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Results of a nonperturbative investigation of the global behavior of quantum systems with time-
periodic Hamiltonians are presented. These include the proof of a theorem stating that such sys-

tems, if bounded and nonresonant, will reassemble themselves infinitely often in the course of time.
In order to illustrate the applicability of this result, an analytic study of a driven harmonic oscillator
is presented, together with computer simulations of quantum maps describing the dynamics of a
pulsed electron in a well and a periodically kicked rotor. A quantitative study of resonance excita-
tion also shows that in practical situations recurrence is pervasive. Several unique quantum effects
are analyzed, and their relevance to the classical limit is discussed. A formula is derived for re-
currence times, and computer experiments are performed to test its validity.

I. INTRODUCTION

An outstanding problem in the dynamics of quantum
systems is posed by the existence of nonintegrable classical
equations of motion. These equations, which in many in-
stances are known to produce chaotic wandering of trajec-
tories in some regions of phase space, have quantum coun-
terparts whose behavior is largely unknown. In particular,
when the Hamiltonian is time dependent and cannot be
treated by perturbation theory, determining the global
properties of the solutions of the corresponding
Schrodinger equation is quite forbidding, and answers to
simple questions such as energy growth or decay are very
hard to obtain. These questions are by no means purely
academic since a large amount of photochemistry research
depends on their resolution. ' Furthermore, recent ad-
vances in microelectronics are presenting challenging
problems as the mean free path of electrons inside very
small structures becomes larger than the size of the de-
vice. At a more fundamental level, there remains the old
question of finding the quantum behavior of classically
nonintegrable systems, Although for stationary Ham-
iltonians there exists a fairly large body of knowledge, the
situation in the time-dependent case is less clear and has
been the focus of recent activity.

This paper reports the results of a fairly extensive inves-
tigation of quantum dynamical systems with time-periodic
Hamiltonians without resorting to perturbative techniques.
In particular, it is proved that for such cases a bounded
quantum system with a discrete quasienergy spectrum will
reassemble itself infinitely often in the course of time.
Since the proof does not give an a priori prediction of the
nature of the quasienergy spectrum, computer experiments
are performed on a variety of quantum systems. All of
the problems treated here, which range from a simple
linear oscillator to the quantum version of the standard
map of classical stochasticity, show recurrent behavior, an
indication that the results of the theorem are widely ap-
plicable.

The paper consists of six sections and one appendix. In

Sec. II the recurrence theorem for quantum systems with
periodic time-dependent potentials is stated and proved.
Specific examples are used to illustrate the theorem in Sec.
III. Section IV discusses a number of special cases includ-
ing resonances, periodicities, and their relevance to the
classical limit. Section V gives an estimate of recurrence
times together with the results of computer measurements
which support the theoretical predictions, and in the final
section we make several concluding remarks. Some tech-
nical points used in the proof of the theorem are discussed
in the Appendix.

II. A RECURRENCE THEOREM

iAci(t) =H (t)a (t) (2.1)

and we can write

(2.2)

Consider any bounded quantum system described by a
Hamiltonian Ho that has a discrete spectrum, and subject-
ed to a nonresonant time-periodic potential V with
V(t)= V(t+T) for an arbitrary period T, and such that

~ ~
V~

~

(Ref. l2) is bounded. We will now prove that given
any initial configuration of the system, both the wave
function and the energy return arbitrarily close to their in-
itial values infinitely often. More generally, if we define
an almost-periodic function f(t) to be a continuous,
bounded function, such that for any e&0 there exists a
relatively dense set Ir, ] (Ref. 14) and, for each ~, in the
set, we have

~
f(t+r, ) f(t)

~

&e for al—l t, our theorem
states that both the wave function and the energy are
almost-periodic functions of time. '

We start by proving the almost-periodicity of the wave
function. Consider the time-dependent Schrodinger equa-
tion itic+/Bt=[Ho+ V(t)]%. Expanding the wave fun-
tion 4 in terms of the complete orthonormal set of eigen-
states of H&&, ju~(r)), as 4(r, t)=g &a (t)u (r), the
coefficients of a (t) make up a vector a (t) which satisfies
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where we have defined II+(t)ll—:f dr
I

qI(r, t)
I

. Fur-
thermore, if H(t) =H(t +T) the wave function satisfies a
Floquet theorem, i.e., a (t) is of the form

2 Ie I I la «+r) I' —la-«}I'I «/2
m=1

(2.9)

a (t) = g ak exp(iEkt Ifi)+k(t)
k=1

(2.3)

with 4k(t+T)=4k(t) and @J(t)@k(t)=5kk for all t
The set {Ekj is called the quasienergy spectrum. Writing
ak as ak ——rke " with rk and yk real, it follows from Eq.
(2.3) that

for all t. For this set of ~ we have from Eqs. {2.7)—{2.9)
that

I
a Hoa(t+r) a—Hoa(t)

I
is less than e for all t,

and so a~Hpa is almost periodic. Thus the energy E(t), a
sum of two almost-periodic functions, is also almost
periodic. ' This completes the proof of the theorem. Note
that these techniques can also be applied to show that the
expectation values of other operators are almost periodic
provided they are bounded.

