimulated Raman scattering, mode crossing,
level crossing, etc.) have been employed. More closely re-
lated to the present work is, however, the technique of po-
larization spectroscopy where subnatural linewidths
have been obtained ' by probing Zeeman sublevels.

The DWFM configuration shown in Fig. 1 does not ap-
pear to have been used previously to investigate the level-
crossing resonance. It is important to note that the laser
frequency is kept fixed here and the phase-conjugate spec-
trum is obtained by varying the Larmor frequency (using
an axial magnetic field) associated with the Zeeman sub-
levels. In what follows we study power and collisional
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broadening of the level-crossing resonance. It should be
mentioned that, in general, collisions affect all relaxation
rates and the analysis is capable of incorporating pressure
effects through the parameters p, q, and r defined by Eqs.
(15) and (16). For the sake of illustration we simplify the
situation by assuming that only y &2 is modified by phase-
perturbing collisions. This is qualitatively justified since
Zeeman coherence plays an essential role in producing the
level-crossing resonance.

The level-crossing reflectivity spectrum is shown in Fig.
3 for several values of the pump intensities I~ after choos-
ing p =0 and q =0.01. A dip at 6=0 starts to form when
Iz —1 and becomes deeper and wider as Iz increases fur-
ther. Power broadening of the zero-field narrow reso-
nance is clearly seen in Fig. 3. To illustrate that Zeeman
coherence plays an important role in dip formation, Fig. 4
shows the reflectivity spectra at a fixed pump intensity for
several values of p =y~i2/y, . As p increases, the collision-
al decay of Zeeman coherence decreases the DFWM signal
and introduces collisional broadening of the zero-field res-
onance.

In Figs. 3 and 4 the relaxation-rate ratio q =y//yo was
chosen to be small so that, as discussed in Sec. III, the
Zeeman-coherence contribution to 13FWM dominated in
comparison to the cross-population contribution. In order
to discuss the relative importance of these two mecha-
nisms to DFWM, Fig. 5 shows the reflectivity spectra for
several values of q at a fixed normalized pump intensity
Iz ——2. It should be stressed that the saturation intensity
scales linearly with q so that the actual pump intensity de-
creases as q is lowered. The most notable feature of Fig. 5
is that a central narrow peak occurring for q —1 is re-
placed by a central narrow dip when q &&1. This qualita-
tive change is a result of competition between the
Zeeman-coherence and the cross-population contributions
to DFWM and can be explained as follows. The cross-
population and the Zeeman-coherence mechanisms con-

6
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tribute to DFWM in such a way that the former contribu-
tion peaks at 5=0 while the latter peaks at 5=+q. The
relative strength of their contributions varies with q and as
q decreases the Zeeman-coherence contribution dominates
over that of cross-population. Furthermore, the two con-
tributions add in phase only when 5=0 [see Eq. (21)].
The qualitative features shown in Fig. 5 arise from a su-
perposition of these different contributions. The collision-
al decay of Zeeman coherence is ignored in Fig. 5 by set-
ting p =0. However, finite values of p do not change the
qualitative behavior except for dip broadening shown in
Fig. 4.

IO

FIG. 4. Effect of dephasing collisions on the level-crossing
reflectivity spectrum at a fixed pump intensity. The parameter
p is a measure of the collision-induced increase in the Zeeman-
coherence relaxation rate.
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FIG. 3. Phase-conjugate reflectivity spectrum obtained by
varying the Zeeman-splitting parameter 5 (the sublevel-
frequency separation in units of the homogeneous linewidth). In
the saturation regime (I~=1) a narrow central resonance related
to transverse optical pumping occurs and its width exhibits
power broadening with further increase in the pump intensity.

FIG. 5. Phase-conjugate reflectivity spectrum at a fixed
pump intensity for several values of the parameter q defined as
the ratio of lower to upper level relaxation rates. The narrow
level-crossing resonance manifests as a central peak for q —1

and as a central dip for q « 1.
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V. POLARIZATION ANISOTRGPY
IN PHASE CONJUGATION

In the previous discussion, based on the geometry
shown in Fig. 1, the forward pump and the probe waves
are taken to be orthogonally circularly polarized. Since
the generated wave has a polarization conjugate to that of
the probe, this process is termed vectorial phase conjuga-
tion. Recently, several authors have discussed the use of
mutually orthogonal circularly polarized pump beains for
the generation of phase-conjugate vector wave fronts.
Since an arbitrary probe polarization can be expressed as a
superposition of o'+ and o polarizations, it is sufficient
to supplement the present analysis by considering the op-
posite case wherein the forward pump and probe waves
are copolarized.

