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A study of electron-impact excitation of highly charged ions in the helium isoelectronic sequence
is reported. Nonresonant, intermediate-coupling collision strengths are computed for transitions up
to and including the n =3 states. With the 13 fine-structure levels, i.e., ls ( So) 1s2s( Sl' So),
1s2p( Po ~ 2 Pl), 1s3s( S~, 'So), and 1s3p( Po i 2,''Pl), there are 78 different inelastic transitions.
Main calculations are carried out in the nine-state distorted-wave approximation including partial
waves 7 & 15. Relativistic effects are taken into account in the Breit-Pauli approximation. Nine-
state close-coupling calculations are also carried out for Fe "+ with l &4 at a few energies for corn-
parison (and for later work in paper II). Higher partial waves (I ~ 15) are treated by the Coulomb-
Bethe method using accurate relativistic eigenenergies and oscillator strengths for the target ions.
The Z dependence of the departure from LS coupling is investigated. Present results are in goocl
general agreement with previous calculations where available, but some discrepancies are noted or
clarified. Collision strengths are tabulated at energies from near the excitation energy of the n =3
complex to sufficiently high energies to enable rate coefficients to be computed. For transitions to
the n =3 levels and for transitions where resonances are not important, the present values should
yield reasonably accurate excitation rates (resonances are considered in paper II). The present data
are required particularly for the analysis of observed spectra from high-temperature, high-density
plasmas where the line intensities may depend on collisional redistribution among a number of ex-
cited n =2 and n =3 states.

I. INTRODUCTION

Even as the need for large scale computation of atomic
data remains substantially unfulfilled, the requirement for
a high degree of accuracy in such calculations has become
imperative in order to analyze the very high-resolution ob-
servations of laboratory and astrophysical plasmas that
are now possible and are being made. In particular, one
may cite the recent work in the x-ray spectroscopy of the
solar corona' and tokamak plasrnas ' where the high tem-
perature leads to nearly complete ionization of certain
medium heavy elements (Z&15). Line spectra of these
trace ions provide a valuable tool for the diagnostics of
plasma parameters; however, accurate rates are required
for a number of atomic processes, such as electron-impact
excitation, radiative and dielectronic, recombination, cas-
cades, etc. Calculations for the excitation and recombina-
tion rates are particularly difficult since the most ad-
vanced methods depend on rather huge investment of
computing time and manpower. For highly charged ions
the problem at first appears to be simpler but it has now
become clear that certain important atomic effects mani-
fest themselves as one approaches Z &20. In our earlier
work on electron excitation of heliumlike ions it was
shown that resonances play an important role in the
scattering process enhancing the cross sections by several
factors for some important transitions. The ions con-
sidered ranged from Be + to Fe +. These calculations (to
be referred to as PNH) were carried out in I.S coupling al-
though it was realized that for Fe (and, to a small extent,

Ca), some cross sections would exhibit fine-structure ef-
fects. Subsequent work also revealed that the large reso-
nance structures present in the cross sections would also
be susceptible to radiative decay which would compete
with autoionization and lead to dielectronic recombination
(DER). It was shown that in some energy ranges, particu-
larly in the region just below the threshold where the reso-
nances converge, the effect of DER could be considerable.
As the radiative transition probabilities increase as Z (for
allowed transitions), one must take DER into account for
heavy elements such as iron. Thus, while the other cri-
teria for accurate scattering calculations (e.g., an optimum
eigenfunction expansion) still apply, the task for highly
charged, heavy ions also involves the full consideration of
(i) departure from I.S coupling, (ii) autoionization
enhancement, and (iii) reduction in autoionization due to
DER.

The present work is divided into two parts: papers I
and II. The first part is concerned with the calculation of
intermediate-coupling (IC) collision strengths for all tran-
sitions, including the fine structure, that result from a
nine-state target expansion in L,S coupling. The 13 fine-
structure states are ls ('So), ls2s( S),'Sp),
ls2p(3PO& 2, 'P&), ls3s( Si,'So), and ls3p( Po i 2', 'Pi).
IC collision strengths are computed for all transitions in
the energy region above E(n =3), where no resonances are
taken into account. The second part deals with autoioni-
zation and DER effects that are described in detail in the
energy range between the n =2 and the n =3 states. For
transitions involving the n =2 levels, the final collision
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strengths are as computed in papers I and II, whereas col-
lision strengths for transitions to the n =3 states are given
in paper I. Three different ions in the helium sequence
are considered: Fe +, Se +, and Mo +, in order to
study the Z dependence of the collision strengths. Also,
since it is not possible to carry out such extensive calcula-
tions for many ions, it is hoped that Z interpolation and
extrapolation would provide fairly accurate estimates for
ions not included in this study. Nine-state distorted-wave
(9DW) and nine-state close-coupling (9CC) approxima-
tions are employed in the calculations, the former with
partial waves /, /'& l5 and the latter with /, /'(4. This
was done mainly as a check for any detailed difference be-
tween the two that may be evident for low partial waves
and if so, to use the more accurate 9CC reactance matrices
for resonance analysis, particularly for extrapolation with
the multichannel quantum-defect theory (M COMDT).
Higher partial waves /, /'& 15 were summed over in the
Coulomb-Bethe (CB) approximation. In this work we
describe some general theoretical and computational tech-
niques to compute cross sections for very highly charged
ions. In addition, we aim to "complete" the calculations
for the high-Z He-like ions, with the atomic effects men-
tioned above, that were not included by PNH. In See. IV
of this paper, the nonresonant IC collision strengths are
compared with earlier available results and reasonably
good agreement is found. In paper II we find that for a
few transitions both the IC and the resonance effects are
very important and for many others the resonances make
a large contribution to the cross sections. No previous
calculations have dealt with all the three effects (IC, au-
tolonizatlon, and DER) .

