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A model for laser-induced autoionization is considered which includes two qualitatively
different relaxation mechanisms: radiation damping to the ground state and phase fluctua-
tions. Analytic solutions are presented for the first- and second-moment correlation func-
tions of the atomic and photon operators in the Heisenberg picture. We present an explicit
analysis of the spectrum of emitted photons at long times and investigate the effect of both
relaxation mechanisms, as we11 as the influence of detuning and laser intensity, on this
photoemission spectrum.

I. INTRODUCTION

The purpose of this paper is to foliiiulate a model
for laser-induced autoionization, which includes the
effects of radiation damping and transverse relaxa-
tion and still retains its simplicity. Some results
have been reported in a previous brief publication. '

Our model is an extension of that used by
Rzq.zewski and Eberly and, like theirs, our model
can also be analytically solved. There are, of course,
advantages to the present treatment which have not
been previously investigated; we calculate the energy
spectrum of emitted photons, '3 a fundamental
quantum electrodynamic quantity, and we study the
effect of two different relaxation mechanisms on the
physical observables.

Recently, a similar investigation has been made by
Agarwal et al. ; they included radiative damping to
a third level which is not identical with the ground
state. In order to discuss the case of radiative
damping to the ground state of the atom, they intro-
duced a scaling argument to calculate the total num-
ber of scattered photons. We find a significant
difference between their published results, and when
radiative recombination is neglected.

Theoretical investigations on the subject of laser-
induced autoionization have elucidated new
features. ' This is to be expected, since the interfer-
ence effects giving rise to an asymmetric autoioniza-
tion profile in absorption spectra and the splitting
of the levels in an intense field influence one anoth-
er. As a result of these coherence effects, there have

been predictions of population trapping at the con-
fluence of coherences ' ' and the existence of a
sharp maximum in the photoelectron spectra for
sufficiently long measuring times near the conflu-
ence.

However, these initial studies did not include re-
laxation effects which become especially important
in the neighborhood of the confluence of coherence.
Radiation damping to a third level was considered
by Agarwal, Haan, Burnett, and Cooper3'9;
Rzq, zewski and Eberly2'b' have discussed transverse
relaxation effects which appear when the exciting
laser has phase fluctuations or when weak collisions
between the atoms are significant. Haus,
Rzqzewski, and Eberly' have deterrrIined the effect
which inhomogeneous broadening has on the pho-
toelectron spectra. The physical properties are sig-
nificantly altered by the inclusion of these effects,
but in qualitatively different ways. " We comple-
ment these publications by simultaneously admitting
two of these relaxation mechanisms.

Our discussion is restricted to a single continuum
and we do not incorporate continuum-continuum
transitions, such as have been discussed by Lambro-
poulos and Zoller, ' ' Bialynicka-Birula, ' and An-
dryushin et al. ' Also, we consider only the case in
which the autoionizing resonance is sufficiently far
from the edge so that its influence is negligible;
however, edge effects have also been previously
studied """

Autoionizing resonances may be the result of mix-
ing a bound two (or more) electron state with a con-
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tinuum by Coulomb interaction between the elec-
trons. This is not the only possibility; autoionizing-
like resonances have been induced in the continuum
by using a second laser to couple a discrete level to
the continuum' and by inserting an atom in a static
electric field, thereby mixing bound states with the
continuum, very sharp Fano profiles have been ob-
served.

The plan of the paper is as follows: In Sec. II we
present our analysis of the model and define physi-
cal properties of the system. Section III will be de-
voted to a discussion of our results; we first consider
the case of a symmetric autoionizing resonance; the
photoemission spectra derived by using an asym-
metric Fano profile are then discussed in some de-
tail; we also analyze the expression for the total
number of emitted photons in this section. In the fi-
nal section we present conclusions and a discussion
of the results.

