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The photoionization of hydrogen atoms in a strong magnetic field is formulated as a multichan-
nel problem by representing the asymptotic electron wave function in cylindrical coordinates.
Departures from cylindrical symmetry close to the nucleus are incorporated by an A-matrix treat-
ment at short range, which then merges with standard quantum-defect procedures. The R-matrix
calculation utilizes the eigenchannel approach, recast in noniterative form. At the field strength
treated here, 8=4.7)& 10 G, the photoionization cross section displays narrow "autoionizing" reso-
nances near the excited Landau thresholds.

I. INTRODUCTION

Magnetic white dwarfs exhibit field strengths approach-
ing 10 G, and so the interpretation of white-dwarf spec-
tra requires a detailed understanding of atomic properties
in such fields. ' Also, the quantum-mechanical motion of
an electron in combined Coulomb and magnetic fields
constitutes one of the simplest nonseparable problems in
atomic physics; its properties have fundainental implica-
tions for the physics of all correlated systems. ' While
for certain atomic properties the Hamiltonian appears to
be quasiseparable, ' for other properties the nonseparabil-
ity becomes paramount, e.g., the decay of quasi-Landau
levels observed at smaller fields, or the "autoionization"
of states lying below excited Landau thresholds. '

In the discrete spectrum much attention has been given
to the problem of calculating energy levels and oscillator
strengths (see, e.g., Ref. 9). The most complete and accu-
rate results, obtained over a wide range of field strengths,
appear to be those of Wunner and Ruder. ' Photoioniza-
tion of hydrogen in strong fields was treated by Kara and
McDowell, " though many aspects of their calculation are
unrealistic because of an inadequate treatment of
Coulomb field effects at the Landau thresholds. At much
higher fields (B—10' G) than considered here, a realistic
calculation of the photoionization cross section was ob-
tained by Wunner et al. ,

' though the "autoionizing" reso-
nances were not included. The energies and widths of
several autoionizing states were calculated by Friedrich
and Chu, and scattering amplitudes were obtained by
Onda, though the photoionization cross section was not
given.

The central purpose of this paper is the presentation of
a multichannel R-matrix calculation of the photoioniza-
tion cross section for hydrogen. For this prototype calcu-
lation only a single value of the magnetic field (4.7X 10
G) and of the photon polarization (@~~B) will be con-
sidered. The escape of the photoelectron to z~+ao is
conveniently represented here in terms of regular and ir-
regular Coulomb wave functions, whereby the standard re-
sults of quantum-defect theory' ' suffice to translate
the short-range R-matrix calculation into a photoioniza-

tion cross section. Clark' has recently developed a close-
ly related approach to treat negative-ion photodetachment
in a magnetic field.

A second objective of this study is to test the feasibility
of a noniterative reformulation of the eigenchannel R-
matrix approach, ' which amounts to a generalization of
the variational expression derived by Kohn for the loga-
rithmic derivative of the wave function at a finite radius.
This version of R-matrix theory is closely related to that
described by Taylor, ' Lane and Robson, Purcell and
Chatwin, and Oberoi and Nesbet. A new application
of the same approach to molecular dynamics is described
by Rouzo and Raseev. The results of the calculation,
given in Sec. III, show how the short-range reaction ma-
trix varies strongly as the energy is increased from far
below a threshold up to the near-threshold region. The re-
action matrix, nonetheless, becomes a smooth function of
the energy once E is within a few electron volts of an
opening threshold. These results complement an earlier
study of this energy dependence in a much different con-
text.

II. NONITERATIVE CALCULATION
OF R-MATRIX EICxENSTATES

In the interest of keeping this paper self-contained, the
noniterative eigenchannel R-matrix method will be de-
rived in this section. This method retains the rapid con-
vergence of the eigenchannel approach' ' while eliminat-
ing its main disadvantage, namely, the necessity for itera-
tively diagonalizing the Hamiltonian several times at each
energy. It is closely related to the noniterative approach
developed by Refs. 21—24, with the main difference being
the present emphasis on R-matrix eigenstates rather than
on the full R matrix. The motivation for focusing on
these eigenstates stems from their having a simple physi-
cal interpretation in many problems. ' '

The common thread in all R-matrix methods is their
solution of the Schrodinger equation within a finite reac-
tion volume 0 of configuration space. The scattering
properties of a many-particle system are known once the
normal logarithmic derivative (Bitt/Bn)f ' is specified on
the surface X enclosing the reaction volume. The goal of
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theory is to determine this information in the form of an
R matrix.

