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Analysis of proton-He resonances in very-low-energy collisions
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Energy dependence of the H -He differential cross section is analyzed for a fixed scatter-
ing angle. The energy range is between 0.1 and 0.7 eV. Rather complex resonance structure
is found in which it is difficult to isolate the contribution of a single resonance.

I. INTRODUCTION

The quasibound states of the proton-He ground
state have been analyzed in great detail, both experi-
mentally and theoretically. ' This work has also
prompted the calculation of a very accurate
ground-state potential5 from which a complete spec-
trum of these states has been obtained. Most of the
quasibound states have been identified spectroscopi-
cally and their experimental positions are in reason-
ably good agreement with theoretical predictions.
However, besides using spectroscopy for identifica-
tion of these quasibound states one can also try an
alternative idea, namely, these states will appear as
resonances in molecular-beam experiments. Using
such a method for analyzing H+-He quasibound
states will serve two purposes: provide a direct way
of measuring the width of quasibound states and
contribute to our understanding of resonance phe-
nomena in atomic collisions.

Indeed such an experiment was recently carried
out, and the first results appeared encouraging.
However, such experiments are not without difficul-
ties, which can be summarized in two points: the
contribution of resonances is difficult to distinguish
from other contributions in the cross sections and
the theoretical interpretation of the observed data is
not simple. I.et us briefly discuss these two points.

The usual way to study the resonance phenomena
is by analyzing their contribution in the total cross
section, and indeed the first attempts with the neu-
tral atoms have been carried out in this way. '

However, the results were not as spectacular as in
nuclear- or electron-atom collisions, where the reso-
nance effect is dominant in the cross section. In
atom-atom collisions this effect appeared in the in-
tegral cross section as an almost insignificant pertur-
bation. The reason why this is so is very well under-
stood and can be summarized in two points: atom-
atom potential is of long range and the wavelength
of atoms is short compared to the effective radius of

atoms. Both of these factors contribute to the fact
that the integral cross section is dominated by dif-
fraction scattering. The contribution of resonances
in the total cross section is only a few percent of the
diffraction scattering, therefore, it is difficult to dis-
tinguish them from the background. ' Also, the
short wavelength of atoms implies that resonances
are narrow, hence, a small uncertainty in the col-
lision energy can average out most of the resonance
contribution.

In the case of ion-atom collisions, the ratio of the
resonance to diffraction contributions in the total
cross section is even less favorable for the reso-
nances. Therefore, observation of ion-atom reso-
nances would not be easy in this way, and for this
purpose Konrad et al. 6 used a novel idea which they
applied to H+-He scattering. The idea is to measure
the energy dependence of the differential cross sec-
tion for a fixed scattering angle. The scattering an-
gle can be conveniently chosen away from the for-
ward direction, i.e., in the region where diffraction
scattering is negligible; in which case the resonance
contribution will be quite prominent. As in the total
cross section, formation of a resonance will be no-
ticed as a rapid variation in intensity of the differen-
tial cross section around some well-defined collision
energies.

Although the major problem of detection of reso-
nances is overcome in this way, there remains anoth-
er difficulty: interpretation of cross sections. Be-
cause of the relatively large number of quasibound
states, it is very often the case that few of them will
be very close for a given collision energy, therefore
they will appear as overlapping resonances. The in-
terference between these overlapping resonances can
produce patterns which are not easily recognizable
as individual resonances. Furthermore, if one in-
cludes interference with the background teria (which
will be discussed later) the resonance effects can be
really difficult to observe. Therefore, before at-
tempting to interprete the differential cross section
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one should have a good understanding of the
mechanisms which produce such patterns, and for
this purpose we have several methods at our dispo-
sal: the partial-wave method, the complex-energy
and complex-angular-momentum methods, and the
semiclassical method. As it turns out, the most con-
venient is the complex-angular-momentum method
(usually referred to as the Regge theory) since other
methods have certain inherent weaknesses when ap-
plied to the problem of resonance scattering.