II. THEGRY AND METHOD

The theory for scattering calculations in the CC and the
DW methods is described elsewhere. Here we sketch,
very briefly, the outline of the basics together with the
computational techniques developed by Eissner, Jones,
and Nussbaumer and Saraph' in order to take account of
relativistic effects and for transformation from the I.S to
an IC scheme. The treatment of resonances forms an ex-
tension of these methods and is described in paper II.

In both the CC and the DW approximations the total (e
plus ion) wave function is expanded into target eigenstates
plus a set of bound-state wave functions:

NF NBe" =pe, +g c,e, , (la)
i =1 j=1

81 ——A[/(S;L; )F;(r,k; )] . (lb)

where the 8; is an antisymmetrized product of the wave
function for an ionic state S;L,; with the orbital function
of the scattering electron, and C&~ is an (%+1) electron
bound-state wave function introduced primarily due to
orthogonalization of the one-electron target wave func-
tions and the scattering electron wave function. However,
the set [%& I may also include bound-state functions to
provide additional short-range correlation for the func-
tions in the first sum in Eq. (la). The channel terms in
Eq. (lb) may be "open" or "closed" according to whether

A JJ'= (4&J
~

H
~ @I)6JJ . (3)

In the CC calculations the pole positions are somewhat
different from (3) due to additional correlation between
the closed and bound channels. The coupled ID equations
are solved at the incident energies of the scattering elec-
tron to yield R . The point to note is that, in the work
of PNH, resonances may thus be accounted for in the DW
approximation which does not allow for coupling between
channels, unlike the CC approximation where the cou-
pling between open and closed channels leads to reso-
nances.

The first problem in scattering calculations is the accu-
rate determination of the target eigenfunctions P(S;I.;).
In order that the computations may remain tractable, only
a few such states can practically be considered. However,
configuration interaction requires at least some other
higher states to be included. The general purpose tech-
niques for the calculation of atomic parameters developed
by Eissner et al. are used to obtain the necessary target
representation and radiative data. The central-field poten-
tial employed by Eissner et a/. is of Thomas-Ferrni-
Dirac —type with adjustable parameters usually varied to
optimize target energies and radiative quantities. Col-
lision strengths are then obtained by the DW or the CC
methods. However, these are in the IS coupling scheme
which for highly ionized atoms, where relativistic effects
become prominent, is no longer valid. Eissner et al. treat
the relativistic problem in the Breit-Pauli approximation
and thereby compute the atomic data with the fine struc-
ture. The relativistic correction operators in the Breit-
Pauli Hamiltonian include the following: (i) one-body
terms for mass variation, Darwin correction, and the
spin-orbit interaction, (ii) two-body fine-structure terms
for spin-other orbit and spin-spin interactions, and (iii)
two-body nonfine-structure terms for spin-spin contact,
the two-body Darwin term, and the orbit-orbit interaction.
Eissner et al. exclude the two-body nonfine-structure

the kinetic energy of the colliding electron is higher or
lower than the target state to which it is coupled: i.e., if
the target term is labeled S;I.; then the channel is open or
closed according to whether [k(S;L;)j is less than or
greater than E(S;I.; ). The radial functions F;(r) and the
coefficients c~ may be varied to satisfy the Kohn varia-
tional principle, leading to a set of coupled integro-
differential (ID) equations for the CC approximation and
to a "corrected" reactance matrix Row in the DW ap-
proximation. As pointed out, first by Hayes and Seaton, "
and by PNH, the functions 4j automatically result in res-
onances in the R matrix. For the DW approximation we
may express the R matrix elements as

Z,Dw= IF; ~(—Z, —k,')n, ,

+[W—Ut(~ —Z)-'U~„., ~F, I,
~here h; is the one-electron Harniltonian operator and 8'
and U are potential operators. The radial distorted wave
functions are computed in a statistical model potential of
the Thomas-Fermi-Dirac type. The pole positions in the
DW calculations then lie precisely at the eigenvalues of
the functions NJ,
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terms (iii) froin consideration; this has little effect on the
collision problem (see Jones' ), although the eigenenergies
for some fine-structure states in highly ionized ions exhib-
it slight but significant variations.