Consider the Ritz variational expression for the
Schrodinger energy eigenvalue

f g*(—,' V' —f+Vg)den
(1)f /*/de

where dc@ is the differential volume element of configura-
tion space and the integrals extend only over the reaction
volume Q. (In a many-particle system, V must be inter-
preted as g,.V;/m;. ) Application of Green's theorem
transcribes Eq. (1) into

f„(,' V q*-.V q+q'Vq)d~ ,' f—,y—*(aq/an)do.

f /*/dc'

in which an additional integral must now be evaluated
over the surface X of the reaction volume. The differen-
tial area element is dcr, and the normal derivative c)g/Bn
on X can be expressed in terms of g and the constant b
through

0= icky'k
k

In the following, the ck, yk, and
hatt

will be assumed real
without loss of generality, as the Hamiltonian is real. It
should be pointed out that the yk need not be orthogonal,
and also they need not have any particular logarithmic
derivative on X; indeed their normal logarithmic deriva-
tives should ideally span a range of values. Equation (4)
then takes the form

b [ck ]=Qck Pklcl g ck Ak I c1
k, l k', I'

The real symmetric matrices I and A are defined by

I «= f [ Vy'—V»+2yk(E

A«= f ykyid

The element I kg can also be put in the more conventional
form involving the matrix element of a non-Hermitian
Hamiltonian and a surface term

I kl 2 yk (E II)y/d~ yk0 Bn

a +bg=O,
Bn

(3)
A necessary condition for b to be stationary with respect
to small variations of the ck is that

on X. [In a multichannel problem having several degen-
erate continuum solutions, Eqs. (2) and (3) are meant to
hold for each independent solution g& with its associated
constant b&. It is worth emphasizing that b in Eq. (3) is
not necessarily a constant for any arbitrary state P. Yet
we can always look for the set of R-matrix eigenstates gp
for which by is a constant on X, in which case b~ is inter-
preted as an eigenvalue of the R-matrix. ] Consequently,
the expression (2) can be written in a form more useful for
continuum states at a given energy E, as an equation for
the unknown b (E):

f [—Vg ~ V/+2/*(E —V)g]derb= (4)f g'/der

This expression for b is clearly real and, moreover, the
first variation 5b vanishes to first order in small devia-
tions 5$ of the wave function from the exact solution g.
This stationary property follows upon evaluating 5b using
Eq. (4) and then applying Green's theorem. Importantly,
no constraint needs to be imposed on the trial functions in
showing that 5b =O. In particular, the trial functions
need not have any specified logarithmic derivative on the
reaction surface X. In this sense Eq. (4) is a less restrictive
variational expression than Eq. (1), since the energy func-
tional is stationary only when all trial functions have the
same normal logarithmic derivative on X as the exact
solution.

A. Generalized eigenvalue problem
for the R-matrix eigenstates

A particularly convenient method for using Eq. (4) to
calculate the R-matrix follows from using trial functions
which are a linear combination of basis functions yk ..

Bb ' —1g ck'Ak'I'el' Q I klcl b+Ak(cl
Bck k, l I I

In matrix notation this amounts to the generalized eigen-
value equation

Properties of the eigensystem (11) are discussed in Ref.
30, and an algorithm for numerical solution which ap-
pears to be stable and efficient is presented in Refs. 31 and
32. Eigenvectors c p and c p corresponding to distinct
eigenvalues bp and b~ are orthogonal over the reaction
surface X:

cp Acp ——0, (12)

on X, and the matrix elements of A are then simply

when b~&b~ . The number of nontrivial solutions to Eq.
(11) depends on the problem being studied. Gn physical
grounds the number of eigensolutions must equal the
number of open and weakly closed channels, which
amounts to those reaction channels having non-negligible
amplitude on X. The remaining channels, which may
contribute at short range but are exponentially small on X,
are referred to as strongly closed.