The obvious disadvantage of the partial-wave
method is that in its foundations it is not designed
to prefer the contribution of one partial wave over
the other. All partial waves have equal weight, and
therefore the resonance partial wave (i.e., the partial
wave in which a resonance occurs) will not have any
preferential treatment over the other partial waves.
A resonance will only appear as a rapid change of
the phase shift in the resonance partial wave when
energy is varied. Also, it will appear as a rapid
change of the phase shift for a fixed energy when
partial waves are scanned. However, once a reso-
nance is located in a certain partial wave, there is no
way of telling how it will appear in the cross section.
The problem becomes even more serious when few
resonances are very close, or when interference ef-
fects with the other partial waves can produce non-
standard patterns of differential cross sections.

The complex-energy formalism does not solve the
essential problems of the partial-wave method. It
only offers a way of parametrizing phase shifts (the
S matrix) in the vicinity of a resonance. " Further-
more, it is assumed that a resonance only contri-
butes to the resonant partial wave, and that the
neighboring partial waves are not affected by its
presence. This is far from being true since a pres-
ence of a resonance in a certain partial wave can also
greatly affect the neighboring partial waves.
Nevertheless, the formalism is quite useful for the
description of cross sections where only few partial
waves are involved (e.g., nuclear collisions, electron-
atom collisions, etc.), or for analyzing quasibound
states in spectroscopy (e.g., in the case of H+-He).

The semiclassical method was shown to be quite
useful for the description of elastic collisions, and in
fact most of the features of the elastic cross sections
have been analyzed in this way. ' However, reso-
nance phenomena have no simple description using
this method. In order to understand why, we should
briefiy mention how resonances are formed in elastic
collisions. There are two mechanisms of their for-
mation: one when the collision energy is higher
than the centrifugal barrier and the other when it is
lower. In the first case, resonance is formed by the
interference of two waves: one reflected from the
top of the centrifugal barrier and the other from the

hard core of potential. Mutual interference of these
two waves can cancel the wave outside the centrifu-
gal barrier so that a standing wave is formed inside
the potential. Therefore, it is essential that any
theory of resonances incorporates the possibility of
refiection of the waves from the top of the centrifu-
gal barrier, which is not the case in the semiclassical
method. One should go beyond the ordinary semi-
classical approximation' in order to incorporate
this effect, but then the simplicity of this method is
lost. In the second case, resonances are formed by
tunneling through the centrifugal barrier and forma-
tion of a standing wave inside the potential. Of
these resonances, the most dominant are those for
which their energy is slightly smaller than the
height of the centrifugal barrier. In such a case, or-
dinary semiclassical treatment fails because two
turning points of kinetic energy on the centrifugal
barrier are very close. Therefore, other approximate
techniques should be considered, such as replacing
the centrifugal barrier near the top by an inverted
parabola. '

The complex-angular-momentum method (the
Regge theory) is a compromise between the semi-
classical treatment and a full quantum treatment. It
will be shown that the elastic scattering amplitude in
this method is given as a sum of two terms: one
describing the contribution of resonances (and orbit-
ing) and the other which describes the direct reflec-
tion. The latter contribution can be analyzed using
the semiclassical method, but for the calculation of
the resonance terms we will require the Regge poles
(complex-angular-momentum poles of the S matrix),
which are calculated from the numerical solution of
the radial Schrodinger equation for complex angular
momenta. Several methods have been developed for
this purpose, ' ' which are no more difficult to use
than methods used for calculation of phase shifts. '

Another advantage of describing resonance cross
sections by the Regge method stems from relatively
simple energy behavior of the Regge poles. They are
nearly a linear function of energy and this fact can
be used for a simple location of resonances. Also,
from the knowledge of the poles and residues, it is
possible to obtain the contribution of resonances in
cross sections in a simple way.

Representation of the scattering amplitude in
terms of the complex-angular-momentum poles was
first suggested by Regge, ' but it was only suitable
for the use in nuclear collisions because of the tacit
assumption that the potential does not have a hard
core. The theory was modified so that it is applic-
able in atom-atom (ion-atom) collisions, where the
potential for small internuclear distances can be re-
placed by a hard core. ' In this work we will use
this representation for analyzing the energy depen-
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dence of the differential cross section for a fixed
scattering angle.