The fine-structure collision strengths are obtained from
the LS coupled ones, through transformation of the R ma-
trices from LS to IC, using term-coupling coefficients de-
rived by the method of Eissner et al. discussed above.
The transformation is accomplished by an approach used
by Saraph' and is sketched below. First, a purely alge-
braic transformation is carried out to a pair-coupling
scheme,

Ss+L,; =J;, J;+I
and

K+s =J,
where 1 and s are the orbital and spin momenta of the col-
liding electron, J& is the target fine-structure state, and J
is the total (e plus ion) angular momentum. The reactance
matrices in the two representations are related as

R J (S;L;JgK;S Lj J 1'K')

=+X(SLJ,S;L;J;,1k)R (S;L;1s;S L 1's')
S,L

xX(SLJ,S L J;1K'),

where the X are products of Racah recoupling coeffi-
cients. The second step is to transform the R J to allow
for intermediate term coupling in the target, i.e.,

R (5; J;/K, b, ,' J 1'K')

tg (6;,S;L; )R (S;L;J;IK;S L 1'K')

partial wave orbitals, and the T are transition matrix ele-
ments given by

T~= —2iRJ(I iR—)

III. CALCULATIONS

A. Target representation and data

All states dominated by the configurations ls, ls2s,
1s2p, 1s 3s, and 1s 3p are included in the scattering prob-
lem. These configurations are labeled as principal config-
urations, as distinct from correlation configurations in-
cluded to account for CI with the target states. The list
for correlation configurations is determined mainly by tri-
al and error, guided by the aim of the best possible values
for the eigenenergies of the included states as well as the
oscillator strengths for all allowed transitions. Other vari-
ables in the atomic structure problem are the adjustable
parameters in the Thomas-Fermi-Dirac (TFD) potential
that are also so chosen. In our earlier work (PNH) we had
the trial configuration list:

1s, 1s2s, 1s2p, 1s3s, 1s3p

(principal configurations); and

2s, 2p, 2s2p, 2p3d

(correlation configurations). PNH had included the five
states, dominated by the first three configurations, in the
first term of the eigenstate expansion in Eq. (la). In the
present work we attempted to improve the target represen-
tation by also including the configurations 2s3s, 2s3p,
2p 3s, and 2p3p, and also by varying the statistical model

Xtj,,(b,;,S L ), (6)

where the tJ are term-coupling coefficients defined in
l

terms of the configuration mixing coefficients for LS cou-
pling, a+I. (which diagonalize the nonrelativistic Hamil-

' l

tonian), and the mixing coefficients bq for diagonalizing
l

the Breit-Pauli Hamiltonian; i.e.,

s's

5p

p 3p

tJ(b„,I;SL;)=g a ,
' '(I;,C p;)b '(5;,C;p;S(L;),

C,P;
(7) --- RESONANCES

where the I; labels a term composed of several configura-
tions C;, and p; is a degeneracy parameter for more than
one LS term due to C;. The accuracy of the coefficients
tJ is dependent on the target wavefunctions, in particular

on the energy difference between the target terms that are
coupled. It is important therefore to allow for adequate
configurating mixing. IC collision strengths are finally
obtained as

2'S—

2E1 y

2'P= ..

where 6;J; denotes a target fine-structure level, j; are the

FIG. 1. Energy-level diagram for states considered (not to
scale). Dominant modes of radiative decay from the n =2 levels
are also shown.
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TABLE I. Relativistic eigenenergies for the target states of Fe +, Se +, and Mo + (in rydbergs).

State

1'Sp
2S)
2 Pp
2P)
2'P,
2'Sp
2'P,
3 SI
3'Po
3 Pi
3'P,
3'Sp
3'P)

Present
work

0.0
488.S291
490.3875
490.6609
491.7766
490.S808
493.1257
578.7344
579.2632
579.3359
579.6528
579.2944
580.0112

Fe'4+
EJ

0.0
487.8453
489.9809
490.1299
491.1875
490.1502
492.5206
577.9942
578.5836
578.6237
578.9420
578.6027
579.3052

Present
work

0.0
849.5337
851.9375
852.4595
856.1118
852.1914
857.7520

1007.23S4
1007.9424
1008.0767
1009.0947
1007.9912
1009.5313

Se' +

EJ

0.0
847.9665
851.0053
851.2150
854.7431
8S1.1749
856.3946

1005.5216
1006.3593
1006.4094
1007.4683
1006.3692
1007.9277

Present
work

0.0
1314.9980
1317.7310
1318.4893
1327.6533
1318.2266
1329.5854
1560.5215
1561.4131
1561.5942
1564.0830
1561.5601
1564.5933

EJ

0.0
1311.8742
1316.0274
1316.1689
1325.0399
1316.1115
1327.0342
1556.9685
1558.1111
1558.1316
1560.7829
1558.0892
1561.3S45

potential parameters A, g (I =s,p, d) in the TFD potential
V(AIr) H. ow. ever, it was found that the resulting change
in the atomic parameters was not significant (mainly due
to the very highly ionized nature of the ions under eon-

sideration). It was therefore decided to retain the eigen-
function expansion as in the earlier work with the same
associated A,I.