For the specific case of o.+ polarization of E& and E3
fields, one can follow an analysis analogous to that of Sec.
II, where now E& ——E~+E3 and E2 ——E2+E4 in Eqs.
(2)—(5). The phase-conjugate reflectivity R is still given
by Eq. (10) but the definitions of a3 and a&, as well as that
of ii34 and a43 [see Eq. (9)], are interchanged. Using a sim-
ple symmetry argument, it is straightforward to establish
that

R'(Ii, I~) =R(I2,Ii ) .

A change of probe polarization from o to ca+ is
equivalent to, as far as the DFWM response is concerned,
an interchange of pump intensities (keeping the probe po-
larization fixed). It follows immediately that a sufficient
condition for vectorial phase conjugation is to ensure
equal intensities for the counterpropagating pump waves.
We hasten to add that this conclusion is based on the as-
sumption that depletion and absorption of the pump
waves are negligible.

In the more general case of unequal pump intensities
(Ii&I2), R'=R if R is a symmetric function of Ii and I2.
Calculations show that this is indeed the case when 5=0,
i.e., when the Zeeman sublevels are degenerate. The in-
clusion of dispersive effects for 5&0 introduces polariza-
tion anisotropy. This behavior is illustrated in Fig. 6
where the reflectivity spectrum is shown for several pump
intensities. The choice of p =0 and q =0.01 implies that
the DFWM response arises mainly from the Zeeman-
coherence mechanism. Dashed curves are obtained by in-
terchanging the values of Ii and I2. Alternatively, the
dashed curves correspond to a change of probe polariza-
tion from o. to o.+ while keeping the pump intensities
unchanged. An inspection of Fig. 6 shows that in a nar-
row range 0&5&0.1, the DFWM response is markedly
anisotropic with respect to the probe polarization. From a
spectroscopic viewpoint this result implies that, if I~ ~ I2,
the central resonance in DFWM due to level crossing is
sharper when the forward pump and the probe waves have
orthogonal circular polarizations.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented a nonperturbative
theory of phase conjugation through DFWM on homo-
geneously broadened coupled transitions. The pump

0 -0.05 0 0.05
ZEEMAN SPLITTING Q

O. I

FIG. 6. Illustration of the polarization anisotropy in the
level-crossing reflectivity spectrum in the presence of pump im-
balance. The solid line curves correspond to the polarization
configuration of Fig. 1 (probe is o. polarized). The dashed-line
curves are obtained by changing the probe polarization from o
to o.+.

waves are assumed to have orthogonal circular polariza-
tions and interact with different one-photon transitions
sharing a common upper level. This choice of pump po-
larizations avoids spatial hole-burning and generates wave
fronts that are conjugate including the sense of polariza-
tion. The probe polarization can be either identical or
orthogonal to that of the forward pump. Although both
cases have been discussed, particular attention is paid to
the case of orthogonal polarization since it permits the use
of collinear DFWM geometry.

Using a A-type three-level model for the nonlinear
medium, it is shown that Zeeman coherence, arising from
the two-photon coupling of the lower-state sublevels, plays
an important and usually dominant role in producing
DFWM response. One of the main conclusions drawn
from an inspection of Fig. 2 is that under certain condi-
tions significant (-10%%uo) values of phase-conjugate reflec-
tivities can be obtained at pump intensities much lower
than those required for a two-level system. Two require-
ments for a high DFWM response are (i) that the col-
lisional relaxation of Zeeman coherence should be negligi-
ble and (ii) the upper state should relax much faster than
the degenerate lower state. The latter conditions is readily
satisfied, in practice, if the lower state corresponds to the
system ground state. The effective ground-state lifetime is
then governed by the radiation-atom interaction time.