The concept of reaction channels arises here by intro-
ducing a complete set of real orthonormal surface har-
monics P„which span the surface X:

f p„p„dcT=5„„. (13)

Each of the basis functions yk can be expanded in terms
of the P„ over X according to

yk g&kn 4'n
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Ak, =gak„a,„. (15)

If I and A are n &n matrices and A is nonsingular, then
there are n nontrivial solutions to Eq. (11). In practice,
however, A is highly singular because only a few terms
(i.e., channels) contribute to the summation in (15). In the
extreme case of a single-channel problem, the matrix A is
factorable and thus has but one nonzero eigenvalue,
whereby the system (11) has exactly one nontrivial solu-
tion at each energy, as expected. Similarly, if a total of N
channels are required to span the reaction surface X at any
given energy, then the number of relevant eigensolutions is
also X Besides the eigenvalues bp, the 8-matrix eigenvec-
tors are also required to construct the matrix R. In the
present formulation these R-matrix eigenvectors are
(within normalization) the projection of the P'th eigenso-
lution

PP gj kckP
k

onto the n'th surface harmonic

(16):

Z„p—— „pdcr Np

gakn ckp/Np,

with the normalization constant given by
2

Np=g f P„fpdo
n

Finally, the R matrix is given by

+nn' =gzn pb pzn p~'
P

(17)

(19)

which is automatically symmetric.
Whereas testing the symmetry of the A. matrix provides

a useful check on convergence for some methods of calcu-
lation, it is of no value in the present approach since 8 in
(19) is automatically symmetric. One useful test of con-
vergence is the comparison of bp obtained from (11) with
the value obtained from the less-accurate expression

fzgp(Bgp/Bn )do.
(20)f l/Jp d cT

calculated using the variational wave function gp. Since
Eq. (20) differs from the exact bp in first order (5$), while
Eq. (11) differs in second order (5g ), their difference
measures the convergence of the expansion (5).

~p, approx =

lH= ——
2 ()p

1 8 1 8 z
2 2

+ +aI.,+ 2n p
2p Bp 2 9z 2p

B. Photoionization in a magnetic field

Next, the specific application of R-matrix theory to
treat the photoionization of hydrogen in a strong field is
addressed. In cylindrical coordinates the Hamiltonian is
(in a.u. )

where a:eB—/2m, c is the Larmor frequency. As is well
known, this Hamiltonian is approximately separable in
spherical coordinates at short distances (r (r, ), but is
nearly separable in cylindrical coordinates farther out
(r & r, ). If the electron kinetic energy is roughly T, then
this critical radius lies in the neighborhood of
r, =(2T)'i a ' bohr radii. The photoelectron can escape
beyond this distance only by moving parallel to the mag-
netic field, and its kinetic energy of escape depends on the
azimuthal quantum number m and on the asymptotic
Landau quantum number n characterizing the motion in
p. To account properly for this channel structure the
asymptotic wave function in a photoionization calculation
must be expressed in cylindrical coordinates even for rela-
tively weak fields. Notice also that for large iz i »r„
the potential energy assumes the form —1/i z

~

. Hence,
each Landau component of f can be written as a linear
combination of regular and irregular Coulomb functions
(f,g) in z. This feature permits the use of multichannel
quantum-defect theory' ' to express the photoionization
cross section in terms of a short-range reaction matrix and
dipole matrix elements, all of which vary smoothly with
energy.

In the terminology of Sec. II A, then, the reaction sur-
face X is cylindrical, with the ends of the cylinder taken to
be

(22)z=+zo .
The actual value of zo will depend on the energy range
and on the magnetic field in general. The radius of the
cylinder po need not be specified here since the electron
can escape only a finite distance in p at any given energy.
Thus, po will simply be imagined large enough to contain
all possible excitations in p. The natural choice for the
surface harmonics in this problem are the wave functions
associated with the Landau levels of a free electron in a
magnetic field:

(p P) —N e'~Pe —~P2i2(a 2) l~ li21 & l~ I &( 2)

(23)

with an associated residual channel-energy level

E„' '=a(2n+
i
m

i +m+1) . (24)

ere N" is a normalization constant andI-"i i is an as-
sociated Laguerre polynomial.