In Fig. 1 we show the level structure for all states in-

TABLE II. Relativistic oscillator strengths for allowed transitions in Fe2 +, Se +, and Mo+. The notation 3.58( 4} js short
hand for 3.58& 10

Transition
Fe24+

fNBS
b

Se32+

1'Sp-2 Pg 3.58(—4)
1'So-2'P) 4.33(—3)
1 Sp"3 P] 5.80(—5)
I So-3 Pi 6.82{—4)
2 S]-2 Pp 1.41(—2)
2'S, -2'P, 3.91(—2)
2S,'-2P,

'
7.09(-2)

23S)-2'P ) 3.24{—3)
2 Si-3 Pp 4.21(—3)
23S&-33P& 1.15(—2)
23S) -33P2 2.05(—2)
2 S$ -3'P) 9.93(—4)
2 SI-3 Si 4.13(—4)
2 P)-2'Sp 3.18(—3)
2'P, -3'S, 1.2O{—3)
2'P)-3'Sp 8.3O( —5)
2 P2-3 Si 2.S6(—3)
2'So-2iP& 3 95(—2
2'So-3 P i 1.16(—3)
2 So-3IPi 1.22( —2
2'P) -33S) 1.41(—4)
2'P]-3'So 1.51(—3)
3 Si-3 Pp 8.70(—2)
3'S,-3'P, 2.39(—I)
3 S$-3 P2 4.34(—1}
3 Sg-3'P) 2.16(—2)
3'Sp-3 P) 2.16{—2)
3 So-3 Pi 2.37(—1

'S refers to the line strengths an
NBS refers to the compilation b

'Drake (Ref. 15).

6.87(—2}'
7.03{—I)'
1.70(—2)
1.38(—I)
3.50(—3}
a.03(—2}
2.73(—2)
2.00(—3)

4.40(—4)
2.21(—3)
6.30(—5)
3.29(—4)
S.02( —3)
2.02( —2)
4.07(—2)
4.03(—3)
2.38(—3)
5.86(—3)
1.13(—2)
1.16(—3}
2.06(—4)
3.94(—3)
5.43(—4)
9.10(—5)
I ~ 50(—3)
2.05(—2)
1.33(—3)
5.97(—3)
1.69(—4)
7.63(—4)
5.01(—2)
1.24( —I}
2.50{—I)
2.60(—2)
2.60(—2)
1.24( —I)

5.85(—2)
7.11(—I)
1.12(—2)
1.32(—I)
3.35(—3)
9.93(—3)
2.63(—2)
1.68(—3)
4.24( —2)
1.16{—I }
2.07{—I)
1.01(—2)
1.21(—2)
7.17(—6)
1.17{—2)
8.16(—4)
1.48( —2)
3.12(—2)
3.42( —2)
3.63(—I)
a.34(—3)
1.44( —2)
5.70(—3)
1.67(—2)
4.57(—2)
3.15(—3)
1.51(—4)
5.55(—2)

3.87(—4)
1.28(—3)
4.90(—5)
1.79(—4)
5.15(—3)
1.19(—2}
2.63(—2)
3.63(—3}
1.48( —3)
3.38(—3)
6.86(—3)
9.59(—4)
1.10(—4)
3.54( —3)
2.68(—4}
6.70{—5)
9.97(—4)
1.22( —2)
1.11{—3)
3.32(—3)
1.52(—4)
4.50(—4)
3.27(—2)
7.48(—2)
1.63(—I)
2.31(—2)
2.31(—2)
7.44{—2)

1.25(—I)
6.31(—I)
2.11(—2)
1.11(—I)
2.71(—3)
7.29(—3}
3.06{—2)
3.77(—3)
4.19(—2)
1.03(—I)
2.00(—1)
2.06(—2)
1.06(—2)
5.27 —5)
9.31(—3}
1.57(—3}
1.51(—2)
3.57(—2)
6.88(—2)
3.12(—I)
2.80(—3)
1.27( —2)
4.66(—3)
1.22( —2)
5.41(—2)
6.9S(—3)
3.48(—4)
6.44( —2)

1.70(—I)
5.66(—I)
2.54( —2)
9.32(—2)
2.38(—3)
5.68(—3)
3.SS(—2)
6.11(—3)
4.05(—2)
9.25(—2)
1.90(—I)
2.66{—2)
S.S4(—3)
6.77(—5)
7.17(—3)
1.80(—3)
1.54( —2)
4.44( —2)
8.95(—2)
2.71(—I)
3.88(—3)
1.16(—2)
4.15(—3)
9.67(—3)
6.91(—2)
1.13(—2)
3.26(—4}
8.10(—2)

1.43(—2)
3.95(—2)
7.15(—2)
3.29(—3)

1.22( —I)

3.29(—3)
1.40( —2)

3.95(—2) 3.29(—2}

3.64(—I)

1.40( —2)

1.60(—2)

5.60(—2)

d the f to oscillat
y Wiese (private

or strengths. P is the present work and SC is Sampson and Clark (Ref. 14).
communication).
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TABLE III. Channels in the pair-coupling scheme: Mo +, J=2.5, m odd. The channel list refers
to I (4. The E; are ion energies in LS coupling.