EkNT
I
a (t +NT) —a (t)

I

=2 g rt, 1 —cos (2.4) III. ILI.USTRATIONS

for any integer N. Since the wave function is normalized,
we have gk irk= la(t)

I
=IIV(t)ll =1, an equality

which implies that given e& 0 there exists an integer n
(whose value depends on e) such that gk „+irk &e/8.
This then gives the following inequality:

EkNT 00

r„' 1 —cos &2 g rk&-
k=n+1 k=n+1

(2.5)

I I% (t +NT) —% (t)
I
I' & e (2.6)

for all times t and for a relatively dense set of times {NTj.
Therefore, the wave function is indeed almost periodic.

%e now show that the energy of the system also
recurs. ' The energy is given by E (t)
=('II

I
H(t)

I
ip) =atHoa+a Va. From the first part of

the theorem, we know that the vector a(t) is almost
periodic. Furthermore, V(t) is periodic and bounded so
that, by the results given in the Appendix, a (t}V(t)a (t) is
an almost-periodic scalar function. In particular, this
product is bounded.

Since we have excluded resonant growth of the energy,
E(t) is itself bounded, and so a ~Hpa must be bounded. If
we denote the mth eigenvalue of Hp by e then

a Hoa= g e la (t)l
m=1

(2.7)

Now choose an e & 0. Since the sum of Eq. (2.7) is bound-
ed, there is an integer M, independent of t, such that

We next consider the function f (x)
, [1—cos(EkxT/A)] which is always non-negative.

By our definition of nonresonance the eigenvalues Ek are
discrete so that this is a finite sum of periodic functions,
and so, for any positive 5, the set of integers {Ns j such
that

I f(x +Ns) —f (x)
I

&5 for all x, is relatively dense. '6

In particular, for 5=@/4 and x =0 there exists a relatively
dense set of integers {Nj such that f (N) & e/4 and since
each rk &1, we have gk irk[1 —cos(EkNTIR)]&el4
Combining this result with Eqs. (2.5}, (2.4), and (2.2) we
obtain

A. The driven harmonic oscillator

Consider a harmonic oscillator in a time-dependent elec-
tromagnetic field e(t). Its Hamiltonian is then given by
H =Hp+axe(t) with

Hp ——p /2m +me@ x /2 (3.1)

where o: is the polarizability of the oscillator, x its dis-
placement operator, m its mass, and p its momentum
operator. In this case the Ehrenfest theorem gives an ex-
act solution for the time dependence of the energy
E =(H).

Specifically, the time evolution of the energy is given by

dE/dt = (BH/dt ) =ae(t)(x ) (3.2)

d (x ) Idt = (p ) Im

d(p)ldt= —(VV) = —mco'(x) ae(t) —.
(3.3a)

(3.3b)

Since the derivative of the potential is linear in x, we can
combine Eqs. (3.3) to obtain

d'(x ) Idt'+co'(x ) = ae(t)lm—
whose solution is

(x ) =A (t)sintot+8 (t)costot

with

A (t}=—(a/mco) f e(t')cos(cot')dt'+Ci

(3.4)

(3.5)

(3.6a)

8 (t) = (a/m co) f e(t')sin(cot')dt'+ C2 (3.6b)

where Ci and C2 are constants determined by the initial
conditions. The time evolution of the energy can now be
obtained by integrating Eq. (3.2) and using Eqs. (3.5) and
(3.6) to give, after some algebra,

so it is sufficient to calculate the expectation value of the
position operator, (x). Using the Ehrenfest theorem, we
can write the following equations of motion for the expec-
tation values of x and p:

la (t) ' I&e4/.
m =M+1

(2.8)

The remaining portion of Eq. (2.7) is a finite sum of
almost-periodic functions and is, therefore, almost period-
ic.' In particular, there is a relatively dense set of ~ such
that

E =Ep+(a /mt')

with

+aC,f,{t)+aC,f,(t)

X f dt' f dt"{e(t')e(t")sin[co{t'—t")]j

(3.7)
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and

f, (t) —=f e(t')sin(cot')dt'

t
f2(t)—:f e(t')cos(cot')dt'

{3.8a)

(3.8b)

and

C(t) = f e(t')cos(cot')dt' (3.14c)
0

In particular, suppose that e(t) is an almost-periodic
function of time so that it can be written as

As a specific example, we consider a potential consist-
ing of a periodic string of 5 functions and derive an exact
expression for the evolution of the energy. For the case in
which