We consider a model with a bound state whose
energy Sicko lies—below the edge of the continuum;
the bound and continuum states are coupled by the
electromagnetic field. The Hamilton operator is

(2.1a)

In this expression the electronic occupation-
number operators for the ground state Po and for
the continuum state C appear in the atomic Ham-
ilton operator

B = /0)(co/ (2.2)

(co —

cubi

) —i I

1+
(1—tq)(ai —coi+t I, )

(2.3)

where d corresponds to the dipole matrix element
for the atomic transition between the ground state
and the dressed continuum state. Since the ground
and excited states have a definite angular momen-
tum, d is independent of ro. q denotes the well-
known Fano asymmetry parameter. For q = oo, the
amplitude

~

d(ai)
~

is symmetric about the frequen-
CP Q)).

We are interested in the properties of the radiated
light. The Heisenberg equations of motion for the
photon operators alone can be formally solved. This
solution contains two contributions: a free oscillato-
ry part of the photon field related to the photon
operator at t =0 and a scattered part containing
atomic polarization operators at previous times,

a - (t) = e ' 'a - (0)kp kp

g(k) is the form factor and d(co) is the coupling
constant for the atom-field interaction. We assume
this function has the following two-pole forrkk:

H„=—RcoaP, + f dc' RroC (2.1b) ikc ( t t )——
0

In the absence of coupling between the atom and the
electromagnetic field, the plane-wave mode k with
polarization p, the photon creation, a k, and an-

nihilation, a z, operators undergo free evolutionkg'

Ha=+ f d3kahkaz az (2.1c)

The atomic and photon field operators are linearly
coupled to one another

HqF=RQ f d3k f dm
g( )k

)&(k k d(co)a k
B +H.c.),

B,B„are related to the atomic polarization opera-
tors between the bound state

~

0) and the excited
state in the dressed continuum

~

a~)

(2.4)

where obviously a k
——(a k ) .kp kp

The Heisenberg equations of motion for the atom-
ic operators B,B,C, and Po contain nonlinear
ternks coupling the atomic and photon operators.
These contributions are treated perturbatively (Born
approximation). In these terms the formal solution
for the electric field operators, Eq. (2.4), are inserted
into the equations of motion. The free evolution of
the atomic polarization operators B (t'),B (t') for a
time interval (t t ) is inserted; this sub—stitution pro-
duces errors of order

~

d
~

and is appropriate when
the atom-field interaction energy is small compared
to the atomic transition energy.

We illustrate the method on the equation of
motion for the polarization operator B„(the same
procedure is used for the adjoint operator B ). Its
equation of motion is
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i—(mp+m)g —ig f dekg(k)tt-„d( m)ppa-„+(g f dek f d mg(k)ke d( m)C ac

(2.5)

Inserting Eq. (2.4), and using the approximation described above, we have

(t) = —i(mp+m)B (i) —i f d'keg(k)t'p d(m)Pp(c)a e (0)e

+i g f dek f d gm(k)(t'- ed( )mC (t)a-„(0)e

3 t 2 . . t g ~
—ikc(t —t) (2.6)

Note that noiiikal ordering of the field operators has
been used.

Finally, we introduce the Markov or single-pole
approximation. The integrand of the time-
dependent memory term in Eq. (2.6) is a rapidly os-
cillating function of time; hence, the integral over a
finite interval can be extended to an infinite interval.
The result is

The coherent radiation is assumed to be linearly po-
larized and kz .d=d. In order to simplify the

L
equation of motion we introduce the following defi-
nitions:

Q(to) = 8't d (co)

—i (kc —co—coo)t'dt'e
0

1= ir5( kc to coo)—i H— —
kc —co —coo

(2.7)

0 F I"
)+v'4+I co i I (1 iq—)(co+—i I, )

(2.10)

where the H denotes the principal part.
Substitution of this result into Eq. (2.6) and in-

tegration over the photon momenta produces an co-

dependent frequency shift (Lamb shift) and spon-
taneous emission rate (delta function contribution).
Furthei-ixiore, we neglect the Lamb shift, since it
only leads to a small shift of the atomic frequency,
and we neglect the to dependence of the damping
coefficient, since this dependence is weak in compar-
ison to the rapid to dependence of d(io)

4(co) =toL —ioo —coi —co, (2.11)

(2.12)

(C „)=Q(co)Q*(co')(E„~), (2.13)

where the angular brackets denote an average over
the initial photon state and Qo is the Rabi frequen-
cy;