Index

1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

(2S;+ 1)L

'S
S
S
S

3p
3p
3p
3p
3p
3p
3p
3p
3p
'S
1p
1p
1p

S
S
S

3p
3p
3p
3p
3p

p
p

3p
3p
'S
1p
lp
1p

0
1

1

1

0
1

1

1

2
2
2
2
2
0
1

1

1

1

1

1

0
1

1

1

2
2
2
2
2
0
1

1

1

3
1

3
3
2
2
2

0
2
2
4
4
3
2
2
4
1

3
3
2

2
4
0
2
2

4
3
2
2
2

3
2
2
3
2
2
3
3
2
2
3
2
3
3
2
3
3

2
3
2
2
3
3
2
2
3
2
3
3
2
3
3

E; {Ry)

0.0
1286.504
1286.504
1286.504
1289.612
1289.612
1289.612
1289.612
1289.612
1289.612
1289.612
1289.612
1289.612
1290.041
1292.337
1292.337
1292.337
1523.639
1523.639
1523.639
1524.509
1524.509
1524.509
1524.509
1524.509
1524.509
1524.509
1524.509
1524.509
1524.584 .

1525.241
1525.241
1525.241

eluded, along with dominant modes of radiative decay
from the n =2 levels. The resonances lying between the
various complexes are also indicated. In Table I we give
the calculated relativistic energy separations relative to the
ground state for Fe +, Se +, and Mo +. Values are
compared with earlier calculations of Ermolaev and
Jones' (EJ) who used a different set of target configura-
tions and parameters A,I. The EJ calculations were
designed specifically to calculate the eigenenergies of He-
like ions with a high degree of accuracy and are more ac-
curate than the present values which derive from calcula-
tions meant for scattering work, involving a large number
of transitions. All of the present energies are in the
correct order except for the 2'So state in Fe +, which
should lie between the 2 P~ and 2 P2 but is seen to be
slightly below the 2 Pi. There are significant differences
between the two sets of calculations, in the energies in a
few cases, which manifest themselves in the collision
strengths for partial waves I ~ 15, where the CB approxi-

mation is employed to calculate the contribution to al-
lowed transitions. On the other hand, the dipole line
strengths computed in the present work are seen to be
fairly accurate. In Table II we give the line and the oscil-
lator strengths for all allowed transitions considered in
this work. For Fe +, the line strengths are compared
with the calculations of Sampson and Clark'4 and good
agreement is found. The oscillator strengths fz are calcu-
lated from the present line strengths and the more accu-
rate energy differences given by EJ, using the relation

KE)J.Sgqf,j= 3'
The oscillator strengths for Fe + are compared with the
recent compilation (referred to as NBS) by Wiese (private
communication). It is seen that f values for all transitions
compared are in good agreement except for the 1'S0-2 P~.
The NBS values for this transition, and the 1'So-2'Pi, are
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TABLE IV. Z times the total coalision strengths for (e+Fe +).

Transition

a'Si-2 Si
1Si-2'Pp
1'S,-2'P,
1'Si-2 P2
1 Si-2 Sp
1'Si -2'Pi
1'Si-3 Si
1 Si-3 Pp
1'Si-3 Pi
1 Si-3 P2
1'SI -3'Sp
1'Si-3'Pi
2 Si-2 Pp
2 Si-2 Pi
2 Si-2 P2
2'S, -2'So
2 Si-2'Pi
2 Si-3 Si
2 Si-3 Pp
2 Si-3 Pi
2'Si-3'P,
2 Si-3'Sp
2 Si-3'Pi
2 Pp-2 Pi
2 Pp-2 P2
2 Po-2 So
2 Pp-2'Pi
2 Pp-3 Si
2 Pp-3 Pp
2 Pp-3 Pi
2'Po-3'Pz
2 Pp-3'Sp
2 Pp-3'Pi
2'Pi-2'P,
2 Pi-2'Sp
2 Pi-2 Pi
2 Pi-3 Si
2 Pi-3 Pp
2 Pi-3 Pi
2 Pi-S P2
2 Pi-3'Sp
2 Pi-3'Pi
2 P2-2 Sp
2 P2-2'Pi
2 P2-3 Si

0.8S8

a.94(—1)
1.20( —1)
4.81(—1)
5.94(—1)
5.20(—1)
1.84(0)
S.68(—2)
3.65(—2)
1.24( —1)
1.89(—1)
8.38(—2)
2.80(—1)
8.S8(1)
2.33(2)
3.71(2)
1.18(0)
1.74(1)
1.07(1)
1.26(0)
3.50(0)
6.18(0)
3.18(—a)

1.04(0)
3.69(0)
4.9S(0)
1.86(—1)
1.32(0)
2.31(—1)
3.47(0)
4.50(—1)
8.45( —1)
6.69(—2)
4.85( —1)
1.46(1)
4.56(2)
5.18(0)
6.89(—1)
4.47( —1)
1.14(1)
2.55(0)
2.12(—1)
1.45(0)
9.26( —1)
7.77(0)
1.21(0)

1.33(—1)
7.03(—2)
4.27(—1)
3.48(—1)
6.19(—1)
2.82(0)
3.85(—2)
2.16(—2)
9.87(—2)
1.12(—1)
1.14(—1)
4.60(—1)
1.10(2)
2.99(2)
4.90(2)
7.17(—1)
2.28(1)
1.35(1)
3.46(0)
9.46(1)
1.68(1)
5.95(—2}
9.53(—1)
1.78(0)
4.50(0)
5.95(—2)
3.87(—1)
3.62( —1)
4.27(0)
8.86( —1)
6.96(—1)
1.55(—2)
9.73(—2)
1.10(1)
5.06(2)
3.04(0)
1.03(0)
8.79(—2)
1.34(1)
1.63(0)
1.21(—1)
5.52( —1)
2.96(—1)
3.70(0)
1.99(0)

