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Exact solution for spontaneous emission in the presence of N atoms
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X two-level "atoms" are considered in interaction with a single-mode resonant electromagnetic
field. The exact solution is given nonrelativistically for all times for the case of spontaneous emis-

sion, when only one atom is initially excited. The solution is given for the general case of the N
atoms in inequivalent mode positions.

I. INTRODUCTION

Dicke' was the first to emphasize the cooperative nature
of the spontaneous emission from a system of identical
atoms, where the atoms were at equivalent mode positions,
e.g., located within a wavelength of each other. In the
case of two atoms, the system will either decay at twice
the single-atom rate (initial triplet), or it will be nonradia-
tive (singlet), and these two are equally likely. Their
equally weighted average, of course, gives the "expected"
rate of the isolated atom. Stephen and other further
studied this simplest two-atom example of cooperative de-
cay and expressed the cooperative linewidth and line shift
as a function of interatomic separation. Milonni and
Knight obtained improved solutions in the form of infin-
ite series involving all the two-atom retardation times
nr /c.

The present paper has the purpose of presenting an ex-
act solution to the problem of one atom initially excited in
the presence of N —1 unexcited atoms. All N atoms each
have only two levels resonant with the single-mode, loss-
less electromagnetic (eln) field; although the solution for
the nonresonant field can also be given exactly, only a
sketch of this solution will be given in Sec. III. It is fur-
ther assumed that the resonant cavity is small enough that
relativistic (time-of-flight) effects may be ignored, since
these times are very much smaller than any transition rate.
It is also assumed that the wave functions of the atoms are
nonoverlapping. Unlike previous calculations, the present
will consider that the atoms are in inequivalent mode posi-
tions.

Exact solutions valid for all time for N-body quantum
systems are invariably interesting in their own right in
view of their expository and pedagogic value. The present
model is interesting in that it couples two different quan-
tum systems, N atoms and the quantized electromagnetic
(em) field.

Buley and Cummings first treated the problem of N
two-level atoms interacting with a classical single-mode
em field, giving long-time solutions for super-radiant
emission. More recently, Stroud et al. have treated N
atoms in equivalent mode positions in this semiclassical
approximation; they first pointed to the interesting effect
of "radiation trapping, " which we will see again in the
present exact and completely quantized treatment with
inequivalent mode positions of the N atoms.

earlier single-atom model to the many-atom case.
The Hamiltonian for the problem is given by (lrt= 1)

N
H =toa a +co g trj~+ g Aj trj Q +Aj~trj~a,

The operators a, a satisfy the commution rule

[Q,at]=1,
and the crJ+-satisfy

[trj~ &trj ]=20~j5jj

The A,J- are defined by

Aj ———p.E(xj ),

(2.1)

(2.2)

(2.3)

(2.4)

[Eq. (2.5c) represents no photons present, jth atom excit-
ed]. Since the operators Qt and oj+ are stepup operators
for the field and atom j, respectively, we see easily that H
has the matrix elements

where p is the electric (induced) dipole moment (-E) [or
the magnetic (permanent) dipole lnoment if E is the mag-
netic field], and E(xj ) is the space part of the electric field
mode evaluated at the position xJ of the jth atom.

If we write H =Ho+H~, where H& ——0 for Xj =0 then
we may express the matrix elements of H in terms of
eigenstates of Ho. The Hamiltonian matrix then assumes
a block-diagonal form, each block along the diagon. al cor-
responding to a constant unperturbed energy. Thus, states
corresponding to different energies are not connected, and
we focus our attention on the simple situation where the
initial energy corresponds to the presence of' zero photons,
and N —1 atoms unexcited. There are thus %+1 states
which span the subspace of interest of constant energy we
can take as zero (as it will otherwise only multiply each
state by a constant phase factor).

These base states we define as follows:

(2.5a)

[Eq. (2.5a) represents one photon present, all atoms unex-
cited];

(2.5b)

[Eq. (2.5b) represents no photons present, only first atom
excited];

(2.5c)

II. FORMULATION

The mathematical setup of the problem has been dis-
cussed often before, and is basically the extension of an

for j&O
0 otherwise . (2.6)
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Thus H has zeros along the diagonal and everywhere else
except along the first row and first column.

The density matrix in the Schrodinger representation
has the form

O (O l p I O& ~ (I I p I I& + (N-l){lj I p I j&

p(t) =exp(iHt)p(0) exp( iH—t) . (2.7)

Interest turns on the various diagonal elements
{0

I
p(t)

I
0&, the probability that a photon has been emit-

ted at time t, as well as the elements {1
I
p(t)

I
1& and

{j I
p(t)

I j), the probabilities that the first atom and the
jth atom are excited, respectively.

Now

{o
I
p(t)

I
0 & = g U;.'p.yo) U~,

0.5

where

a, P FIG. 1. Three density matrix elements as a function of time
for two atoms.

Ujp = [exp( —iHt)]1 p n(t) =N ' sin (N' A,t) . (2.16)
( it)"—

Hp H pHpr. Htj,
n=0 ' a Py, . . .

(2.9)

IHp I IHpr I

' Hpj
a, y, E'

where there are n factors of HI in the product. The
vanishes unless the alternate indices P, 5, . . . are

zero; also the last (nth term) index g must be zero for
j&0. Then UJ0, j&0, reduces to the simple form

( it)"—
Ujp ——

n =cKld {1
I
p(t) I

1&=[1 N' N—'cos(N—' At)] (2.17)

This surprising result says that the photon never gets a
fraction greater than N ' of the energy of the excited
atom. At first glance one might suppose that this means
that the emitted energy gets shared equally by the field
and the N —1 atoms. The situation is more complex and
interesting than this, however, for if we now compute the
matrix element {1

I
p(t)

I
1& for the same initial density

matrix of Eq. (2.13) in a calculation exactly parallel to
that leading to Eq. (2.14) we find

Then

( it)" i
—i AJ

U p
——g, A" 'A~ = sinAt .