8,d', o)+o)o
y, (to}= —,m. g4 C

2 d &o+o)i
3 fi

2

(2.8)

[&( }+@(t)](D )

—i &Pp)+i f dcp') ( t)t('m(g„

, f dre
~

( )tt('m(D„) .
The resulting equation is averaged with respect to
the initial state of the electromagnetic field

~

8'L, ).
This state is assumed to be a coherent state with a
slowly fluctuating phase, P(t}

g f d'kg(k)ke„ae„(0)e ' '( igp)

(2.14)

The fluctuating phase f(t) is a stochastic variable;
it is assumed that g(t) is characterized by a Cxauss-
ian, Markov, and stationary process (phase-diffusion
model)

g, i[ )Lt+ti0i(t—)]
~

@ )L k (2.9) ( (p(t)g(t') ) ) =2yT5(t t'), —(2.15)
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where yT is the laser bandwidth. Using the present
scaling of the operators, there are direct contribu-
tions of these fluctuations only in the equation of
motion for the polarization; thus, the effect which
they produce on average properties has been termed
transverse relaxation. The equations of motion for
the remaining atomic operators C „and I'o are
similarly calculated

(PD)= —i f dm')Q(m'))'((D ) —(D ))

+,' f dm'f dm )Q(m"))'

X
~

Q(ro") ~'(E ~ -),

M+(z) which is also similarly defined. The linear
integro-differential equation (2.14) can be simplified
by taking advantage of the separation property of
((&..(z)) ),

[z i—(ro —ro')]( (E„„(z)) ) =g„(z)+ri (z) .

(2.20)

The new functions g'„and ri„satisfy the equations

—i M +(z )

z +yT+i b (ro)

Q()/4

Qo z+yT+i&(ro)2 +

(2.16)
de"

i
Q(ro")

i
2g-

z +I (co —co)
(2.21)

&=i(ro ro')(E —)+i((D &
—(D ))

f dm )Q(m") ")

x(«.-. )+«..- &) .

(2.17)

Note that these equations do not have the factoriza-
tion property as in the work of Agarwal et al. 3'9

The equation corresponding to the adjoint operator
B is similar to Eq. (2.14) and is not reproduced
here. The equations of motion [Eqs. (2.14), (2.16),
and (2.17)] are averaged over the stochastic process
with variance, Eq. (2.15). The double average over
the initial state and fluctuating phase is denoted by
double angular brackets. The equation for ((D„))
after Laplace transforming the time variable is

A (z ro)g„=

A +—(z, ro) = 1+

iM (z)
z +yzi h(.ro—)

Qo/44 +
Qo z+yT ib(ro—)

Qo'/4

z+yT+ih(ro)

(iq+ )

('q+1)( +r+' )

dro"
i
Q(ro")

i
~g'-

X ltz —( (co —co)
(2.22)

1

I (1+q )

((D„(.) » =
z +yT —ih(co)

+
z +yT —i A(ro)

must be of the following foreign:

—i M+(z)
A +(z,ro)[z+yT+ib(ro)]

(2.23)

We define

(z) = —E ( (&o(z) ) )

CO CO E~P~ &

(2.18) Qo'/4

z+yr+ib(ro)
A +(z,ro)(z +& ico)— (2.24)

Et' QP ~P Z

(2.19)

again the corresponding equation for ((D„(z))) is
not written. This equation contains a function

and a similar equation is valid for ri with a, as yet
unknown, complex amplitude D

The complex amplitudes D,D+ are deterrrxined
by inserting these expressions in Eqs. (2.21) and
(2.22). After some algebra, the equation for D is
(5=coo+ co ( —cog )
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i W+(z)
A +(z,iI )(z+yz ~r i—h)

D+[~+(z,t r) —1]
A +(z,il )g+(z)(z+21 )

iq —1

iq+ 1

(2.25)
and D+ satisfies an analogous equation with
W(+)~W(, ), h~ —6, m+~m, and g ~g+,
where

1

r(1 ~q )

z «a,(z) » = «S,(0)»

g-(z) = iq+1 1 + (2.26)
iq+1 z +21

Finally, «Po(z) » , W, and M+ can be expressed
as functions of these amplitudes:

The solution of the integro-differential equations
[Eqs. (2.14), (2.16), and (2.17)] has thus been reduced
to a problem requiring only algebraic methods. The
occupation probability of the ground state
«Po(z)» and the occupation probability of the
continuum « C„„(z)» are deter=ikiined from the
solution of this problem. For instance, the latter
function yields detailed infokikiation about the ener-

gy spectrum of the emitted electrons. However, we
do not discuss these properties in this publication,
although their expressions are provided or easily de-
rived from expressions given in the Appendix.