Energy (Ry)/Z
1.479

1.00(—1)
4.73(—2)
4.25( —1)
2.34(—1)
6.73(—1)
3.58(0)
2.84( —2)
1.42( —2)
9.06(—2)
7.30(—2)
1.28( —1)
6.06(—1)
1.20(2)
3.23(2)
5.36(2)
5.57( —1)
2.51(1)
1.40(1)
4.70(0}
1.30(1)
2.28(1)
2.64( —2)
1.16(0)
1.19(0)
4.39(0)
3.1 a( —2)
1.99(—1)
4.89(—1)
4.41(O)
3.79(—2)
6.20( —1)
6.76(—3)
4.19(—2)
1.01(1)
5.27(1)
2.59(0)
1.39(0)
3.72( —2)
1.37(1)
1.38(0)
1.28( —a)

3.93(—1)
1.55(—1)
2.68(0)
2.72(0)

2.959

3.58(—2)
1.22( —2)
5.46( —a)

6.08(—2)
7.84( —1)
6.14(0}
9.46(—3)
3.38(—3)
1.01(—1)
1.83(—2)
1.57(—1)
1.08(0)
1.39(2)
3.76(2)
6.31(2)
2.12(—1)
3.01(1}
1.44(a)
8.25(1)
2.35{1)
4.01(1)
3.38(—3)
1.95(O)
3.50(—1)
3.86(0)
5.41(—3)
3.92(—2)
8.92(—1)
4.51(O)
4.73(—3)
3.11(—1)
6.76(—4)
5.41(—3)
8.25(0)
5.66{1)
1.95(0)
2.55(O)
4.73(—2)
1.39(1)
6.66(—1)
1.95(—1)
1.62( —1)
2.64{—2)
1.25(0)
5.22(0)

7.396

7.44( —3)
2.03(—3)
8.59(—1)
8.79(—3)
8.S2(—1)
9,73(0)
2.O3( —3)
6.76(—4)
1.6a( —1)
2.7O( —3)
1.74( —1)
1.70(O)
1.58(2)
4.28(2)
7.23(2)
4.53(—2)
3.54(1)
1.26(a)
1.47(1)
4.20(1)
7.1O(1)
6.76(—4)
3.45(O)
6.62( —2)
2.58(0)
6.76(—4)
6.08(—3)
1.62(Q)
4.16(0)
6.76(—4)
1.S7(—1)
0.00(0)
6.76(—4)
5.41(Q)
6.o6(1}
1.24(0)
4.68(0)
6.76(—4)
1.27(1)"
3.32(—1)
3.38(—1)
7.91(—2)
3.38(—3)
5.58(—1)
9.80(0)

computed by Drake' who has developed an improved,
unified relativistic theory for these transitions, yielding
more accurate values than the method of Eissner et al.
The available NBS values are used in the CB calculations
for Fe +, together with Drake's values for the two transi-
tions mentioned [1.44( —1) and 6.23(—1), respectively, for
Se + and 1.95(—1), and 5.61(—1) for Mo +]. Lin,
Johnson, and Dalgarno' have also computed oscillator
strengths for the transitions 2 5& —2 Po & 2 in Fe + and

Mo4O+. Their values are 3.30(—3), 9.70( —3), and
2.82( —2), respectively, for Fe + and 2.30( —3), 5.30(—3),
and 3.94(—2) for Mo +, and compare well with those in
Table II. The oscillator strengths given in Table II differ
from the ones calculated with present energies only slight-
ly in most cases; however, in some instances the differ-
ences are considerable. For example, the present values
for the transitions 2 Si-2 Po, in Mo + are 1.60( —3) and
4.60(—3), respectively, and are much lower than the form-
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Transition

2 P2-3 Pp
2 P2-3 Pi
2 P2-3 P2
2'P2-3'So
2 P2-3'P)
2'Sp-2'P )

2 Sp-S S&
2'Sp-3'Po
2'Sp-3 PI
2'So-3
2'Sp-3'Sp
2'Sp-3'Pi
2'P, -3'S,
2'Pi-3 Pp
2'Pi-3 Pi
2'P, -3'P,
2'P) -3'Sp
2'Pi -3'Pi
3 S&-3 Po
3 S)-3 P$
3 S)-3 P2
3 S&-3 Sp
3'S)-3'P(
3 Pp-3 Pi
3'Po-3'Pz
3'Po-3'So
3 Pp-3'Pi
3 Pi-3 P2
3 P&-3'So
3'P, -3'P,
3'P, -3'Sp
3'P, -3'P,
3'Sp-3'Pi