For the sake of analytical sim plicity, the present
analysis has assumed that the laser frequency is coincident
with the one-photon-transition frequency. Similar to a
two-level system, higher values of the phase-conjugate re-
flectivity can be expected if the laser-detuning effects are
included in the analysis. Their inclusion will, however, re-
quire a numerical treatment in the saturation regime con-
sidered here. It may be remarked that the laser-detuning
effects are essential for the discussion of so-called
pressure-induced extra resonance in four-wave mixing
(PIER4).
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Kccp1ng lrl I111Ild spcctr'oscop1c appllcai1ons, thc lcvcl-
crossing DFWM spectrum is particularly studied. Here
the spectral response is obtained by varying the Larmor
frequency (through an axial magnetic field) associated
with the Zeeman splitting and its main qualitative features
are shown in Figs. 3—6. The main conclusion is that the
DFWM spectrum exhibits a narrow zero-field resonance
that manifest either as a dip or a peak depending on vari-
ous relaxation rates (see Fig. 5). The width of the reso-
nance 1s related to thlc Zccman-cohcrcncc decay rate RIld
can be much less than the honlogeneous line width. The
physical origin of this resonance lies in a phenomenon
termed coherent population trapping, also referred to as
transverse optical pumping. It is important to stress
that both optical pumping and saturation are required to
produce subnatural linewidth features.

The present analysis can readily be extended to include
the case where the upper state is degenerate in 11eu of the
lower one. The nonlinear medium is now modeled in
terms of a V-type three-level system. The susceptibility
can be obtained with only minor modifications of the
density-matrix solution given in the Appendix. Following
the prescription of Feld Rnd Javan, one may show that
the susceptibility is still given by Eq. (13) if we change the
sign of thc ZccrnaIl-splltt1Ilg paI RIIlctcr' 6. S1Ilcc thc
phase-conjugate reflectivity is an even function of 5, one
may use the results directly even for a V-type system pro-
vided appropriate values of the parameters are used. The
parameter whose value is most affected is q defined as the
ratio of the degenerate- to nondegenerate-state relaxation
rate. For a V-type system, the relevant values of this pa-
rameter are q & 1 because of the allowed radiative decay of
the upper state. Several conclusions can now be drawn
from an inspection of Figs. 2 and 5. The DFWM
response will be weaker and will require higher pump in-
tensities when compared to a A-type system. The most
notable qualitative change will occur in the level-crossing
DFWM spectrum that is predicted to exhibit a narrow
central peak.

In an attempt to present the saturation effects analyti-
cally, Doppler broadening has been neglected in the
present work. For the case of DFWM in atomic vapors,
atomic-motion effects may be important unless a well-
collimated atomic beam is used for experiments. In a re-
cent work, Doppler effects were considered assuming that
only one of the pump beams is above the saturation
threshold. For the important case of two saturating
pump beams, the inclusion of Doppler broadening will re-
quire an extensive numerical analysis that, in principle,
can be carried out using the density-matrix formal-
ism' (see the Appendix). A qualitative understanding
of Doppler effects can be achieved in terms of an often-
used grating analogy. ' ' The atomic motion mill lead to
a washout of the cross-population grating generated by
backward-pump and probe interference while the
Zeeman-coherence tensor grating will be relatively unaf-
fected. The DFWM signal will then solely arise from the
Zeeman-coherence mechanism and the main qualitative
features of Figs. 2—6 should remain largely unaffected.
Experiments performed using sodium vapor "have con-

firmed the minor role played by the population gratings in
such systems. Wc should, however, stress that these con-
clusions hold only for a nearly collinear' DFWM
geometry.

It may be worthwhile to point out the essential differ-
ences between the present model and a previous model
used in high-resolution spectroscopy. The model of Ref.
22 considers a closed three-level system that amounts to
assuming that atoms do not leave the interaction region.
The only allowed decay mechanism for the ground-state
sublevels is a slow (usually —few ms) collisional popula-
tion transfer that tends to equalize the sublevel popula-
tions. In a typical experimental situation, however, atom-
ic motion or collisional diffusion tends to move atoms
outside the beam cross-section on a faster time scale (—
few ps) so that it is more appropriate to consider an open
three-level system. (Of course, the average atomic density
remains constant since the same mechanism brings other
atoms inside the interaction region. ) Note that even
though no direct population transfer is involved, the net
effect is to indirectly equalize sublevel populations. Finite
interaction time provides an effective ground-state life-
time * and should be incorporated for a realistic
description of the experimental situation. The relaxation
scheme of the present model is general enough to include
this effect. Furthermore, since no constraints are imposed
on the four independent relaxation rates yo, y&, yo&, and
y&2, pressure effects can be readily included. We feel
that the analytic expression (13) developed in this paper
should be useful in discussing a variety of nonlinear phe-
nomena such as optical bistability, phase conjugation, and
two-mode las1ng 1n Zeeman lasers.

