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Relativistic spin-dependent Compton scattering from electrons
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The differential cross section for photon scattering from relativistic polarized free electrons in
motion is derived. The calculation extends early results from electrons at rest. It is argued that the
present derivation is required for use in bound-state spin-dependent Compton scattering from polar-
ized electrons. The results provide an alternative check on recent work carried out using a quasi-
relativistic Hamiltonian.

Inelastic Compton scattering provides a useful method
for probing the properties of particles in target materi-
als. ' Theoretical studies have been made within the
framework of the so-called impulse approximation, in
which one considers photon scattering from a stationary
packet of plane electron waves, the packet being charac-
terized by a distribution function which entails the
momentum (and spin, if necessary) of the electrons in the
target. It is necessary, however, that the photon free-
electron cross section be known. To be specific, if we con-
sider the scattering of polarized photons from spin-
polarized electrons present, for example, in a ferromagnet-
ic target, then knowledge of the free cross section in terms
of the electron momentum and spin and the photon wave
vector and polarization is required. It is to this end that
we present here an expression for this cross section.

In a recent publication on inelastic Compton scattering
we proceeded by another method, utilizing a quasirela-
tivistic Hamiltonian. In that paper corrections to the
cross section which involved the ratios (fm/mc ) and
(p/mc) were retained. Since that calculation was extreme-
ly complex we decided to ascertain its validity by utilizing
the impulse approximation together with the completely
relativistic Compton cross section. The present results

confirm our earlier calculation.
In this paper we first derive the Compton cross section

for the scattering of a photon from a free electron in
motion. Since we are interested in polarization effects,
only the spin-dependent part of the cross section is given
in detail. Proceeding to the electron rest frame we show
that our results are consistent with those given earlier.
However, the greater generality of our result (scattering of
transversely polarized photons from moving electrons) al-
lows us to compare our calculation in the small (but
nonzero) momentum limit with that of our earlier work,

'
and thus to confirm by a different method the conclusions
previously reached. We argue that our general result for
spin-dependent scattering from electrons in motion cannot
be obtained from the cross section from electrons at rest
by utilizing Lorentz and gauge transformations, unless the
rest cross section is explicitly and uniquely expressed in
terms of the photon polarization vectors. Since previous
work is not presented in this form, it was necessary to car-
ry out an independent calculation. For completeness, in an
Appendix, we briefly discuss some aspects of the quasi-
relativistic approach carried out in Ref. 7.

The Compton amplitude resulting from second-order
interactions is
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Here p, s, k, e refer, respectively, to the initial electron four-momentum and spin and the initial photon four-momentum
and polarization. ' The primed quantities refer to final electron and photon.

The resulting differential scattering cross section, following the standard procedure, has the form
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Using the properties of y matrices and the Dirac spinors, together with the mass-shell conditions, we write (2) in a more
convenient form as
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ince no information concerning either the final electron spin or the final photon polarization is sought, the sum over
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these final states must be carried out. The electron spin sum is most conveniently carried out by introducing a spin pro-
jection operator for the initial electron. Thus we find
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Finally, we carry out the sum on final photon polarization using the gauge invariance property of the transition ampli-
tude Note also that the summing process allows for any convenient basis satisfying transversality. In particular, we
will choose e' to be real. The sum then gives
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We can decompose N as %=TO+X, where
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is the spin-independent part of X, and
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is the spin-dependent part. The cross section, resulting from Xo, for photon scattering from an unpolarized moving elec-
tron has been given by Jauch and Rohrlich, " and we will, therefore, consider only the initial electron spin-dependent
part, X, in the following discussion.

The equation for X, presents traces containing up to nine y matrices and in addition the y5 matrix is always present.
The calculation involves straightforward algebra. At the end of this lengthy tedious work, we employ the four-
momentu~ constraints p'=p +k —k' to express %, in terms of p, k, and k' as
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Accordingly, the spin-dependent cross section can now be written as
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where K=k.p and K'= k'.p.
Integration on p' is trivial, and we obtain
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and ensures a positive energy final electron. On the other
hand, the 5 function representing the requirement of
overall energy conservation entails the "Cornpton condi-
tion" for scattering.

Before we consider some limiting cases of this cross sec-
tion and compare them with existing calculations, let us
mention that the spin-independent part of the cross sec-
tion which results from Xo is given by"
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with p'=p+k —k'. The differential cross section can be
obtained from Eqs. (10)—(12) by adding the spin-
independent and spin-dependent parts, namely
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The resulting expression could then be integrated over the
variables and under the limits governed by the particular
experiment to be carried out. For example, if the final
photon energy is not measured then the above is integrat-
ed over all values of k' and the Dirac 5 function disap-
pears. On the other hand, in experiments on bound-state
Compton scattering, it is the double differential cross sec-
tion integrated over the momentum distribution of bound
electrons which is of interest. ' For that case, the
energy-conserving 5 function is utilized to partially carry
out the three-dimensional integration on the momentum
p. The remaining expression generally contains a two-
dimensional integration in the plane perpendicular to the
photon momentum transfer. This expression is a Comp-
ton profile function.