We concentrate our attention on the properties of
the radiated photons in the rest of this paper. The
total number of scattered photons can be deternkined
by considering the operator

g f dk a-~a-„Pa, — (2.30)

0()/4[M (z) —M+(z)]

r(1+q') 1+
I (1+q )

0()/4(D ~D+ )

1+
r(1+q )

and using Eq. (2.19)

Ii ~(z)deaf+(z) =+i & &&o(z) & &

i y, 0()/4+
z ~y, ~r+ia

(2.27)

which commutes with the Hamiltonian (2.1), and its
expectation value represents a conserved quantity.
Equation (2.30) is used to deteriaine the total num-
ber of scattered photons:

N, = lim g f d'k((a, g„(t)a, ~ (t)) ),
P

(2.31)

where (2, k (t) and a, k (t) are defined by the term
proportional to d((o) in Eq. (2.3). For our initial
state we have the following initial expectation
values:

« ~o(0) » =1,
(2.32)

where

1+iq D + p( )D+
+iq —1 z+ 21

(2.28)

g f d k ((a-„(0)ay (0)) ) =N„, .

Qn the other hand, in the long-time limit the
atom is ionized and the ground state is depopulated:

h (z) = 1 ~y,
1 1+iq

z ~yT~I +id +iq —1

1

l(1+q )

»m «~,(t) » =o.
t —+oo

(2.33)

For the first tefni in Eq. (2.30), the solutions for
at- (t) and a k (t} are inserted from Eq. (2.4). The
result in the long-time limit is

lim g Jt d k«a-„(t)a-„„(t)»

Ã„,+N, i g f d k f—dm f dt gfk)kk'
X[d'(co)e' ' «~-„„(0)& (t')» —d(~)e ' ' &&&+(t')(t k„(0)&&]

(2.34)
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This equation is further simplified by using the pre-
vious results for the electromagnetic and atomic
operator averages

[ ((~o( )))+~ ( )] ~,
no'

2

(2.35)

where M (z) is defined in Eq. (2.19) and its solu-
tion is presented in the Appendix. This result,
whose derivation is similar to the optical theorem in
quantum mechanics, is one of our central results. It
provides a stringent test for the normalization of our
expression for the photoemission spectrum.

The first moments are not sufficient to determine
the occupation of the photon plane-wave modes; this
quantity is called the photoemission spectrum and is
defined by the number of scattered photons with fre-
quency ck integrated over the solid angle 0-„:

E(kcr) g, f=dQ-, ((a, (i)», -g„(r)),) .

(2.36)
We will only be interested in the long-time

behavior of this quantity which we denote as S(kc).
The usual power spectrum for the steady state van-
ishes, since the atom eventually ionizes.

The photon spectrum is deteinkined from the
equation of motion;

((a -„„(r)a-„„(r)))

ig—(k) f dr»(Q(r»)('

X[((a-„„(r)D (t)e '~'"))

—((D (t)a-„„(t)e'~["))].

(2.37)

The number of scattered photons in a particular
mode is related to the averages of the operators

a& D and D a& . The equation of motion forkp kg'
these operators is derived from the Hamiltonian
(2.1); the hierarchy of moments is closed by using a
perturbation expansion in the atom-field coupling
and thereby eliminating photon operators which
couple plane-wave modes with unequal wave
vectors k '&k. Consider first the operators D

g~ D e
—y( ) P a~ P e

—y( )

p co 9 Okp kp 0 9 &N'kp=a- E e 'i['(" and D - =a- D e '&t)[". Thek p COCO coke kP
equations of motion for these quantities, after
averaging over the initial state and the phase fluc-
tuations, are written in the following form:

&(D -„»='[ (c+k(~E)]( &D—,„)) i ((E»g—„))—f da)'(Q(~')('«E,

,' f dr» (Q(r»')('((D,'g ))+ig(k) f d~'(Q(a)')('((E )),
0

((D j, ))=[i[kc E(co)]—4yc—]((D -„))~i (&Pcc„))—fdr» (Q(r» )('«'E'
(2.38)

,
* f dc»'(Q(~')('((D .-„„)), (2.39)

&(E»g„&)= ((kc yc)((E»g„))+ —fd. '(Qr(~') ('(«D'. —,„»—&(D .—,„)&)

8+, f d.' f d.")Q(~')('(Q(~")('«E.„..- »+~i ( )gf kdr» (Q(~'') '(&D). )),

(2.40)

((E,p„))= [i (kc +ro a&') yT]((E,-„„)) —i (((D—t -„„))——((D,-„)))

(2.41)

The final contributions in Eqs. (2.38) and (2.40) are first moments. Their equations of motion have been solved
pre»ou»y. Equations (2.38)—(2.41) have the same analytical structure as in the previously discussed eqlla fjons
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of motion, Eqs. (2.14), (2.16), and (2.17), the only difference being the previously mentioned inhomogeneities
and the dependence on the transverse relaxation yz. . The solution of these equations is obtained by paralleling
the steps of the previous solution. The lengthy, but analytical, expression for the photoemission spectrum is
given in the Appendix. These results are studied in detail in the following section.

III. RESULTS

A. Symmetric Fano profile

In this section we discuss the symmetric profile case, i.e., q~ oo. The expressions for the number of scat-
tered photons reduces to the simple result (yr ——0), N, =y, /r. If, as is usually the case, the resonance in the
continuum is much broader than the spontaneous emission rate I »y„ then the yield of photons will be small
and sensitive photon counting measurements may be required. Nevertheless, it is instructive to examine this
situation, since the expression for the photon spectrum normalized to unity reduces to

1 ia(r+y, )
S(kc)= Re—Gi(z) z+I +y, +yz. +

m' r+r. +rr
0 (z+r+y&)

2 (z+ I +y, +4yr id—, )[z+2(I +y, )+yr ] z= —i(k —kL )c

with

(z+I +y, +4yr —ib, )[z+2(I +y, )+yz-]
Gi(z) =

Q(z) = (z+yz ) [z+2(r+y, )+yz ](z+r+y, +i&)

QoX(z+I +y, +4yr —ib, )+ (z+I +y, +2yr)

Qo
(z +2I +yz )(z+ I +y, +2yr ) . (3.2)

This result reduces to our previous one when yz- ——0. We consider first the case of small Rabi frequency
Qo & I and no detuning b, =0. Figure 1 typifies the effect which the radiative damping and transverse fluctua-
tions have on the shape of the spectrum. For yz ——0, increasing y, decreases the halfwidth; the addition of
transverse relaxation broadens the halfwidth, and in the presence of transverse broadening, the spectra are fur-
ther broadened as y, is increased. The presence of inhomogeneous broadening and transverse broadening' has
a similar effect on the electron emission spectrum. The width of this peak in the weak-field limit is obtained
from the denominator of Gi (z) [Eq. (3.2)]

Qo (2r+ y, )(r+ r, +2r~)+ r~~
"=g +y, I (r+r, )(r+r. +4y, )+[2(r+r, )+r~](2r+2r, +4rr) I

'

where

(3.3)

& =[2(r+y, )+y&](r+y, )(r+y, +4yr) . (3.4)

For large coherent fields, Qo» I, y„and resonant radiation, the spectrum remains symmetric. The three-
peak structure can be considerably smeared by transverse relaxation effects (Fig. 2). Detuning the coherent
field from the central frequency of the resonance, the spectrum becomes asymmetric and eventually, for large
enough yr, a single peak occurs centered at the atomic frequency (Fig. 3). This inelastic peak appears also in
weak fields and in this respect, the transverse relaxation differs from the previously mentioned relaxation
mechanisms. Radiation damping and inhomogeneous broadening do not excite an inelastic peak.