(3.9)

we can evaluate Eq. (3.7) at times t such that
nT & t & (n + 1)T by using the fact that

e(t)= g c e (3.15)

where c„=c'„and cu „=—cu„since e(t) is real. E(t)
will be almost periodic if each of the integrals in Eqs.
(3.14) is bounded. ' By substituting Eq. (3.15) in Eqs.
(3.14), a condition on the spectrum of e (t) can be obtained
that is sufficient to ensure that the energy will be almost
periodic, namely,

icokT i~T(1 eincuT)/(1 eiroT)

k=1
(3.10)

OO Cn

co„+co
(3.16a)

If at t =0 we have a state with (x ) = (p ) =0 (which in
turn implies Cl ——Cq ——0) then Eq. (3.7) becomes

a sin (ncoT/2)
(3.11)

2m sin2(co T/2)

and

& ooX X
n'~n

(3.16b)

co cos[(n + 1)coT/2]sin(ncoT/2)i(t)=-
sin(co T/2)

(3.12a)

co sin[(n +1)coT/2]sin{ncoT/2}
sin(co T /2)

which should be added to Eq. (3.11) as indicated by Eq.
(3.7) to obtain the true evolution of the energy. Note that
when coT «1 the energy grows linearly with n for very
short times rather than quadratically, a behavior which
may be wrongly identified with diffusive growth. '

More generally, we may ask what conditions on the
field e {t) will give an almost-periodic function for the en-
ergy E(t). For this discussion we partially integrate Eq.
(3.7) for E(t) to obtain

E =ED —(a /m)I(t)

+(a2/mco)e (t)[sin(cot)C(t) —cos(cot)S(t}]

+aCi [e (t)sin(cot) —coC(t)]

+aC~[e(t}cos(cot)—e (0)+coS(t)]

with

(3.13)

I (t):—f dt' f dt" Ie(t')e(t")cos[co(t' —t")]), (3.14a)

S(t)=f e{t')sin(cot')dt'—
0

{3.14b)

This function recurs periodically when coT is a rational
multiple of m. Otherwise we have more general almost-
periodic behavior so that the energy returns arbitrarily
close to its initial value infinitely often. %'e should also
remark that when the period between pulses is such that
~T « 1 the energy grows for short times as
E=E0+a n /2m.

The above analysis assumed that the initial state had
(x ) =(p) =0. For the general case in which this is not
true, the contributions of Eqs. (3.8) must be included.
With the use of Eq. (3.10) it is easy to show that

provided co does not equal any of the co„. Therefore, a
quantum harmonic oscillator acted upon by an almost-
periodic nonresonant driving force satisfying Eqs. (3.16)
will recur in time infinitely often. In this case almost-
periodic behavior is obtained for conditions more general
than those of the theorem of Sec. II. (If co does equal one
of the cu„, a resonant case, then the energy grows quadrati-
cally in time. )

B. Quantum maps

When the Schrodinger equation cannot be solved analyt-
ically, it is convenient to resort to quantum maps. These
are obtained by taking the time-dependent potential to be a
series of 5-function pulses, a process which leads to a re-
cursion relation which can then be iterated on a computer.
Although such a potential does not rigorously satisfy the
requirements of the theorem, we expect that the behavior
is similar to that of very narrow Gaussian pulses which,
being continuous, do satisfy the conditions of the theorem.
Furthermore, these maps allow us to investigate somewhat
more general time behavior. In particular, we have exam-
ined the case of a quasiperiodic series of pulses which sug-
gests that the results of the theorem hold more generally
than indicated by its hypotheses on the potential V(t).

Specifically, consider a system described by the Hamil-
tonian H0+ V(t) with

V(t) =U g 5(t/T n)— (3.17)

where v is an operator that is independent of time. For in-
stance v could be the position or momentum operator. A
quantum map is obtained by expanding the wave function
4 in terms of the complete orthonormal set of eigenstates
of Ho, [uk(r) ), as Ii(r, t) =gk, ak(t)uk(r). Between
kicks the ak's evolve as ak((N+1)T )—iEk Tiki=ak(KT+)e, where Ek is the kth eigenvalue of
H0. During the kick, the change in the wave function is
dominated by the 6 function which gives
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g(x, (%+1)T+)=P(x, (N+1)T )e
these results gives the map

Combining
00 —ir 2v/2An(N+1) =(4ia/m ) g A, (X)e

00

ak((%+1)T+)=g a~(NT+)e ' MkJ, (3.18a)
j=1

where the matrix element Mkj is given by

MkJ ——f uk (r)e '" "u/(r)dr (3.18b)

E(t)= g E„!a„(r)!' .
n=1

(3.19)

The normalization condition gp I!ak I
=1 can be

used to check the error introduced by this truncation.
Since the map of Eqs. (3.18) preserves the norm of the
vector a, truncating the map at a finite number of states
means that the norm at a given iteration will always be
less than or equal to the norm of the previous iteration.
Thus we examine the nondecreasing quantity

J
x=1—g ! a, (XT+)!' (3.20)

j=1

By truncating the sum of Eq. (3.18a) at j=J& 0o and
specifying values for the ak's at time t =0, a recurrence
relation is obtained that can be iterated numerically. The
results obtained from iterating the map can be used to
compute various expectation values. In particular, the en-
ergy at time t is given by