An experimental verification of the theoretical predic-
tions reported here would be of considerable interest. Al-
though several experiments have been performed using
sodium vapor for DFWM, "spectroscopic features were
probed by varying the laser frequency. Level-crossing
spectroscopy with the geometry of Fig. 1 appears to have
attracted little attention. Recently, the D& absorption line
of sodium was used to record the DFWM spectrum by
varying the external magnetic field at a fixed laser fre™
quency. Even though the present analysis is not directly
available due to a different polarization scheme adopted
for the experiment, the level-crossing spectrum exhibited
all the qualitative features shown in Fig. 3. In accordance
with our theory, a narrow central dip with a subnatural
spectral width of —1 MHz (the optical homogeneous
linewidth was -2 GHz) was clearly observed when the
pump intensity exceeded the three-level saturation thresh-
old.

An example of the atomic system, where a three-level
system is readily realized and our analysis is directly ap-
plicable, is provided by samarium vapor with the one-
photon resonance 6s I"

~
~ 6s 6p I"o at 570.7-nm wave-

length. Significant DFWM response is expected at a
pump power of several milliwatts. An important class of
materials for DFWM is related to ion-doped crystals.
This will eliminate Doppjier broadening although the one-
photon transition may still be inhomogeneously broadened
due to crystal inhomogeneities.
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parts corresponding to different circular polarizations,

+Tr(PP) ~( RP10P01+eLP20P02)+c c.

Its comparison with

P = —,E0(g 1E1eR +X2E2eL )e '"'+c.c. (A10)

APPENDIX: SUSCEPTIBILITY
FGR A THREE-LEVEL SYSTEM INTERACTING

WITH TWG INTENSE GPTICAL FIELDS

A three-level system interacting with two optical fields
has been extensively studied in the context of high-
resolution spectroscopy. Although most of the work2o, 2s

assumed one of the fields to be weak, more recently the
case of two arbitrarily intense optical fields has been con-
sidered. ' %"e shall follow the treatment of Ref. 24
since it is applicable for arbitrary relaxation rates.

In the density-matrix formalism the equation of motion
i Ap= [H,p] for the density operator p is used to obtain a
set of nine coupled equations for the matrix elements

p;1 = (i
~ p ~j ), where i,j =0, 1, and 2 corresponding to the

three levels shown in Fig. 1. Here

0=ao+ V=Bo—P -E,
where Ho is the system Hamiltonian in the absence of the
optical fields, p is the dipole-moment operator and the to-
tal electric field

leads to the following expression for the susceptibility:

2'„p
+n — Pone (Al 1)

I P10 I
~

I
"20+(&L2 1121 )"10

~'+L2~P(' L,L2~ —'

X2= —
2 2

I V20
'

I
~

I
'&10+«L1 —

I
~

I

')&20
(A13)

e0A L1
~

a
~

+L2
~
p

~

L1L2JR—

(A12)

where the population differences are given by

Here ep is the vacuum permittivity and X is the atomic
density.

Owing to the resonant nature of matter-radiation in-
teraction a nearly exact steady-state solution of the
density-matrix equations (A3)—(Ag) can be obtained by
assuming P0„——p0„exp( idiot) —and setting all time deriva-
tives to be zero. The resulting set of algebraic equations
can be solved without further approximations. Using
the final result in Eq. (All) we obtain

p00+)'0(P00 —p00) =(i') '( V01P10+ V02P20 —c.c.), (A3)

P'»+)'1(P11 —P11)=(&&) '( V10P01 —p10V01»

P22+ Y2(p22 P22) ( ~) ( V20P02 p20V02)

p01+)'01P01 =(«) '[&&01P01+V01 (p11—poo) + V02P21]

(A4)

E= ,' (E,eR+E—2eL)e '"'+c.c.