II. THEORY AND PROPERTIES
OF REGGE POLES

It was shown for potentials with a hard core that
the scattering amplitude, in the representation of the
complex-angular-momentum poles of the S matrix
(Regge poles), is

ao

+— dk Xs(k)e ' ~&i &q2(
—cosg)

(2.1)

where A,„andP„are the Regge poles and the ap-
propriate residues of the S matrix S(A, ), respectively.
The poles are complex and for atom-atom potential
the poles of physical significance are located in the
first quadrant of the complex A, plane.

The integral in (2.1) can be evaluated analytically
by the stationary phase method. If we designate by
ri the phase ri=arg(S) —m.k and by A,o the angular

1

momentum A,o ——10+ —, for which Bil /BA, =9—m,

then f~ in (2.1) is
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where rio ——g(A, O) and iso' ——8 bio/M, . The approxi-
mate form (2.2) of fz is quite accurate in most cases
of relevance in atomic collisions. Therefore, if the
poles A,„ofthe S matrix are known, the scattering
amplitude (2.1) is relatively simple to calculate, since
in the orbiting region only a few poles are necessary
to achieve convergence in the series for fz.

Part of the scattering amplitude, designated by
fz, is associated with the orbiting, and hence, also
with the resonance phenomena. Therefore, in this
way we have isolated in the scattering amplitude the
contribution of resonances in a separate term, in
contrast with the partial-wave method where this
contribution is located in one partial wave. The ad-
vantages of this are manifold: rather complex reso-
nance structure can be interpreted as an interference
of a few terms, a single pole describes a series of res-

onances, location of resonances becomes simple, etc.
For a more detailed discussion of this topic see Refs.
2Q and 24; however, we would like to mention brief-
ly how resonances are classified.

The energy dependence of A,
„

is monotonic, i.e.,
Re(A,„)and Im(A,„)are increasing for increasing en-
ergy, hence a single pole obtains several times the
half-integer value, while its imaginary part is small.
At such energies a resonance appears in the cross
section. Therefore, labeling of resonances can be
done with only one index, corresponding to the label
of the pole. Since there is only a finite number of
poles which produce resonances, and this number
equals the number of bound states of the system, la-
beling of resonances can be achieved with the same
number of indices.

Location of resonances can also be done with rela-
tive ease. If the value of A,

„

is known for several en-
ergies, then using a simple interpolation-
extrapolation procedure position of resonances can
be obtained with relatively high precision. The same
technique applies also for interpolation and/or ex-
trapolation of the cross section. In fact, the analysis
of the cross sections in this work was done using
such a technique. The values of A,„andP„werecal-
culated for only few energy values and by interpola-
tion we obtained all the other values of A,„andp„.
The cross section was then obtained from (2.1)
without resorting to additional calculation of phases
and poles from the Schrodinger equation.

Let us now discuss the potential and properties of
the Regge poles for H+-He. The best available
H+-He potential was given by Kolos, but only as a
set of points at some internuclear distances. For
large internuclear separations the potential was
given in the analytic form of dispersion expansion.
However, for calculation of the poles one also needs
the interpolated values of potential and this can be
achieved in several ways: through the use of (1) a
straightforward parabolic fit through three points,
(2) splines, or (3) an analytic fit through all points.
All of these procedures have been tried and in the
end we decided to use the analytic fit through all
points. Let us briefly mention why other methods
did not work. In all fitting procedures based on
splines (parabolic fit is a special case of splines), one
makes an approximation that some higher deriva-
tives of splines are not continuous at the end points
of intervals. It can be shown that such a discon-
tinuity, although negligible for many purposes, pro-
duces spurious Regge poles which behave nonuni-
foiizily. Such poles usually have large imaginary
parts, indicating that they represent short-lived
states, something like surface waves. But their con-
tribution in the differential cross section is quite im-
portant, especially for small scattering angles. Be-
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Pp

a

a&

Q2

0.7743 A
0.525 A

—1.301 58
—5.01542

4.879 129
16.37

Q3

a4
a5
a6
Q7

4.258 754
8.767 504
6.858 96
3.087 388
0.708 278

TABLE I. Parameters for the H+-He potentia1 given
in the analytic form (2.11). The internuclear distance is in
units of angstroms while the coefficients are in units
which give Vin eV.

cause of these poles and their nonuniform behavior,
we cannot make a simple analysis of differential
cross sections.