+ [( 1)r+neian 1]
Ill'

[r —(a n} ][—r —(a+n) ]

{3.23)

where a=kL/~, ~=m. AT/mL, and k=eeT/A. With
this map we used Eq. (3.19) to compute the energy as a
function of time for various values of the parameters u
and ~. In the case for which kL =3.5 and ~=1.432, Fig.
1 shows the expectation value of the energy in units of the
ground-state energy Eg m fP/2——mL as a function of the
number of pulses applied to the particle. Initially the sys-
tern was in the ground state. As can be seen, the energy is
both bounded and returns close to its initial value very
often.

We have also examined the case in which the strength
of the 5-function pulses is modulated by a quasiperiodic
function, with the time between pulses held constant.
This is illustrated in Fig. 2 which plots the energy as a
function of time for the particle in an infinite square well
with quasiperiodically modulated kicks, as shown in the
insert. Here ~=1.639 1153 and the system was initially in
the ground state. The value of kL used for the nth kick
was kL =1.2949[cos(n)+cos(2'/ n)]. The normalization

after every iteration and use b,„, the largest value ob-
tained during the run, as a check on the truncation error.
A small value of 6,„ indicates that enough states were re-
tained after the truncation to accurately compute the
system's time evolution.

In the remainder of this section we illustrate the
rigorous result of the recurrence theorem with a set of ex-
amples using these quantum maps.

C. A pulsed electron in a well

The second system that we studied corresponds to the
dynamics of a bounded electron in a pulsed field. In par-
ticular, consider an electron in an infinite square-well po-
tential of length L which is acted upon by a set of elec-
tromagnetic pulses of strength e. The Hamiltonian of the
system is then given by
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where m is the electron mass, e its charge, and p its
momentum.

To study the behavior of this system, we expand the
wave function in terms of the eigenstates of Ho, i.e., we
write 0

0

s

I sl

10 000

P(x, t)=(2/L)'~ g A„(t)si (nor /Lx)
n=1

(3.22)

with the nth eigenvalue being En =p ~ A /2mL . Con-
structing a quantum map as described by Eqs. (3.18) re-
lates the A„'s just after the (TV+1)st kick to the values
just after the Nth kick:

FIG. 1. Expectation value of the energy in units of the
ground-state energy Eg ——m A /2mL as a function of the num-
ber of pulses applied to the particle in an infinite square well.
Initially the system was in the ground state. Parameters of the
kicking potential were kL=3.5 and ~=1.432. Normalization
was checked to within 10 ' accuracy.
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'Jl„, !tttI II
)

where 0 is the angle, P~ is the angular momentum, and I
is the moment of inertia. Following the technique o
Casati et a ., weC

'
t l we expand 4i' in terms of the eigenstates of

Hp Ps——/2I as %(B,t) =(2m) ' g„a„(t)e'" to obtatn
the map

J&

II

4—
E/E

3—

I I

8000 10 000 12 000
I

2000

was cece oh k d to within 3X10 accuracy. The insert
os 2' n for theshows the modulating function cos(n)+cos(2 n or t e

first 50 kicks. Because the system shows recurrent
behavior, the experiment suggests that the conditions o
the theorem could be relaxed to include quasiperiodic po-
tentials.

1' I

0 4000 6000
n

FIG. 2. Expectation value of the energy in units onits of the

f 1 a lied to the particle in an infinite square well for
quasiperiodically modulated kicks. System had &=1.
and was mitra y in e gr

' '
ll

'
th round state. Value of kL used for the

nth kick was kL=1 2949[cos.(n)+cos(2'i n)]. Normalization
was checked to within 3&(10 accuracy. Inset: Modulating
function cos(n +cos( ) + (2' n ) as a function of time for the first 50
kicks.

x„+,——x„—(r/2m )sin(2my„)

yn+1 yn ++n+1

(3.26a)

(3.26b)

where x„=2~P~T/I and y„=O/2~ evaluated at time
r =nT, and r =(ropT) . This map was iterated 20000
times to remove transients and then the next 8192 values
of x with r =0.85 were used to compute the spectrum.
The initial conditions were chosen so as to produce both a
Komolgorov-Arnold-Moser (KAM) surface (xp =0.472,

=0.378), which is an example of almost-periodic
e av', ' ' =0.9 =0.5).behavior, and bounded chaotic motion (x0 ——. , yo ——

80—

a„(t +T+)= g a„(t)b„„(k)e
r =—ot)

h re k =ropIT/A r=AT/I, and b, (k)=i'J, (k) with J;
as the ordinary Bessel function of the first kind and order
s. Using this map we have computed the energy
F-(t)=g„" „(n /2I)R Ia„(t)