In the regime, Qo» I, y„yz, there are three peaks centered at ck =0, +(Qo+b, )'~, the widths of these
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peaks are

+0(~+yT )(~+y, +2yT') +~'yT(2~+ 2y, +yT )
Ao=

0o'(2I +y, +3yT)+b, 'yT

3 yTtz+= I + y +
2(QO+b, )

respectively.
The photoemission spectrum is analogous to the

fluorescence spectrum in resonance fluorescence of a
two-level atom. As in resonance fluorescence, the
peaks become asymmetric with the addition of
phase fluctuations and detuning. However, the rela-
tionship between the widths and heights of the peaks
differs between the two physical systems. ' The
widths of the peaks in the photon spectrum are
determined by the autoionizing width I for yT, and

y, « I; the widths of the peaks in fluorescence
spectra are deteriained by the radiative damping y,
for yT «y, .

total number of radiated photons versus Rabi fre-
quency using these parameters. The maximum is
near the confluence of coherences. When yT ——0,
spectra become sharper as y, is decreased; the maxi-
ma are only weakly dependent on the radiative
damping for y, & I . The addition of transverse re-
laxation broadens the curves and reduces their maxi-
ma. This is not surprising since the transverse relax-
ation is equivalent to a spread of laser frequencies
with respect to the atomic frequency; thus, the con-
fluence of coherences is smeared.

In Fig. 5 we choose the detuning 6=5 and plot
N, versus Rabi frequency. This value of the detun-
ing shifts the confluence of coherence to zero Rabi
frequency. In the absence of transverse relaxation
the number of emitted photons diverges as Go~0.
The transverse broadening reduces the total number

B. Asymmetric Fano profile

We now investigate the photon spectrum for finite
q. Although, the expressions do not allow the expli-
cit analysis of the previous subsection, there is an in-
teresting new feature, the confluence of coherences.

In contrast to the result previously found for the
total number of radiated photons, for finite q this
quantity is sensitive to the detuning and the Rabi
frequency. When the asymmetry parameter q =5
and b, =O, the confluence of coherences is at
0, =1Q4. In Fig. 4 we semilogarithmically plot the

'=0 I

s&g =0.4

-2.5 2.5 0

FICi. 1. The (normalized) photon spectrum for q = 00,
Rabi frequency Qo ——0.4, and detuning 6=0. Curves cor-
responding to spontaneous emission linewidths 1 and 0.1

are so indicated.

Flax. 2. The (normalized) photon spectrum for q = ao,
Rabi frequency Qo ——8, and detuning 6=0. Value of
y, = 1 is indicated, all other curves have y, =0.1.
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FIG. 3. The (normalized) photon spectrum for q = oo,
Q0 ——4, 6=3, y, =0.1, and yz- ——0, 0.1, 1, and 10.

FIG. 5. The total number of photons radiated vs Rabi
frequency. Parameters q =5, 6=5, y, =0.01 and 0.1, and

y& ——0,'0.01, and 0.1 are chosen.

of radiated photons radically in this regime of b, .
More detailed infoi niation is obtained from the

photon spectra. In a previous publication, results
were presented for the photon spectra with finite q
and no transverse relaxation. These spectra are
asymmetric and at the confluence of coherences the
central peak is narrowed to a width of order y„
since the radiation damping was the dominant relax-
ation mechanism. In Fig. 6 we consider the com-
bined effect of transverse relaxation and radiative
damping on the photon spectra. The Rabi frequen-
cy is chosen to be near the confluence of coherences
and the laser is on resonance with the central fre-
quency of Fano profiles. One spectrum is plotted
with y, =0.001 and yz. ——0; we chose symmetric
values of y, and yz in the remaining two curves in
order to evaluate the quantitative difference between
the two spectra.

Although the two spectra are qualitatively similar
in appearance, the central peak is less affected by
larger radiative damping and small transverse relax-
ation than by the converse situation.