For the reason just mentioned we have given up
using splines for interpolating the potential. In-
stead, we have looked at the analytic forms which
will accurately reproduce the H+-He potential, in-
cluding its tail. After a few trials we have decided
on the ratio of two polynomials and found that V is
given quite accurately by

&(r) =(r —r~)
b +ar

x +a~x +a~x'+a3x +a4x +a5x +a6x+a7
(2.3)

where x =r ro. Th—e numerical values for the coef-
ficients in (2.3) are given in Table I, in such units
that V is in eV. This form also reproduces the, tail
of V, but is singular for r =0.3869 A. However,
this singularity has no effect on the phase shifts, at
least for the collision energies below a few eV. For
all relevant values of r, the potential (2.3) reproduces
the calculated points by less than l%%uo, except for
r & 2. 1 A, where this deviation is larger
(-S—13%%uo).

Using (2.3) the Regge poles and their respective
residues were calculated in the energy range 0.1

eV & E & 0.7 eV. Altogether ten poles were
analyzed, although at a given energy not all of them
significantly contribute to the cross section. The en-
ergy dependence of these poles, usually referred to as
the pole trajectories, is shown in Fig. 1.

III. ANALYSIS OF CROSS SECTIONS

In order to obtain the energy dependence of the
differential cross section, for a fixed scattering an-

gle, we should first analyze in more detail the energy
dependence of the poles and residues. In Fig. 1 we
showed the pole trajectories, which appear to be al-
most linear, except when the imaginary part of the
poles becomes small. To confiriri this, in Fig. 2 we
show the energy dependence of the real and ima-

ginary part of the poles separately. The poles were
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FIG. 1. Regge poles for the H+-He system in the ener-
gy range 0.1 eV &E & 0.7 eV. Poles correspond to the po-
tential given by (2.11).

FIR. 2. Energy variation of the real and imaginary
parts of the Regge poles for H+-He. Labels of the poles
are indicated by numbers.
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FIG. 3. Energy variation of the logarithm of the resi-
dues for H+-He. Numbers indicate label of the poles.

calculated at approximately O. l-eV intervals, using
an exact method.

Indeed the poles have almost linear dependence
with energy, but to achieve better accuracy we have
used the interpolation procedure with parabola,
through three calculated points of the poles. Nu-
merical tests showed that such a fitting procedure is
sufficient to achieve good accuracy. However, even
better results were obtained, with the same parabolic
fit, if instead of energy we used the square root of
energy as an independent variable. In other words,
it appears that the pole trajectories are more linear
in the square root of energy than in the energy vari-
able. The test for the accuracy of the fitting pro-
cedure was that the difference between the extrapo-
lated and calculated value of the real part of the
next neighboring poles is less than 0.1.

Almost linear dependence of the poles with energy
is not peculiar to this example. This fact has been
noted for various potentials and it seems that such a
behavior has more to do with the presence of the
hard core in the potential than with its functional
forint. Qualitative arguments confirniing this have
been discussed on various occasions.

The energy dependence of the residues is more
complicated. It is an oscillatory function of energy,
with increasing amplitudes. However, the logarithm

of the residue behaves more regularly with energy
(or the square root of energy). In Fig. 3 we show the
energy dependence of the logarithm of the residues.
The dependence is less linear than in the case of the
poles but still the fit with parabola gives sufficient
accuracy for the interpolated values of residues.
Later we will make a crucial test for the accuracy of
the interpolation procedure by calculating the dif-
ferential cross section for these values and compar-
ing it with the cross section obtained for the calcu-
lated poles and residues.

Let us now look at the question of the conver-
gence of the series for fz in (2.1). Since this point
has already been discussed we will only review the
essential results. For a given energy the pole which
is closest to the real axis we will index by n = 1 and
all the other poles with increasing imaginary part
will carry the subsequent index n Th. e pole n =1
may have a very small imaginary part, in which case
it can be shown that its contribution in the sum fz
is negligible. Only the poles with imaginary part of
the order 0.01, or greater, will noticeably contribute
to the cross section, especially if the real part is a
half-integer. This point is of a general validity for
the poles with a small imaginary part; their contri-
bution in the cross section is greatly enhanced only
when their real part is a half-integer. Since this
happens only for a certain energy, the cross section
undergoes a rapid change in the interval around this
point, thus producing a resonance. However, for the
poles with a very small imaginary part, this rapid
change occurs in a very narrow energy interval, and
that is why we can neglect their contribution in the
cross section. For this reason some of the trajec-
tories in Fig. 2 do not continue to F. =0.1 eV, since
below the points where they stop the imaginary part
of the pole becomes very small according to the cri-
teria given above.