I
for several values of k

and ~ while checking the normalization condition

g I
a„

I

=1 to 16 digits at every iteration. Figure 3
shows the time evolution of the energy for the case where
k =2.871, ~=2.532, and the system was initially in the
ground state. Once again, and in analogy with the prob-
lem of the electron in the quantum well, we observe that
the excursions in the energy are bounded and recur many
times.

ninFi . 3Since a plot of the energy versus time as shown in ig.
does not distinguish between almost-periodic behavior and
the bounded chaos common to classical chaotic systems
below the stochasticity limit, we computed the power
spectrum for these energy values. This power spectrum
was then compared with the corresponding spectrum for
the classical kicked rotor displaying both quasiperiodic
and bounded chaotic motion. Specifically, the classical
behavior of the Hamiltonian of Eq. (3.24) is given by the
map

D. A periodically kicked quantum rotor

H =Pe/2I rppIcos(B) g 5(t/T n)— —(3.24)

The last problem that we will discuss, the quantum ver-
sion of a periodically kicked rotor, still poses many intri-
guing ques ions ont on the issue of quantum chaotic behavior.
Its classical counterpart is one of the paradigms of chaotic
behavior in nondissipative dynamical systems and as such
it has been thoroughly studied. ' Therefore, the quantum
rotor is a testing ground for ideas on quantum stochastici-
ty and on the issue of the classical limit of nonintegrable
systems.

The Hamiltonian for the periodically kicked rotor is

0
15 000 20 000

I I

5000 10 000

FIG. 3. Expectation value of the energy in units of A /I as a
function of the number of pulses applied to the quantum rotor.
Initially the system was in the ground state. Parameters used
were k =2.871 and ~=2.532. A total of 201 states were used
and normalization was checked to within 10 ' accuracy.
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The resulting power spectra are plotted in Fig. 4, where we
show them for (a) the KAM surface, (b) classical bounded
chaos, and (c) the quantum case of Fig. 3. As the figure
clearly shows, the quantum case corresponds to an
almost-periodic function and not random excursions
among a finite set of energy levels.

This behavior for the energy indicates that the periodi-
cally kicked rotor might satisfy the conditions of our
theorem and is therefore not chaotic. (Note that these re-
sults were obtained for parameter values such that k~& 1,
a situation which in the classical problem leads to erratic
wandering in phase space. } Indeed, recent work connect-
ing the periodically kicked rotor to the localization prob-
lem indicates that its quasienergy spectrum is discrete.

for a particular value of the kicking period, namely,
v=2~, the systems that we studied exhibit simple periodic
behavior as a function of time. Specifically, no matter
how large the kicking potential is, the system returns to its
initial state after every other kick.

This behavior can be easily seen for the rotor described
by the map of Eq. (3.25). For r=2~ this map becomes

A„((N + 1)T)= g A, (NT)i " "J„„(k)(—1)" (4.1)

—in 2(2m)/2since e '" ' '~ =(—1)". Iterating the map twice gives

A„((%+2)T)= g A;(NT)i" "(—1)"
Ir = —oo

IV. PERIODICITIES AND RESONANCES

We now consider a number of special cases of the quan-
turn maps studied in the previous section. First, note that

X g J, „(k)J„„(k)(—1)' .

(4.2)

Setting s =r' —r in the r sum gives

J,(k)J„„+,(k)( —1)" (4.3)

which equals ( —1)" g, J,(k)J&„„i+,(k). Finally,
we use the identity

J„(u+U)= g Jl, (u)J„+g(U)
S = —ao

to obtain

(4.4)

A„((N+2)T)= g A„(PENT)i" "J„„(0)
tb)

=A„(XT) (4.5)

)c)

I,
0 7r /T

FIG. 4. Power spectra for the following: (a) a quasiperiodic
KAM surface of the classical standard map, (b) bounded chaotic
motion for the standard map at r =0.85, and (c) the quantum
system of Fig. 3. In each case 8192 iterates were used for the
computation and the dc component was removed from the spec-
trum. Angular frequency varies from 0 to m/T, where T is the
time between kicks.

Thus we see that any initial state will repeat after every
other kick in spite of the fact that very many states are
mixed in between as can be seen from Eq. (4.1). Note that
this holds no matter how large the strength of the kicking
potential is, i.e., for all values of k. This behavior is also
seen for the particle in the infinite square well and the
periodically driven harmonic oscillator.

Another unique quantum effect is that the maps we
studied are periodic in the parameter ~. In particular, the
behavior for a given value of k and ~ is identical to that
for k and ~+4m even though the corresponding classical
parameter (the product of k and r) is quite different. So,
for instance, a system with k =2, ~=38, and k~=76,
which is much greater than one, has the same behavior as
a system with k =2, v=38 —12m=0. 30, and k~=0.60,
which is less than one. This implies that the value of the
classical parameter, k~, does not uniquely determine the
quantum dynamics of the system and, in particular, there
is no sharp distinction in the behavior of systems with k~
greater than one and those where it is less than one. This
observation is particularly relevant to several analyses of
the classical limit of the quantum rotor which have been
published, and which seem to have overlooked this effect.