0.858

8.31(—1)
2.49{0)
2.22{1)
3.33(—1)
2.19(0)
2.29(0)
3.24( —1)
8.79{—2)
5.48( —1)
4.63(—1)
4.24(0)
3.10(0)
6.16(—1)
4.61(—1)
1.41(0)
2.18{0)
3.45( —1)
1.35{1)
2.92(2)
7.71(2)
1.22(3)
2.27(0)
5.78(1)
4.64(0)
3.78(1)
3.90{—1)
2.24(0)
8.45(1)
1.4S(2)
2.39(1)
1.95(O)
1.71(1)
6.83(2)

7.37(—1)
1.68{0)
2.46(1)
7.84(—2)
5.28( —1)
3.00(2)
6.42( —2)
1.69(—2)
9.87(—1)
8.S9(—2)
5.44(0)
9.87(0)
2.27( —1)
9.33(—2)
5.88( —1)
5.21(—1)
1.11(0)
1.64(1)
7.23(2)
1.88(3)
3.22(3)
9.87(—1)
1.47(2)
1.45(0)
2.83(1)
3.04( —2)
2.07(—1)
5.92(1)
3.06(2)
1.51(1)
1.51(—1)
7.98(0)
1.90(3)

6.64( —1)
1.44(0)
2.49(1)
3.52(—2)
2.87(—1)
3.27(2)
2.97(—2)
7.44( —3)
1.32(0)
3.58(—2)
5.67(0)
1.36(1)
1.95(—1)
4.06(—2)
4.41(—1)
2.83(—1)
1.58(0)
1.67(1)
7.91(2)
2.06(3)
3.66(3)
7.64( —1)
1.62(2)
9.73(—1)
2.33(1)
1.15(—2)
1.07(—1)
4.85(1)
3.22(2)
1.23(1)
5.68(—2)
6.27(0)
2.08(3)

TABLE IV. (Continued. )

Energy (Ry)/Z
1.183 1.479 2.959

3.43(—1)
7.17(—1}
2.47(1)
4.73(—3)
8.11(—2)
3.81(2)
4.73(—3)
6.76(—4)
2.31(0)
4.06(—3)
5.82(0)
2.41(1)
2.85(—1)
5.41(—3)
1.96{—1)
8.11(—2)
3.06(0)
1.62(1)
9.26(2)
2.41(3)
4.25(3)
2.71(—1)
1.96(2)
2.97(—1)
1.18(1)
6.76(—4)
2.64(—2)
2.44(1)
3.57(2)
6.3.4{0)
2.70{—3)
2.83(0)
2.47(3)

7.396

1.72( —1)
3.54(—1)
2.24(1)
6.76(—4)
3.31(—2)
4.35(2)
6.76(—4)

4.10(0)

5.02(0)
4.30(1)
5.35(—1)
6.76(—4}
9.53(—2)
3.24( —2)
5.69(0)
1.45(1)
1.09(3}
2.84(3)
5.06(3)
5.48( —2)
2.36(2)
5.68(—2)
5.28{0)

4.73(—3)
1.09(1)
3.97(2)
2.72(0)

1.11(0)
2.92(3)

er corresponding values in Table II. Similar differences
are also found for the transition 3 S&-3 Pp in Se + and
Mo" +, and for transitions 2 P&-2'Sp and 3 P]-3 Sp in all
three ions. In the CB calculations (Sec. III B 3), the oscil-
lator strengths f~ in Table II are used along with the ener-
gies given by EJ.

B. Collision strengths

As noted earlier we carried out rather extensive nine-
state calculations in both the CC and the DW approxima-
tions in order to determine whether any significant differ-
ences were present in, for example, low partial waves or at
energies very near the excitation thresholds. Detailed ex-
amination of the reactance matrices R and Rc re-
vealed, in general, no more than a few percent discrepan-
cies and the collision strengths in both approximations
were therefore in the same range of accuracy. In view of
the close agreement it is not felt necessary to give a de-
tailed comparison. We employed the RD~ for the first

fifteen partial waves in computing the nonresonant col-
lision strengths given in this paper, and the R c for the
first five partial waves for resonance analysis in paper II.
Basic features of the two sets of scattering calculations are
described below.

Close coupling

Coupling the partial waves l, I' &4 of the colliding elec-
tron with the nine I,;S; states dominated by the principal
configurations results in the following ten states with total
(e plus ion) spin multiplicity (2S+1), orbital angular
momentum I,, and parity m, i.e., +'I

(4,2)(S D G Po Fo)

which connect transitions between different L,;S; states of
the target. In addition, for transitions involving the fine-
structure states n PJ, one needs the states

' ' '[I' I' D' O' H']
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Transition

1'Si-2 Si
1'S,-2'Pp
1'Si-2 P)
1'Si-2 P2
1'Si -2'Sp
1'Si-2'Pi
1'S)-3 S)
1'Si-3 Pp
1'Si-3 P)
1's)-3 P2

Si-3'Sp
1'S,-3'P,
2'S, -2'Pp
2 S)-2 Pi
2'S, -2'P,
2 Si-2'Sp
2'S, -2'P,
2 Si-3 Si
2'S, -3'Pp
2'S, -3'P)
2 s)-3 P2
2 Si-3'Sp
2'S, -3'P,
2 Pp-2 P)
2 Pp-2 Pp
2 Pp-2'Sp
2 Pp-2'Pi
2'Pp-3'S
2 Pp-3 Pp
2 Pp-3 Pi
2'Pp-3'P,
2 Pp-3'Sp
2'Pp-3'P
2'P, -2'P,
2 Pi-2'Sp
2'P, -2'P)
2 Pi-3 Si
2 P(-3 Pp
2'P, -3'P,
2 PI-3 P2
2'P, -3'Sp
2'P, -3'P,
2 P2-2'Sp
2 P2-2'Pi
2 P2-3 Si