The transverse relaxation has a redistributive ef-
fect on the photon spectra when the laser and atom-
ic transition are detuned b,&0. In Fig. 7 the Rabi
frequency is Qo —v 2 and the radiative damping
coefficient is y, =0.1. Increasing the transverse re-
laxation rate shows a shift of the maximum from
the excitation frequency of the laser to the atomic
frequency. In Fig. 8 the combined effects of large

y, =10 and large transverse relaxation yz. ——10 are
plotted. The extremely large value of the radiative
damping increases the maximum, an effect related
to the weak-field limit discussed in the previous sub-
section. The two damping mechanisms do not com-
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FICi. 4. The total number of photons radiated vs Rabi
frequency. Parameters q =5, 6=0, y, =0.01 and 0.1,
and y&

——0, 0.01, 0.1 are chosen.
FIT&. 6. The photon spectrum for q =5, Qp = 12 6=0,

and values of y, and y& as indicated in the figure.
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FKx. 7. The photon spectrum for q =5, QO=W2,
b =4, and y, =0.1. Effect of y~ on the shape of the spec-
trum is demonstrated.

pete; in this case, when both are acting on the atom,
the spectrum is very broad and the maximum lies
between the laser and atomic frequencies.

IV. CONCLUSIONS AND DISCUSSION

We have analytically solved a set of coupled
integro-differential equations relevant to autoioniza-
tion in the presence of two relaxation mechanisms:
transverse relaxation and radiation damping to the
ground state. As in a previous publication on the
photoelectron spectrum, " we note that the effect of
transverse broadening differs from the effect which
radiation damping has on the photon spectrum and
we include both mechanisms in our solution.

The photon spectra of Agarwal et al. , differ signi-
ficantly from ours since their calculation is specific

for relaxation to a third electronic level, which is not
identical to the ground state. Their photon spectra
have two peaks in the strong field limit, Qo ~~ I and
y„since there is no elastic peak in their spectra.
They also do not account for the transverse relaxa-
tion.

In their publication a scaling argument was used
to foririulate an expression for the total number of
scattered photons. The probability of returning once
to the final bound state, in their notation, is the total
number of photons emitted Xf. Assuming now that
this state is the ground state, the probability of re-
turning a second time to the final bound state is Nf
and so forth. In their original paper, the authors
assume that the final-state Fano asymmetry parame-
ter is infinite, qf = oo (no radiative recombination).
Our results fully corroborate their expression when
radiative recombination is accounted for. Figure 9
shows a comparison between the total number of
scattered photons without radiative recombination
and that of this work. The translation of the nota-
tion from Ref. 3 to ours requires the following sub-

~qf=~): IAHBC 2I )0 ) /2
5/I, and Q=Q()/4(1+q )I

We calculated the total number of photons emit-
ted using the conservation of the number of excita-
tions. This not only provides a direct analytical ex-
pression for the total number of emitted photons,
but also is a check of our expression for the photon
spectrum. This provided an important consistency
check for the complicated analytical calculations.

For y, &&I the integrated photon spectra have a
sharp maximum near the confluence of coherences.
This feature, also noted previously, ' can be used to
obtain detailed information about the autoionizing
state. The effect of transverse damping is most
dramatic when the detuning is chosen so that the
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FIG. 8. The photon spectrum for extreme values of y,
and yz. . q =5, b, =4, and Qo=V 2.

FIG. 9. Total number of photons radiated vs Rabi fre-
quency for q =1 and 5=1. Dashed lines are the results
from Ref. 3 and the solid lines are from Eq. (A6).
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confluence of coherence appears near zero Rabi fre-
quency. This is the regime where the Fermi golden
rule decay rate of the ground state is largest and the
transverse damping is the dominating relaxation
mechanism controlling the lifetime of the ground
state.

In the strong field limit, Qo&&I, y„and yT, the
photon spectra exhibit three maxima. The similarity
of these spectra to the power spectra in resonance
fluorescence of a two-level atom has been comment-
ed on already. For finite q, the central peak shows a
pronounced narrowing and heightening as the con-
fluence of coherences is approached. These spectra
should be more accessible to experimental verifica-
tion (we envision here an experiment perforiiied with
an atomic beam) than the photoelectron spectra,
since the techniques for obtaining high-resolution
photoemission spectra are more advanced than the
techniques for resolving the energy of emitted elec-
trons. Thus the photoemission spectra provide an
alternative to obtain detailed information about the
autoionizing state.