Finally, we should mention that an interesting problem
is posed by the existence of resonances, i.e., special values
of the parameters that give an unbounded growth in the
energy. For the particular case of the periodically kicked
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rotor, Izraelev and Shepelyanskii have shown that at reso-
nance, which occurs whenever ~ is a rational multiple of
~, the quasienergy spectrum is continuous and the energy
grows quadratically in time, a situation which does not
satisfy the conditions of our theorem.

Nevertheless, numerical experiments indicate that the
existence of this set of resonances (which is of measure
zero), will not, in practice, prevent the system from
reassembling itself infinitely often. This is because minute
departures from the numerical values which determine
resonance will eventually produce a dephasing of the wave
function and set in motion the mechanism of recurrence.

These effects are illustrated in Figs. 5 and 6, where we
display the time evolution of the energy of the rotor for
parameter values which are near resonance, namely,
k =0.5 and ~=8m/5+5, where 6 is small. Each of the
curves in the two figures corresponds to a different value
of 5. Although the energy initially grows almost quadrati-
cally, it eventually deviates from this resonant growth
after a time that depends on how close to resonance the
system is. This indicates that a high-precision specifica-
tion of the parameters is needed to observe these reso-
nances for fairly long times. Furthermore, we observe
that the times required to depart from the initial quadratic
growth differ depending on whether one is below or above
resonance. In particular, defining n to be the number of
iterations required to reach the first maximum in the ener-
gy we find a power-law behavior given by

2.12—
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FIG. 6. A log-log plot of the energy in units of A /I as a
function of time for the quantum rotor slightly above a reso-
nance starting in the ground state. Parameters are k =0.5 and
v=8~/5+5 with the following choices of 5: {a) 8.0)&10, {b)
1.5&(10, {c) 8.0&10, and {d) 3.0X10 . Figure represents
10000 pulses and the plotted energy values range from 0.05 to
131.5. Normalization was checked to within 10 ' accuracy for
each of the four curves.

1.85
n =as—b (4.6)

From the data shown in Fig. 5 we have determined that
a =3.2 and b =0.55, whereas above resonance Fig. 6 gives
a =8.9 and b =0.48.

The above remarks are important in actual experimental
situations since the observation of resonant energy growth
in a quantum system subjected to laser radiation would re-
quire extremely good frequency stability. Notice that the
values of 6 used in producing the data of Figs. 5 and 6 im-
ply a frequency stability of about one part in a million.

V. RECURRENCE TIMES

—1.300
' gio"

FICx. 5. A log-log plot of the energy in units of A /I as a
function of time for the quantum rotor slightly below a reso-
nance starting in the ground state. Parameters are k =0.5 and
~=8m/5 —5 with the following choices of 6: (a) 8.0/10, {b)
1.5)&10 ', {c) 8.0X10, and {d) 3.0&&10 . Figure represents
10000 pulses and the plotted energy values range from 0.05 to
70. Normalization was checked to within 10 '5 accuracy for
each of the four curves.

h(t) = min
I

Ie''P'"%(t) —%(0)
I I

0&y(t) &2m.

=m»
I
e'+'"a(t) —a(O)

I

' (5.1)

and give the derivation for a system starting in a single

It is possible to make a rough estimate of the recurrence
time for a kicked system described by HO+V(t) by as-
suming that the state vector a(t) moves uniformly among
X eigenstates of Ho. In this section we derive such an
estimate and discuss its applicability to the systems we
have considered in this paper. Here X is the number of
states that are significantly excited by the action of V(t).
We consider the recurrence of the wave function, while
noting that the methods developed here can also be ap-
plied to other quantities of interest. Specifically, we ex-
amine the behavior of
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eigenstate of Ho, though it can be generalized to other ini-
tial conditions.

Let a (t)=r (t)exp[ie (t)], where r = ~a
~

and
0&e &2m and suppose that a (0)=5k, i.e., the system
starts in the kth eigenstate of Ho. Then Eq. (5.1) becomes

4.5

h(t) =2[1—rk(t)] (5.2)

since g /

r
/

=/ fV// =1.
Now we assume that the wave function moves uniform-

ly among % states so that the vector (r, , . . . , r~) moves
uniformly on the first "quadrant" of an X-dimensional
unit sphere. If each kick moves the state vector randomly
around the sphere, the average number of kicks to a re-
currence within e, n„„will be the reciprocal of f, the
fraction of time spent in states with b, &e. By Eq. (S.2)
this constraint becomes rk & 1 —e/2 and f is the ratio of
the area on the sphere satisfying this constraint to the to-
tal surface area of the first quadrant of the N-dimensional
unit sphere.