The poles with a large imaginary part do not
show such a behavior and their contribution in the
scattering amplitude is given by

I /2

f~ ——(n) 2A'

vr sin(8)
i i.„8i m /4—

ne

and the module of fz"' is approximately

f
f~"'

/
-exp[81m(A, „)+ln[ P„j]

Therefore, the convergence of the series for f~ will
depend on whether or not ln

~
P„~as a function of n

is always increasing faster than 81m(A.„).But what
is immediately obvious is that, if the series con-
verges, then the rate of convergence depends on 8.
In fact, the smaller 8 the poorer the convergence of
the series. As we will see later, this fact causes con-
siderable difficulty in the forward scattering space.
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FIG. 4. H+-He differential cross section for collision

energy E =0.415 56 eV. Solid line represents calculations
of the partial-wave series, while the dashed line is ob-
tained from (2.1). For the explanation of why there is de-
viation between the two curves for small angles, see the
text.

A look at Fig. 3 shows that ln
~ P„~ is, at first, an

increasing function of n for all E, but for certain n,
changes direction and becomes a decreasing func-
tion. The turning point depends on E, but in the in-
terval shown in Fig. 3 this is somewhere around
n =6—8. Therefore, in our example, the series is
convergent since Im(A,„)is always an increasing
function of n. The rule that ln

~ P„~reaches a max-
imum is a general one. It can be qualitatively
proved but in many examples it was also shown to
be true. Therefore, the convergence of the series
for fit is not typical of our case but has a general
validi ty.

We have shown how to calculate the Regge poles
and residues, how to interpolate them, and how indi-
vidual poles contribute in the scattering amplitude.
In addition, we have seen that the series f~ con-
verges. Let us now look at how the Regge-pole rep-
resentation of the scattering amplitude compares
with the partial-wave series and how accurate is the
energy interpolation of the poles and residues con-
cerning the differential cross section.

The differential cross section for E =0.415 56 eV
was calculated from the partial-wave series and
(2.1). For this energy the poles and residues were
calculated numerically from the Schrodinger equa-
tion. In Fig. 4 we show results of this calculation.

We notice that the two calculations give almost
identical results, except for angles smaller than
0-80 . Below this angle the two calculations in-
creasingly differ one from the other. This is not be-
cause we did not include enough poles to achieve
convergence in the series f~, but because of accumu-
lation of numerical errors.

In the sum for fz the module of each teriri f~"' is
n and 8 dependent, as discussed earlier. Typically, if
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FICx. 5. H+-He differential cross section for E=0.6
eV. Solid line represents the calculation of the partial-
wave series, while the dashed line is obtained from (2.1)
with the interpolated poles and residues. Dotted-dashed
line is obtained from (2.1) but with the calculated poles
and residues. See the text for explanation of why the two
curves obtained from (2.1) differ so much for small an-
gles.

8 gets smaller, then
~

fz"'
~

gets larger, until below a
certain angle, when some

~

fz"'
~

exceed the value of
~ fz ~, i.e., they exceed the contribution of orbiting

and resonances in the differential cross section.
This usually happens in the diffraction region.
Therefore, in the sum f~ some terms will cancel
each other out and in this way lose the most signifi-
cant figures. Since each terni fz is given accurate-(n) ~

ly to only the first few significant figures (the poles
A,„and residues P„areobtained by numerical in-
tegration of the Schrodinger equation and therefore
can only be given accurately to a few significant fig-
ures), it is obvious that below a certain angle we will
not obtain meaningful results. All the significant
figures of fz"' will cancel out, leaving only the ran-
dom values. This problem does not exist in the
partial-wave summation, because a typical contribu-
tion of a single partial wave is smaller than the value
of the scattering amplitude, especially in the diffrac-
tion region.

That this is indeed the case is confirmed in the
calculation of the differential cross section for
E =0.6 eV, shown in Fig. 5.