Using phenomenological decay rates y; and y;z for the di-
agonal and off-diagonal matrix elements p;; and p,&,
respectively, the density-matrix equations are (see Fig. 1

for the level scheme)

Jbb )r10+Jabr20
I'

(1—J„)(1 Jbb ) —J~&Jb—~

(1 —J )rg0+ Jb r10
P 2o (1—J„)(1 Jbb ) J,b J—b, —

with

Jq ——21m(C~ ), (ij =a,b)

C„= — (L2R —
i
a

i
')+

i P f

'
1'P'

—«1& —
I & I

)+
I
~

I

[ P [' 2)'02 2 2

)'P'

(A14)

(A16)

(A17)

(A18)

P'02+)'02P02=(&&) '[&&02P02+ V02(p22 —poo)+ V01p12]

P21+ Y21P21 (1~) (~+12P21+ V20P01 V01P20)

(A7)

(AS)

and the terms involving V]2 have been neglected since the
corresponding transition is dipole forbidden. The quadru-
pole coupling of the sublevels is, however, included
through Zeeman coherence p2&.

The induced polarization can be separated into two

where p„„ is the equilibrium population for the level
~

n ),
Q,J is the atomic transition frequency,

V,„=—(P0„E„/2)e-'"',

P01 = ~0
I

eR I2
I

1)'
2 2y

C.b = —
I
~

I

'+ (L 1R &
I

')—
)'P' (A19)

C,.=~ ~' -'-'"
tP( +(L,Z

(
),)'P' r1

X=L,L2Z I. , a
~

' —L,
~
P—

~

' .

(A20)

(A21)

(P10 1 ~2~) P (P02E2 ~2~)

r„0=(P ~
—P00) r.o=(P~ P00)

I ] =~—&oi+~yoi ~

L2=o2 —~+~3'oz ~

R —A)2+i QI2 ~

(A22)

(A24)

(A26)

In writing (A12)—(A21) we have used the following nota-
tions:
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L) L2=L——=iyo)(1 i5)—, (A27)

The three-level system is assumed to be homogeneously
broadened. Doppler broadening can be incorporated by
redefining the complex frequency detunings I.&, L2, and
R.

The analysis is considerably simplified if we assume
o]. =~a ~1.~ p2=~a+ci)1. , and exact resonance co=coa ~

Here ro, is the transition frequency and coL ———,
'

Q&2 is the
I.armor frequency due to Zeeman splitting. %"e further
assume y &

——y2 and yo&
——y&2. Using Eqs. (A24) and

(A25),

Jb. = —Vli+Jo

J.b = —e'Iz+ Jo

where the two-photon term Jo ——(q+ —, )QI &I2 with

(1+p+I)+5 (1+2r —p+I)
(1+p+I)'+5'(I+r+I)'

I„' =I„/(1+5 ), I= (I', +I2 )/2 .

(A34)

(A35)

(A36)

Using Eqs. (A32) —(A35) in Eqs. (A14) and (A15), the
population differences are given by

p =rf2/r i q =)'i/1'oph (A28)

where 5=0~2/2yo~ is a dimensionless measure of the Zee-
man splitting. We now introduce the following dimen-
sionless quantities:

r ps=(fp/D)(1+I3 ) n = 1 2

where fo ——r~o ——r2o and the saturation denominator

D =1+(q+1)(I', +I,')
+ (2q+ 1)[1—Q(1+I ) ]II I', .

(A38)

(A39)
(2rol/V 1 I) q +2V01/7 1

Ii =2
I
ct

I
'/(7'il'oi) = IEi I

'/I. »
I2 2

I & I
'/(7 21 o2) =

I
E2

I

'/I. 2, (A31)

J = —(q+1)I', +J, ,

Jbb ———(q+ 1)I2+Jc, (A33)

where y~tj" is defined by Eq. (12) and I,„ is a measure of
saturation intensity for the three-level system (n =1,2).
Equations (A16)—(A21) then yield

Note the presence of self-saturation, cross saturation, and
two-photon saturation. The two terms on the right-hand
side of Eq. (A38) can be attibuted to one- and two-photon
transitions, respectively. The quantity fo represents the
fractional population assumed fo be the same for each
sublevel (fo

———, ). This is not a limitation since the
Boltzmann factor AQ&2/k~T & 10 and all sublevels are
equally populated (in the absence of applied fields) to one
part in a million. Substitution of Eq. (A38) in Eqs. (A12)
and (A13) yields the final expression for X„given by Eq.
(13) of Sec. III.
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