Our treatment of the model does not use the
quantum-regression hypothesis. We calculated
equal-time correlation functions for a transient pro-
cess and analyzed the photon spectra and number of
radiated photons in the long-time limit in this arti-
cle. ' However, the solutions in Sec. II and the Ap-
pendix can be used to study the time dependence of
these quantities, as well as, to investigate the popula-
tion trapping and photoelectron spectra. A discus-
sion of these interesting topics is reserved for the fu-
ture.

Qoy. Q i
2

C11(z)=h
4(z +yT+1 +i 6) '

Q +
oy, Q2

4(z +yT+I —ib, )

QoysQ2

4(z+yr+I +ib, )

Q11y, Q 1+

C»(z) =h++
4(z+yr+I id, ) —'

(A2a)

(A2b)

(A2c)

(A2d)

Q+ g lq+1
M(z+yT+I +id, ) iq+1

X [A + —1 —A -g+g (z +21 ) ], (A3a)

g+g (z+2r)
M(z+yT+I +id, )

(A3b)

The equations for D and D+ are

(A + —1)g (z +21 )

(z+yT+I +1&)

(iq —1) A g+g (z+21 )

(iq+1) (z+yT+I iA)—

M=A A +g+g (z+21 ) —(A —1)(A + —1) .

(A3c)
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APPENDIX

and

i (A——1)g+(z +21 )

M (z+yT+1 id)—
(1+iq) ~+g+g (z+21 )2

(iq —1) (z+yT+I +id)

(A4a)

(A4b)
The integro-differential equations derived in Sec.

II have been already reduced to a set of algebraic
equations. These equations are easily manipulated
to obtain an explicit solution. We shall retain the
notation used in that portion of the paper.

There are five amplitudes to be calculated; these
equations are reduced to a set of two equations for

and M+ as a function of ((Po(z) )):
Ci 1 (z) C12(z) —1

The coefficients of the 2 X2 matrix are

((Po(z) )) = 1

u (z)

with

(A5a)

Qo[& (C12+C22)+&+(C21+Cl1 )lu(z)=z—
4( C11C22 —C12Cz 1 )

(A5b)

In the above equations the arguments of the func-
tions A (z,iI ) and—g —(z) are omitted.

The solution for ( (Po(z) ) ) is
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r(1+q )

[y, +r(1+q')]

(A + —1)g —(z+2I )—

M(z+ ye+ I +ih)

m+g+g (z+21)'
lq+ 1 1

I (1+q )
(A5c)

(A6a)

The complete solutions for the ground-state occupation equation (A5) and the photoelectron emission spectrum
are provided by the above results.

The total number of radiated photons is

Qo
N, = Re[a+(0)]—1,

where

C11+C21 1a+(z) = 1—
Cii C22 —C12C21 u (z)

The photoemission spectrum noiixialized to unity is given by the expression

2 &o
S(kc)= Re a (z)a+(0)+P(z)J(0)

mN, 4y, z =—i(k —kL )c

We define the following functions:

(A6b)

(A7)

a (z)= 1— ( C22 +C12 )

C11C22 —C12C22 u (z)
(A8a)

2
o + W iq —1 I(1+q ) a (z)

y. iq+1 y, + r(1+q2) z+ I +yr+i~ z+r+yr+i~ ' (ASb)

W=(z+I +yT+iA) N + 1

y, +r(1+q )
(A8c)

(z +I +yT+ ib, ) h (C12+C22)
J(z)= 1—

u (z) C11C22 —C12C21
(ASd)

2 2
&o iq —1 &o iq —1

Q2 C12+ 1+ Q 1 C22iq+ 4 iq+
C11C22 —C12C21

(ASe)

C11C22 —C12C21

The tilde over the functions in Eq. (A7) denotes the corresponding solutions of the second-moment equations
(2.38)—(2.41). A prescription for obtaining these solutions from the results given above is as follows: first set

yT ——0 in all equations, then take z~z+yT, and where z ib, appears, let —ih~ ih—+3yT, and w—here
z+ib, , let +id, ~+ih yT—
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