As quantum-defect procedures have been described else-
where, relevant details will only be summarized here. The
key point is that solutions to the Schrodinger equation at

i
z

i &zo can be represented in terms of regular and irreg-
ular Coulomb wave functions f„and g„. In the present
problem f„and g„are the I =0 energy-normalized base
pair of Refs. 15—17 evaluated at the appropriate channel
energy

(m) E E(m)
&n = —

n (25)

which can be positive or negative. The explicit form of
the P'th independent solution of Eq. (11) can thus be writ-
ten in terms of constants In~ and Jn~ as

( 2+ 2) —1/2 (21) gp=gP'„'(p, g)[f„(z)l„p g„(z)J„p], z &zo . —(26)
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As each P~ is either even or odd about z =0, it suffices to
consider the region z &zp only. The coefficients I„~and

J„p are found by projecting each f~ onto f'„', as well as
its normal derivative

I I

bpP—p gP——'„'(p,P)[f„'(z)I„p g„'(z—)&„p], »zp
az

(27)

and solving the resulting linear system after setting z =zp.
The coefficients I„~ and J„p define the reaction matrix
K„„ through

0
0

I I

2
Z(o. u. )

I

4
l

5

(28)

though it is useful in practice to deal separately with the
reaction matrix eigenvalues tanmp and eigenvectors U„
by solving

FIG. 1. Diagonal potential matrix elements which are given
by Eq. (33), converging to the lowest five Landau levels as
~z

~

~ao. These are the potentials relevant for m =0, at a
magnetic field 4.7X 10 G. Also shown as dashed curves are the
purely Coulombic potentials —1/

~

z
~

converging to each Lan-
dau level.

IC U=Utan(mp) . (29)

The +~ have the standard asymptotic form

%' = g(t„' '(p, g)[f„(z)U„cos(vrp )

—g„(z)U„sin(vrp )], z &zp . (31)

Photoabsorption depends lastly on the dipole matrix ele-
ments between 4 and 4'p, the ground-state wave func-
tion

d~= f dP f pdp f dz%*(p, P,z)e r %p(p, P,z) .

(32)

The d~, p, and U„~ determine the total and partial pho-
toionization cross sections, as detailed in Ref. 17. These
parameters are smooth functions of energy (as seen in Sec.
III), even through ionization thresholds. This fact allows
them to be calculated on a coarse mesh of energies, even
though the cross section itself changes rapidly with ener-

gy-

The eigenstates of the short-range reaction matrix will be
denoted 4; these are linear combinations of the R-matrix
eigenstates g~..

(30)

where E„' '=a(2n+1) and n =0, 1, etc. These integrals
were found numerically using Simpson's rule, except at
z =0 where they could be evaluated simply in closed form.
Of course, their convergence to the asymptotic form

V„„(z) = a(2n +1)—1/
i
z

i
+0( i

z
i

)
I& I

~~ (34)

y.,(p, P,z) = . n =0, 1 and j=1, . . . , 10 (35)

$„(p,g)(8y/m. )' exp( —yz ), n =2,3,4 .

is slower for high n because (p) is correspondingly larger
and (34) is satisfied only for

~

z
~

&& (p). Figure 1

demonstrates that for energies up to a few a.u. a choice
for the R-matrix boundary of zp ——5 a.u. should easily suf-
fice. Inspection of the off-diagonal terms of the potential
matrix confirms that they are negligible at zp ——5 a.u.

The calculation of the m =0, even-parity ground state
is perfomed at only one energy. Rather than using the R-
matrix approach, it is therefore more convenient to diago-
nalize the Hamiltonian in an orthonormal basis set which
vanishes at

~

z
~

&zp ——5 a.u. and has a vanishing z deriva-
tive at z =0. The basis set of 23 functions which was used
is (for

~

z
~

(zp)
P„' '(p, g)(2/zp) cos[77(J —

2 )z/zp],

III. PROTOTYPE CALCULATION

&..(z)=&!" f,"pdp f; dO—
I
O'."(p.&) l'

&&(p +z ) (33)

The R-matrix procedure discussed above has been im-
plemented at one value of the magnetic field, B =4.7)& 10
Cx, corresponding to a= 1 in Eq. (21). It has also been
hmited to incident photons which are linearly polarized
along the field axis z, thereby selecting only the m =0,
odd-parity final state. The main elements required for a
realistic calculation can be discerned from Fig. 1, which
shows the diagonal potential matrix elements for m =0
and o;=1:

Matrix elements of H were evaluated numerically using an
efficient Filon scheme for integrals involving cosine func-
tions and Simpson's rule for the others. The parameter
y was optimized roughly at the value y=2. 5 and then
held constant. The lowest energy eigenvalue so obtained is
Ep ———0.002 38 a.u. , corresponding to a binding energy of
1.0024 a.u. This value is in satisfactory agreement with
more sophisticated calculations, e.g., Wunner and Ruder'
obtain a binding energy of 1.0222 a.u. Figure 2 shows the
ground-state wave-function components in each of the
Landau channels; it confirms that the higher channels
(n & 1) contribute only at short range.

The m =0, odd-parity fina1 state has a node at z =0.
This fact diminshes the effect of the spherical volume
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1.2

0.8

F„(Z)
0 4

0.0

l I 1 I I I I I t 1
The R matrix found using (39) is denoted "variational"; it
is exactly symmetric at all levels of approximation. The
less-accurate R matrix found from (38) is denoted "ap-
proximate"; its asymmetry Rip —Rpi provides one mea-
sure of the inaccuracy of the calculation. The last row of
Table I gives the R matrix calculated by direct numerical
integration of the two-channel close-coupling equations.
Its good agreement with the best variational results (third
row of Table I) confirms the accuracy of the calculation.

0
I

I 2
I I

3 4
l

5 A. Single-channel regime
z(o.u.)

FIG. 2. Components of the even-parity ground-state wave
function are shown in the lowest five Landau channels, for
m =0.

y„,(p, P,z) =P'„'(p, P)sin(jz/2), (36)

with n =0 or 1 and j=1,2, . . . ,j,„. The final calcula-
tion used j,„=15, giving a total of 30 nonorthogonal
basis functions. Some of the calculations were repeated
with j,„=10 to assure convergence of the expansion.

For an ¹ hannel problem there are N independent
solutions Pp obtained by solving the eigenvalue problem
(11). It is useful to write these solutions in the form

Pp(p, P,z)=gP'„'(p, g)F„p(z),
~

z
~

&zp . (37)

The R matrix can be calculated from values of F„&(zo)
and its derivative with respect to z, F„'~(zp):

R = —F'(zo)[F(zo)] (38)

If the Pp are eigenstates of the R matrix, then
F„'~(zp) = b~F„p(zo), and—R is given by

R- =XF.gzo»p[F(zo) '1g. (39)
P

which is equivalent to Eq. (19). But F'(zo) can also be cal-
culated by explicitly taking the derivative of the variation-
al solution. This gives, in genera1, a less-accurate R ma-
trix when (38) is evaluated. In Table I the two-channel R
matrices calculated at E=3.1 a.u. for the m =0, odd-
parity final state using these two methods are compared.

near r =0, and implies that the cylindrical expansion
should converge more rapidly than it did for the ground
state; hence, only the lowest two Landau channels were re-
tained. The variational basis used for the R-matrix calcu-
lation is

At energies below 2.4 a.u. the first excited-channel wave
function (n =1) has no appreciable amplitude at

~

z
~

=zp. This fact reduces the pmblem to a one-channel
situation, even though the excited channel(s) still contri-
bute to 4 within the reaction zone. Throughout this one-
channel regime the results of the R-matrix calculation can
be summarized by a single-channel quantum defect pp(E)
and a single-dipole matrix element dp(E) connecting the
ground state to an energy-normalized final state. In keep-
ing with the quantum-defect point of view, these are cal-
culated as a continuous function of energy even below the
n =0 ionization threshold at Eo ' ——1 a.u. The regular and
irregular Coulomb wave functions needed at zp ——5 a.u.
were evaluated by a power-series expansion. Figure 3
shows the quantum defect throughout this energy range.
It varies slowly with energy in general, though below
E =0.8 a.u. , po begins to vary more rapidly with E, re-
flecting the presence of the lowest member of the Rydberg
series at E =0.7029 a.u. The differential oscillator-
strength distribution dfldE, calculated using both the
length and velocity forms of the dipole matrix element,
appears in Fig. 4. This gives the photoionization cross
section at E & 1 a.u. Below that energy the photoabsorp-
tion spectrum is entirely discrete, despite the fact that po
and df IdE are shown continuously. The energies of the
bound levels are determined by the requirement that

pp(E)+vp(E) =P,
for P integer, where the effective quantum number is

v {E)=[2(E' ' —E)]

(40)

{41)

At those energies satisfying (40) the discrete oscillator
strengths are related to df IdE by

f& (df /dE)E„ l(vp+ dp—p—ldE)g (42)

These bound-state energies and the oscillator strengths
connecting to the ground state are compared in Table II

TABLE I. R matrices at E =3.1 a.u. as calculated by different methods.