For this energy the poles A,„and residues P„were
obtained by the interpolation procedure described
earlier. The nearest calculated values of these quan-
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FIT+. 6. Energy variation of the differential cross sec-
tion for L9= 128'. Upper curve represents pure contribu-
tion of the poles in the differential cross section, while the
lower curve represents full differential cross section. We
have also indicated the position of the resonances predict-
ed from the energy variation of the poles. Numbers cor-
respond to the labels of the poles: even labels are in the
upper curve and odd labels are in the lower curve. Dis-
cussion of this is given in the text.

tities were at E =0.623 and 0.519 eV. The full line
represents the calculation of the partial-wave series,
while the broken line represents the calculation with
(2.1), but using the interpolated poles and residues.
The deviation of the two results for larger angles be-
gins then in Fig. 4 simply because the interpolated
values of k„and P„are less accurately given than
the corresponding calculated values. However,
when we calculated the values of A,„andP„for the
same energy and used them instead of the interpolat-
ed ones, the agreement with the partial-wave series
is greatly improved, as shown in Fig. 5 by the
dashed-dotted lines. The last result is in accordance
with the previous discussion about the stability of
the series f~ for the small scattering angle.

The last example also shows that, at least for the
angles greater than 8~100, the series J'~ is given

quite accurately using the interpolation procedure
for A,„and P„with parabola. Therefore, with a
great deal of confidence, we can analyze the energy
dependence of the differential cross section for large
angles. We have done this for 8=128', and results
are shown in Fig. 6. The upper part of the figure
shows

~ fz ~

while the lower part shows

~
fz+f~ ~, i.e., the true differential cross section.

These two figures are given so that we can compare
how much the structure of cross section is influ-
enced by the presence of the f~ amplitude.

As can be noticed, the contribution of fz does not
essentially change the pattern of the energy depen-
dence of the cross section

~ fz ~

. This is because
the radius of the hard core for H+-He is small, ap-
proximately r-0. 5 A, therefore f~ is also small.
The change is only in details such as around
E-0.52 and 0.2 eV. However, both cross sections
are quite complex which is due to the large number
of resonances. In Fig. 6 the position of the reso-
nances, labeled by the index of the poles, are shown
by arrows: even labels in the upper part and odd la-
bels in the lower part of the figure. This was done
for convenience.

We immediately notice that a single pole shows
up several times as a resonance and this is whenever
its real part obtains a half-integer value. The rule is
that for increasing energy a single pole produces a
wider resonance. For example, the pole n =4 pro-
duces a series of resonances at E=0.115, 0.165, 0.22,
and 0.29 eV. The lowest-lying resonance is very
narrow and hardly visible, while the next is quite
prominent, but the next is buried in the interference
with the other resonances. Therefore, even though
the last two may have a non-negligible contribution
in the cross section, they are overshadowed by the
contribution of the neighboring resonances.

Here we encounter the basic problem in the obser-
vation of resonances in the H+-He collision. As can
be seen from Fig. 6, several resonances are very
often lying close to each other and their contribution
may add or cancel, therefore we will not observe a
clear picture of a single resonance. There are excep-
tions, however, such as the very narrow resonances,
but they are too narrow for practical observation.
The exceptions are also the n =4 resonance at ener-
gy E =0.165 eV, which is isolated from the other,
and the lowest-lying n =1 resonance. The latter
produces a dip in the contribution of the resonances
n =2 and 3. It is interesting to notice that the next
n =1 resonance has no affect on the cross section.
It has little affect on fz, but once fz is included, the
effect is washed out. This is another example of
how several close-lying resonances can cancel each
other out.

The interference between fz and f~ can extract
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out a resonance from the sum fz, such as the one
for E =0.225 eV. This peak does not exist in

~ fz ~, however, it appears in
i f ~

. A possible ex-
planation is as follows: the close-lying resonances
n =4 and 5 (n =3 is too narrow to contribute signi-
ficantly in fR) give contributions which produce a
uniform line (see Fig. 6, upper part). When fz is ad-
ded it cancels the contribution of the pole n =5,
hence, the contribution of the n =4 resonance is left
and is observed as a peak in

i f ~

The discussion so far shows the whole complexity
of the resonance structure of the H+-He system. It
is further complicated by the energy and angle
averaging, but in this work we will not discuss this
point.