By introducing N-dimensional polar coordinates
0~, . . . , 8~ ~ with rk as the main axis so that rk ——cos(8i ),
the total surface area of the first quadrant is

n/2
S = de~ sin L9&

0
m/2 m/2

X f d82sin 82. . . f d8lv (5.3)

m/2 m'/2

X f d82 sin 82 f d8~ (5.4)

For the constrained area we must have rk & 1 —e/2 or
sin (8l ) & e(1 —e). Assuming that e « 1, this becomes

simply 0& & e' and the constrained area is

S,=f d8l8l

Ql'O

t
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}
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FIG. 7. A log-log plot of the average recurrence times mea-
sured for various values of e between 0.0117 and 0.06 for the
quantum rotor with k =1.5, ~=2.5, and starting in the ground
state. Error bars indicate the variance in the mean values es-
timated from the standard deviation of the recurrence times.
Each point represents the average of between 10 (for the smallest
e values) and 400 (for the largest) recurrences measured over
250000 iterations of the map. A weighted least-squares fit to
the data is also shown. We used 101 states and the norm
remained equal to one to within 10 ' accuracy.

Thus we get from Eqs. (5.3) and (5.4) that

S X —1 ~'"r((X—1)y2)
g &(x —l)/2 21 (~y2)

(5.5)

where I (x) is the gamma function. Note that this esti-
mate is independent of the initial state k. When X is large
we can use Stirling's formula to get

(~X/2)'/2
(N —1)/2 (5.6)

For example, when N =7, Eq. (S.S) gives
n„,=16/5e =3200 for @=0.1. It should be pointed out
that even for this small a value for N, the approximation
of Eq. (5.6) gives essentially the same result, e.g., 3300 for
a=0. 1.

We have examined the recurrence time as a function of
e numerically for the quantum rotor starting in the
ground state and have found that it does obey a power-law
relation. Figure 7 is a log-log plot of the average re-
currence times for various values of e as well as a weight-
ed least-squares fit. The indicated error bars are based on
the variance of the measured recurrence times for each
value of e. These variances were comparable to the aver-
age value, as would be expected for a uniform distribution.
Thus a measurement over many recurrences was necessary
to give accurate measurements of their average values.
The fit gives n„,=ac with a=0.23 and b = —2.54.
Based on Eq. (5.6), this exponent yields a value for X of

about 6 and so one would expect the coefficient a to be
about 3. The measured value of a is much smaller. This
is because the probability for the system to visit the vari-
ous states is not uniform but instead peaked in lower states
so that the system returns close to the ground state more
frequently than would be expected from a uniform distri-
bution.

It is also possible to use this technique to estimate re-
currence times for other quantities such as

~ ~

%(t)—%(0)
~ ~

or the energy E(t). A similar power-law behavior is ob-
tained. Note that these recurrence times are not the same
as the e almost-periods discussed in the derivation of the
theorem. For instance, in order for ~ to be an e alrnost-
period of 4, the quantity ~~%(t+r) —%(t)~

~

must be less
than e for all times t and not just for t =0.

Although we cannot determine an appropriate value for
a priori for a given kicking potential, especially since

small changes in parameter values can cause a consider-
able change in the recurrence time due to resonances, the
number of states significantly involved can usually be
determined from the numerical data long before the sys-
tem recurs. So this gives an estimate for the average re-
currence time without the need to carry out lengthy com-
putations to actually measure the recurrences.
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A further example is given by the recurrence of the en-
ergy for the driven harmonic oscillator discussed in Sec.
III. For the case in which the initial state has
(x ) = (p ) =0, the evolution of the energy is given by Eq.
(3.11) so that

b E„=E (n T) E(—0)=A sin (n r)

where A =a /(2m sin ~) and ~=coT/2. When ~ is a
noninteger rational multiple of m, i.e., when the kicking
period T is commensurate with the natural period of the
oscillator, this gives periodic behavior for the energy. An
irrational value of ~/m, on the other hand, produces
almost-periodic behavior for which an average recurrence
time can be computed as follows. For

~

bE„~ to be less
than some small e&0, it is necessary that n~ be near a
multiple of m. Specifically, let 5=(e./~A

~

)' which we
take to be much less than 1. Then the condition

~
bE„~ & e requires that nr be within 6 of an integer mul-

tiple of m. When ~/m. is irrational, on the average one in-
teger in every m/25 will be in an allowed interval
(km. —5,km+6) for some integer k. Thus the averge re-
currence time for the energy will be

n„,=rr/25=rr ~A
~

'~ /2e'~

which becomes exact in the limit that e/A goes to zero.

VI. CONCLUSION

Throughout this study we have seen that recurrence is a
pervasive phenomenon in bounded quantum systems acted
upon by periodic time-dependent potentials. This is to be
contrasted with corresponding classical systems that show
mixing behavior, i.e., asymptotic decay of correlation
functions. This difference in behavior cannot be attribut-
ed solely to the finite value of Planck's constant, which
leads to a coarse grained phase space. Recurrence requires
more, namely, a subtle cancellation among the phases of a
wave function that has spread among an infinity of energy
levels. As we have shown, these cancellations appear to
take place even in systems having a dense set of reso-
nances.