In the laboratory system, i.e., in the rest frame of initial
electron, the differential cross section simplifies to
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Here we have chosen the incident polarization to be e+ (x+iy )/v——2, the plus and minus signs respectively designating

right and left circular polarization. Also the incident propagation direction k is along the z axis whereas the final pho-

ton has k'=( —sinBx+cosBz ). We find that (14) agrees with the results found many years ago.
On the other hand, (10) is exact and it allows us to correct (14) to include terms that are linear in the electron momen-

tum. When this is done the differential cross section becomes
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where ( )~ designates the low-momentum approximation.
This result confirms the one obtained by considering the spin-dependent Compton scattering in quasirelativistic quan-

tum electrodynamics, where the usual interaction Hamiltonian is expanded to the appropriate order (see Appendix A).
One might think that cross-section results already appearing in the literature for electrons at rest could be utilized to

determine the more general and required result for the scattering from electrons in motion. In Appendix B, we show
that this is the case for the results of scattering from unpolarized electrons, but for the polarized electrons the expression
given in the literature [e.g., our Eq. (14)] cannot be readily generalized.

In summary, Eq. (10) provides a relativistic expression for the spin-dependent part of the cross section for scattering a
polarized photon off a polarized electron in motion. In the final state only the photon energy and scattering angle are
detected. Using this result we can obtain an approximate expression for the scattering cross section from bound elec-
trons by using the impulse approximation together with a momentum distribution determined by the electron wave func-
tion. Our expression can most logically be considered as a generalization of Ribberfors s results for unpolarized scatter-
ing cross sections. ' Our results provide a confirmation of earlier work based on the Hamiltonian given in the Appendix
A.
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APPENDIX A

In Ref. 7 we carried out the calculation of spin-dependent Compton scattering from bound electrons using a quasirela-
tivistic Hamiltonian. This Hamiltonian was given by
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We refer the reader to Ref. 13 for a discussion of the
method used to derive (Al). This is based on a sequence
of Foldy-Wouthuysen-type transformations of the rela-
tivistic quantum electrodynamic Hamiltonian.

We carried out these transformations and obtained Eq.
(Al). This result differs from a corresponding expression
of Ref. 13 in several respects: (1) It is more general since
we have retained all terms quadratic in the radiation field
and hence it is appropriate for use in Compton scattering.
In Ref. 13 the author was primarily interested in radiative
decays with the emission of a photon of frequency co.

Thus while we retain such forms as A and B these were

replaced by iroA and icoB in Ref. 13. (2) In the electron-
electron term of (Al) our expressions for the Darwin term

and the spin-orbit term are twice as large. This affects the
last two terms of Eq. (10) of Ref. 13 as well as Eq. (14).
Lin has confirmed the existence of this numerical error in

Ref. 13 in a recently published erratum.

APPENDIX 8

Given a cross section in the electron rest frame for the
Compton scattering of transversely polarized photons, one
can always Lorentz transform that expression to boost the
linear momentum of the electron. However, in the new
coordinate system, the transformed polarization vectors
e,e' are no longer transverse. The dependence of the cross
section on the initial electron momentum and on the phys-
ical (transverse) polarization vectors in this new frame
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could, however, be obtained by carrying out a gauge
transformation. Let e,e' be the transverse polarization
vectors in the new frame. Consider the transformations,

and (81)

and
I
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Thus to recover the dependence of the cross section on the

ep =Ep+kpA

where k and k' are the four momenta of the photons. The
gauge choice of transverse photons in the electron rest
frame restricts A and A' because p.e =p e'=0 must be sa-
tisfied. Thus we readily find that
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physical photon polarization vectors e, e the prescription
is that we have to replace the polarizations e,e' by using
Eq. (82).

However, for this prescription to be useful, we must
have exact knowledge of the functional dependence on the
polarization vectors of the rest frame cross section. For
instance, the Klein-Nishina formula' for the scattering
cross section from unpolarized electrons at rest is
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where the subscript 0 means evaluation in the electron rest
frame.

Terms of the type p e or p.e' do not appear because of
the transversality in the electron rest frame. Of course, in
an arbitrary frame e and e' are replaced by e and e' and
these do not represent transverse photon polarizations. To
recover the dependence on the physical polarization vec-
tors, we transform (83) to an arbitrary frame and then use
(82) to obtain
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This is exactly the result given by Jauch and Rohrlich, "who carry out the algebra directly in a frame of reference in
which the initial electron has a nonvanishing linear momentum.

Turning now to the spin-dependent cross section, as pointed out earlier, Ref. 8 does not explicitly provide the depen-
dence on the photon polarization. Hence one cannot uniquely transform the result [see Eq. (14) of this paper] to recover
the polarization dependence when the initial electron is in motion. We can easily show, however, that if the rest frame
cross section is in the desired form we can generalize the result to an arbitrary frame. To show this consider Eq. (8) in
the initial rest frame where p.e=O. Under a Lorentz transformation, N, would have the same form but the polarization
vector is now replaced by e, which will not be transverse. Hence we find
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Again replace e according to Eq. (82) in order to recover
the dependence on the transverse polarization vector e in
the new coordinate system (where the initial electron has
four-momentum p). When Eq. (82) is used in Eq. (85),
only the term k'. e changes form under the replacement of
e. All other polarization terms can be obtained by merely
replacing e by e since the gauge terms do not contribute as
a consequence of the antisyrnmetry of the Levi-Civita
symbols. The required term is

k'.e 1, kp. e k'.e k'-kp -ek'-
k' p k'p p k k'p k'pp k

Using the Compton condition p (k —k')=k. k' this can
now be written as
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+p E

1

k'p

thus recovering Eq. (8) for the general case in which p e is
nonzero.
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