Calculations for different angles have been done
but the results are not essentially different from the
one which was discussed here. The angle 0=128'
used here is typical of large-angle scattering regions
and it is believed that no qualitatively new insight
can be obtained by scanning all other angles.

IV. CONCLUSION

In this work we have analyzed the resonance
structure of the H+-He system, which is very pro-

nounced if the energy dependence of the differential
cross section is measured for a fixed scattering an-
gle. However, observation of a single resonance is
difficult because in most cases several of them are
close lying, producing a collective effect in the cross
section. In such cases an individual resonance can
only be observed if it is very narrow. But in the ex-
periment its contribution is averaged out due to the
energy spread of the atomic beam and the finite an-
gular resolution of detectors. There are exceptions,
however, noted in the discussion of Sec. III.

ACKNOW'LEDGMENTS

One of the authors (S.B.) wishes to thank Dr. F.
Linder and Dr. M. Konrad for providing the experi-
mental and theoretical results prior to publication.
S. B. is also thankful to Dr. J. Korsch and Dr. K.
Thylwe for very fruitful discussions concerning the
semiclassical aspects of this work. This work was
financially supported by the Sonderforschungs-
bereich 91; "Energietransfer bei atomaren und
molekularen Stossprozessen, " sponsored by the
Deutsche Forschungsgemeinschaft.

J. Schopman, P. G. Fournier, and J. Los, Physica
(Utrecht) 63, S18 (1973).

2J. M. Peek, Physica (Utrecht) 64, 93 (1973).
3R. B. Bernstein, Chem. Phys. Lett. 25, 1 (1974).
~W. Kolos and J. M. Peek, Chem. Phys. 12, 381 (1976).
5W. Kolos, Int. J. Quantum Chem. 10, 217 (1976).
6M. Konrad aud F. Linder, J. Phys. B 15, L405 (1982).
A. Schutte, D. Bassi, F. Tommasini, and G. Scoles, J.

Chem. Phys. 62, 600 (1975).
J. P. Toennies, W. Welz, and G. Wolf, J. Chem. Phys.

64, 5305 (1976).
For a description of the integral cross section in atom. ic

collisions see, H. Pauly and J. P. Toennies, Adv. At.
Mol. Phys. 1, 195 (196S).

OFor a rigorous description of the resonance phenomena
in the integral cross section see, S. Bosanac, Mol. Phys.
36, 453 (1978).

~ tM. S. Child, Molecular Collision Theory (Academic,
London, 1974), Chap. 4.3.

2M. V. Berry and K. E. Mount, Rep. Prog. Phys. 35,
315 (1972).

t3J. N. L. Conuor, Mol. Phys. 15, 621 (1968).
i4C. V. Sukumar and J. N. Bardsley, J. Phys. B 8, 568

(1975).

i~J. B. Delos and C. E. Carlson, Phys. Rev. A 11, 210
(1975).

~ J. N. L. Connor, W. Jakubetz, and C. V. Sukumar, J.
Phys. B 9, 1 (1976).

~7S. Bosauac, J. Math. Phys. 19, 789 (1978).
I This is only true with the method of Ref. 17, since all

others assume analytic properties of potential in the
complex-coordinate plane.

~9A. Bottino, A. M. Longoni, and T. Regge, Nuovo
Cimento 8, 107 (1962).

zoS. Bosanac, Mol. Phys. 35, 1057 (1978).
2~S. Bosanac, Croat. Chem. Acta 49, 471 (1977).
22K. W. Ford and J. A. Wheeler, Ann Phys. (N.Y.) 7, 259

(1959).
For another way to evaluate this integral, see Ref. 20.
S. Bosanac, Phys. Rev. A 19, 125 (1979).

2sC. H. Reinsch, Num. Math. 10, 177 (1967).
26S. Bosanac, Phys. Rev. A 24, 777 (1981).
27J. N. L. Connor, J. B. Delos, and C. E. Carlson, Mol.

Phys. 31, 1181 (1976).
2 S. Bosanac, R. B. Gerber, and U. Buck, Chem. Phys.

Lett. 58, 359 (1978).
2 J. N. L. Connor and W. Jakubetz, Mol. Phys. 35, 949

(1978).