Previous studies of the quantum rotor have claimed the
existence of quantum chaos by observing initial linear
growth of the energy. However, the almost-periodic
behavior of the energy which we have shown to exist in
these problems prevents one from making definite state-
ments about its long-time monotonic growth or decay.
Since the choice of initial condition is completely arbi-
trary, the system could start in a state for which the ener-

gy initially decreases and then oscillates instead of grow-
ing linearly in time. Therefore, little can be deduced from
the short-time behavior of such systems.

We conclude by mentioning some unsolved problems.
The first concerns the nature of the quasienergy spectrum
of bounded quantum systems. At present there is no sim-
ple analytic criterion which can be used to decide whether
a general potential will have a discrete or continuous
quasienergy spectrum. This would certainly be useful for
problems which cannot be simply expressed in terms of
quantum maps. Second, there remains the old problem of
obtaining mixing behavior in the classical limit of a re-
current quantum system. Although, in principle, one
could start with a narrow wave packet, take first the limit

A~O and then let the time run to infinity, this prescrip-
tion is hard to implement starting from a quantum map.
For example, the 4m periodicity in ~ that we encountered
in Sec. IV implies a serious ambiguity in finding the corre-
sponding classical system for the quantum rotor. A possi-
ble way out of this dilemma is to find simple equations for
the expectation values of observables using the quantum
maps, but we have found them hard to express in closed
form. Finally, we should mention the problem of damp-
ing, which plays an important role in realistic physical
systems. Although it can be studied numerically, it is dif-
ficult at present to draw conclusions about general
behavior from specific examples.
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APPENDIX: SOME PROPERTIES
OF ALMOST-PERIODIC VECTORS

so that

~

a(t+r) —a(t)
~

&
~

x(t +r) —x(t)
~

X

+M
( y(t+r) —y(t)

(
{A1)

Now pick any e&0. Since x and y are ap, the sets
5„=[r such that

~
x(t+r) —x(t)

~

&E/2N for all t j and
S„=[rsuch that

~
y(t+r) —y(t)

~

&e/2M for all tI are
relatively dense. It can be shown that their intersection is
also relatively dense' and for any ~US~ flS„, we have
from Eq. (Al) that

~

a(t+r) a(t)
~

&e for all t. T—hus
a(t) is indeed almost periodic.

Lemma 2. If A(t) is a periodic, bounded matrix and
x( t) is an almost-periodic vector, then the vector
y(t) =A(t)x(t) is almost periodic.

Proof. Let A have period T&0, i.e, A(t+T)=A(t) for
each t. Then for any integer N,

y(t +AT) y(t) =A (t) [ x (t +AT) —x(t)]—
Now let M be a bound on A, i.e.,

~
~A(t)

~ ~

&M & ~ for all

The properties of almost-periodic vectors in a Hilbert
space were used in the proof given in Sec. II. We establish
the necessary lemmas in this appendix.

First, a vector function x(t) is almost periodic (ap) pro-
vided it is continuous and such that for any e &0, the set
of r such that

~

x(t+r) —x(t)
~

&e for all t is relatively
dense. ' Each such ~ is called an "e almost-period" of
x(t). Such a function is bounded if there is a constant M
such that

i
x(t)

i
&M & oo for all t.

Lemma 2. If x(t) and y(t) are bounded almost-periodic
vectors, then their scalar product o.'(t) = x(t).y{t) is an
almost-periodic scalar function.

Proof. Let M and X be the finite bounds on x(t) and
y(t), respectively. For any w, we have

a(t +r) —a(t) = [x(t +r) —x(t)] y(t +r)
—x(t) [y(t+r) —y(t)]
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t. ' Then we have

~

y(t+NT) —y(t)
~

&M
~
x(t+NT) x(t—)

~

. (A2)

The question now is whether there is a relatively dense
set of integer multiples of T for which

~

x(t +NT) —x(t)
~

can be made arbitrarily small for all t. To see that this is
indeed the case, let f (s) = x(sT). Then f (s) is almost
periodic because given any 5& 0 there is a relatively dense
set of r such that sup

~

x(t +r) —x(t)
~

& 5, and hence,

sup
~ f (s +r/T) f(s)—

~

=sup
~

x(t +r) —x(t)
~

&5

Thus Ir/TI forms a relatively dense set of 5 almost-

periods for f(s).
It can be shown' that for any 5&0, the set of 6

almost-periods that are integers is also relatively dense,
i.e., there is a relatively dense set of integers INsI such
that sup

~
f(s+Ns) f(s)—

~

&5. For this set of integers
we also have

sup
i
x(t+NsT) —x(t)

i
=sup

i
f(s+Ns) —f (s)

i
&5

Finally, choosing 5&@/M gives a relatively dense set of
integers such that

~
y(t+NT) y(t)

~

—&M(e/M)=c for
all t. Thus y(t) is an almost-periodic vector.
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