Here A has been defined by

(2.10)

(2.11)

when all atoms are in equivalent mode positions, A,J-
——A, .

As N gets very large, the first atom essentially never emits
its energy at all. Figures 1—3 show the three transition
probabilities N =2, 6, and 20. The presence of the other
N —1 atoms acts to prevent the emission of the first atom,
as first pointed out by Stroud et al. based on a semiclassi-
cal analysis. Also we again encounter the enigmatic fre-
quency

A —ki+A2+ +A+ e (2.12) n„=N'"Z. (2.18)
If we now take for the initial density matrix in Eq. (2.8),

p p(0)=5 p5 i, (2.13)

which says that the first atom is excited, a11 others unex-
cited, then from Eq. (2.8),

A2

{olp(t) Io)=
I

Upi I
= sin At .

k}
cosAt

A

A physical interpretation of this frequency is not ap-
parent. Equation (2.17) is, in the general case of ine-
quivalent mode positions,

{1lp(t)
I

1)= 1— (2.19)

Equation (2.14) gives the transition probability, the
probability of finding a photon in the field at time t. Two
extreme cases are of immediate interest. First let us sup-
pose that all N —1 unexcited atoms are in mode positions
such that E( xz )=0 (j =2,3, . . . , N). The first atom never
interacts with the other atoms since they do not interact
with the field, and we have in this case the usual answer
for spontaneous emission from a single atom, namely, the
average "photon number"

0.5

o (p I p I p& ~ (~ I e I ~& ~ &N-~&(il p Ii&

{0
I
p(t)

I
0) =n(t) =sin A, , t . (2.15)

At the other extreme, suppose that all N atoms are in
equivalent mode positions, so that AJ ——A, and A =Nk .
In this case

FIG. 2. Three density matrix elements as a function of time
for six atoms.
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0.5—

o (o I p l o) ~ (i l p li) «N-i)(il p I i)

N =20

p p(0)= —,', a,P=1,2

p p(0)=0, a,P=O.
A straightforward calculation via Eq. (2.8) gives that

n(t)=sin W2A, t .

For short times, the transition probability is

tT(t}=2(At)',

(2.25)

(2.26)

(2.27)

FIG. 3. Three density matrix elements as a function of time
for 20 atoms.

&j I p(t) Ij & =(N —I)-'A —'A, ', (A' —Z', )

X (1—cosAt) (2.20)

To complete this vignette we may also compute the
probability of finding the jth atom to be excited at time t,
and find

in other words, twice the rate for one atom only. This is
the simplest result of Dicke, ' who first pointed out that
the presence of an unexcited neutron could double the
transition rate of an excited neutron if the initial state is
the triplet corresponding to Eq. (2.25), giving rise to
"super-radiance" in this case, as contrasted with "subradi-
ance" as described above.

III. EXTENSION TO CAVITY DETUNING

If we return to examination of the Hamiltonian relevant
to the present problem, i.e., Eq. (2.6), we see that it has the
interesting property that all powers of H can be expressed
in terms of H and H by

which reduces to

N (1 cosN' —A.t} (2.21)

A" 'H (n odd)H"= A" H (n even) .
(3.1)

(3.2)

for atoms in equivalent mode positions.
It is easy to verify that

&o I)o(t} I
o&+ &II ' (t}

I
»+(N —1}&j Iio(t}

I j & =I
(2.22)

as required.
Even when the atoms are at inequivalent mode posi-

tions, the surprising effect of "radiation trapping"
remains. The difference, as we see from examination of
Eqs. (2.19) and (2.20), is that the "bare" X must be re-
placed by N, ff by the definition

H"=a„(E,A)H+b„(K, A)H

and

(3-3)

This fact gives an alternate way to compute p(t) in Eq.
(2.7). When the atoms all have energy level differences of
Q and the (nonresonant) field has frequency m, then we
can also find exact solutions, but we do not carry out the
details here, but note the following. Again we can express
H" as a linear combination of only H and H, where the
coefficients are functions of the detuning parameter
A=(co —0)/2 and A, viz. ;

A =X,ffA) (2.23)
H =A H+25H (3.4)

in which case Eqs. (2.19) and (2.20) reduce to those for the
equivalent mode positions with N~N, ~f. W'e may expect
that for an ensemble of measurements with atoms in ran-
dom positions that

The a„and b„satisfy the linear difference equations

b„+,=a„+2mb„

and

2a„+)——A b„,

(3.5)

(3.6)

Ndf ——X/2 .
a„+2—2ha„+ &

—A a„=0 .2 (3.7)
It is perhaps worth noting that had we taken as our ini-

tial starting point the information that only one atom was
excited, but we did not know which one, then

p p(0)=N '5
p (a,P&0) . (2.24)

This gives again the result of Eq. (2.16) in the equivalent
mode position case, as expected, since the field does not
care which atom is initially excited in this case.

Consider now the case of two atoms, and let the initial
matrix be of the (nondiagonal) "triplet" form

a =a+(a'+A')'"= a+r, —(3.8)

and the coefficients are chosen to give the correct values
for a] and a2, i.e.,

a„=A /2I [(6,+I )" —(b.—I")". ], (3.9)

with b„given by Eq. (3.6). Then U(t) [Eq. (2.9)] can be
summed exactly.

This last difference equation can be solved easily as a
linear combination of a+ and a" where
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