Method

Variational
Approximate
Variational
Approximate
Close coupling

Jmax

10
10
15
15

0.969 98
0.92403
0.971 17
0.973 87
0.971 26

R il

0.11772
0.121 98
0.11778
0.11927
0.11778

Rol

0.165 78
0.16074
0.16603
0.167 21
0.16604

Rlo

0.165 78
0.15099
0.16603
0.169 33
0.165 98
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0.0 TABLE II. Binding energies (a.u.} and oscillator strengths of
the m =0, odd-parity bound states.

-0 I—
Eo —Ew

(o)

Present Ref. 10 Length Velocity Ref. 36
P -02—

—0.4 0.6
I

I.O
I

I .4 I .8
E (a.U. )

I

2.2

0.297 1

0.097 72
0.047 12
0.027 61

0.297 7
0.096 85
0.046 90
0.027 52

0.664
0.067 6
0.018 9
0.007 91

0.679
0.058 7
0.016 1

0.006 71

0.687
0.057 8

FIG. 3. Single-channel quantum defect (m =0, even parity) is
shown as a smooth function of energy near the lowest ionization
threshold Eo ' ——1 a.u.

with the calculation of Refs. 10 and 36. While the agree-
ment is reasonably good, there is a noticeable discrepancy
between the length oscillator strengths and the velocity
values for all levels but the lowest. The origin of this
discrepancy is not fully understood. The oscillator-
strength sum, which should be unity, is found to be
gf~ ——0.954 (length), gf& ——0.950 (velocity). These
sums include the lowest seven discrete levels, an estimate
of the remaining discrete levels, and the continuum up to
E=2.4 a.u. The discrete spectrum contributes roughly
75% of this sum compared with 56.5% for hydrogen in
zero external field.

B. Two-channel regime

The energy range from E =2.4—4 a.u. , which contains
the first excited m =0 Landau threshold (n =1) at
Ei ——3 a.u. , can be treated as a two-channel problem.(0)

The 2/2 orthogonal matrix U„can be parametrized in
terms of a mixing angle (9; together with the eigenquan-
tum defects p2 and p~, these determine the reaction ma-
trix. The two dipole matrix elements d were calculated
in the dipole length approximation using (32) and in the
dipole velocity approximation using an analogous expres-

sion. These five smoothly varying short-range parameters
are shown as a function of energy in Figs. 5—7. The in-
creasing value of

~

8/m
~

implies a gradual increase in the
channel mixing as the energy increases from E =2.4 a.u.
toward the n =1 threshold. This onset of channel mixing
is more gradual than that observed in Ref. 26. It is best
reflected in the squared off-diagonal scattering matrix ele-
ment

~
Sot

~

=sin (28)sin [vr(pl —pz)],
which (for E & 3 a.u. ) can be interpreted as the probability
that an (m =0, odd-parity) electron incident in the lowest
Landau channel will emerge in the first excited channel.
Figures 5 and 6 show that

~
So&

~

increases from the
small value 0.004 at E =2.4 up to the non-negligible value
0.16 at E=3.2. Nonetheless, this implies a relatively
small channel mixing throughout this energy range, as ex-
pected because of the node at z =0 in the final state. In
simpler terms, the small mixing suggests that the
Schrodinger equation is nearly separable in cylindrical
coordinates, at least for m =0, odd-parity states at this
(and higher) magnetic field strengths.

The agreement of length and velocity dipole matrix ele-
ments in Fig. 7 provides some evidence that two Landau
channels adequately describe the final state. Still, the
10—15% discrepancy between the a=2 matrix elements
is most likely traceable to the omission of the n =3 Lan-
dau channel near z =0. The parameters of Figs. 5—7 per-
mit a calculation of differential oscillator-strength distri-
bution, through, e.g., Eqs. (30)—(40) of Ref. 26. The re-
sulting df/dE are shown in Fig. g with both the length

0.8—

0.0 I.O I .4 I.B
E (a.U. )

i a

O.O—

FICx. 4. Oscillator-strength distribution df/dE obtained
when the hydrogen ground state'is photoionized using photons
linearly polarized along the field axis at 8 =4.7& 10 G. These
are shown using both the length (1.) and velocity ( V) forms of
the dipole matrix element. While the curves are shown continu-
ously at E ~ 1 a.u. , in fact, the observed spectrum is then entire-
ly discrete, with oscillator strengths given in Table II.

l

2.6
l

2.8
E(a,u. )

I

3.0
l

3.2

FIG. 5. Two eigenquantum defects p are shown as a func-
tion of energy in the two-channel range near the first excited
Landau threshold (n =1, m =0, odd parity) E'i ' ——3 a.u. These
are the eigenphaseshifts of the reaction matrix, divided by m.
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0.00—
I

—0.02—

8
—0.04—

l.2—

1

(a)
LENGTH

—0.06—

2.4 5.02.6 2.8
E(a.u3

FIG. 6. Mixing angle 0/m for the final state is shown near
El ' ——3 a.u. This is the rotation angle needed to diagonalize the
symmetric 2)&2 reaction matrix. Notice the increasing impor-
tance of channel mixing as the threshold is approached from
below.
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and velocity results demonstrating the significant
enhancement of oscillator strength which is produced by
the autoionizing levels. These narrow states form a Ryd-
berg series converging on the n =1 threshold at E =3 a.u. ;
the first four states are shown in Fig. 8. Above threshold,
the oscillator strength becomes again a smooth continu-
urn, and photoelectrons having two possible speeds v, at

~

z
~

~ oo would be detected in an experiment. The data
of Figs. 5 and 6 imply that near threshold the slower pho-
toelectrons escape roughly four times as often as the faster
photoelectrons.

IV. CONCLUSIONS

The qualitative and quantitative aspects of hydrogen
photoionization in a strong magnetic field can clearly be
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FIG. 8. Total photoionization oscillator strength of hydrogen
at B =4.7)& 10 G is given as a function of energy near the first
excited Landau threshold E& ' ——3 a.u. Resonances form an in-
finite Rydberg series converging on this threshold, though only
the lowest four are shown. Oscillator strength has a finite value
at threshold and decreases slowly as the energy is increased fur-
ther. It is shown using (a) length and (b) velocity forms of the
dipole matrix element.
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FIG. 7. Dipole matrix elements d calculated using either
length (L) or velocity ( V) forms.

treated realistically by the approach outlined in Sec. II.
%Phile the calculation presented has neither attempted
high accuracy nor has it considered a range of magnetic
field strengths, it has overcome the main difficulties to be
encountered in such studies. A main conclusion reached
is that for 8 & 4.7&& 10 G, the coupling between cylindri-
cal channels is so small as to be perturbative, at least for
m =0 and odd parity. This is probably not true of the
m =0, even-parity channels. In this regard it may be in-
teresting to survey the photoionization cross section at
field strengths 10 to 100 times weaker, as the resonances
will be significantly broader as the channel mixing (i.e.,
nonseparability) increases. For these lower field strengths
another consequence of the increased channel interactions
will be strong-level perturbations, which should necessi-
tate a multichannel quantum-defect treatment even for the
calculation of bound states. In addition, the lower field
strengths are probably more relevant to astrophysical
problems than is the field B =4.7 & 10 G.

A second major result of the calculation is to provide
further evidence that in any multichannel calculation the
mixing with excited channels becomes important at con-
siderably lower energies than the actual location of the
first resonances in those channels. Comparison of Figs. 6
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and 8 shows the channel mixing begins to grow above
E =2.5 a.u. , though the lowest resonance lies at E =2.75
a.u. Nonetheless, the onset of channel mixing does occur
more smoothly as a function of energy here than was ob-
served in Ref. 26. The circumstances determining this as-
pect are not well understood and remain a topic for future
studies.
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