1.2976

1.17(—1)
6.13(—2}
6.99(—1)
2.99{—1}
6.40( —1)
2.79(0)
3.24( —2)
1.85{—2)
1.35(—1)
9.48( —2)
1.19(—1)
4.75(—1)
1.12(2)
2.77(2)
4.64(2)
6.so( —1)
4.36(1)
1.27(1)
3.89(0)
9.60(0)
1.85(1)
4.16(—2)
1.98{0)
1.51(0)
4.38(0)
4.62( —2)
3.11(—1)
3.69(—I)
4.01(0)
5.78(—2)
6.45( —1)
1.04( —2)
7.17(—2)
9.40(0)
1.08(2)
4.51(o)
9.57(—1)
5.78(—2)
1.24(1)
1.38{0)
2.05(—1)
7.14(—1)
2.31(—1)
4.25(0)
2.19(0)

1.91(—1)
1.20(—1)
6.30(—1)
5.92(—1)
s.2s( —1)
1.71(0)
5.55(—2)
3.70(—2)
1.48(—1}
1.94(—1)
8.55(—2)
3.05(—1)
8.63(1)
2.13(2)
3.36(2)
1.17(0)
3.20(1)
9.98(0)
1.3o(o)
3.34(0)
6.27(0)
3.19(—1)
1.32(0)
3.54(0)
4.88(0)
1.83(—1)
1.43(O)
2.22( —1)
3.20(0)
4.32( —1)
8.45( —1)
6.47( —2)
5.01(—1)
1.34(1)
9.38(1)
6.43(0)
6.47(—1)
4.30(—1)
1.O6(1)
2.57(0)
2.17(—1)
1.51(0)
9.10(—1)
8.61(0)
1.17(0)

1.85(—2)
5.78(—3)
1.38(0)
2.89(—2)
8.18(—1)
6.72(0)
4.62( —3)
1.16(—3)
2.32(—1)
8.O9( —3)
1.64( —1)
1.18(0)
1.41(2)
3.51(2)
6.15(2)
1.14(—1)
5.82(1)
1.33(1)
1.02(1)
2.52(1)
4.84(1)
1.16(—3)
4.92(0)
1.83(—1)
3.33(0)
2.31(—3)
1.39(—2)
1.o2(o}
4.15(0)
1.16(—3}
2.06(—1)

7.86(—2)
3.58(—2)
8.12(—1)
1.77(—1)
7.O2( —1)
3.66(0)
2.20{—2)
1.04( —2)
1.48(—1)
5.43(—2}
1.34(—1)
6.38(—1)
1.21(2)
3.01(2)
5.13{2)
4.54( —1)
4.82(1)
1.32(1)
5.34(0)
1.32(1)
2.54(1)
1.62(—2)
2.62{0)
9.04( —1)
4.24(0)
2.O8( —2)
1.31(—1)
s.os( —1)
4.13(0)
2.08(—2)
5.20( —2)
4.62{—3)
2.66(—2)
8.54(0)
1.12{2)
4.14(0)
1.30{0)
2.08(—2)
1.27(1)
1.05(0)
2.59(—1)
S.28( —1)
1.O2( —1)
3 ~ 16(0)
3.09(0)

2.31(—3)
6.33(0)
1.22(2)
3.12(0)
2.65(0)
1.16(—3)
1.27(1)
3.99(—1)
4.77(—1)
1.97(—1)
1.16(—2)
1.57(0)
6.94(0)

TABLE V. Z times the total collision strengths for (e +Se +).

Energy (Ry)/Z
0.8737 1.7301

5.78(—3)
1.16(—3)
1.93(0)
6.94(—3)
8.58(—1)
9.06(0)
1.16(—3)

2.98(—1)
2.31(—3)
1.73(—1)
1.54(0)
1.55(2)
3.84(2)
6.81(2)
3.35(—2)
6.47(1)
1.13(1)
1.52(1)
3.7S(1)
7.21(1)

7.34(0)
s.o9(—2)
2.34(0)

3.47(—3)
1.49(0)
3.76(0)

1.32(—1)

4.42(0)
1.29(2)
2.17(O)
3.89(0)

1.14(1)
2.53(—1)
6.79(—1)
1.26( —1)
2.31(—3)
9.63(—1)
1.05(1)

in the summation over SLY in Eq. (5). Altogether there
are twenty total (2S+ 1)Lm states and the coupled ID
equations of the CC approximation are solved separately
for each symmetry to obtain Rcc(SLm). With the target
representation as described in Sec. IIIA, angular integral
and radial integral coefficients, describing the e plus ion
potential operators, are calculated as discussed by Eissner
and Seaton and, using this coBisional data, the ID equa-
tions are set up and solved by the linear-algebraic method
developed by Crees et QI. ' Calculations are carried out at
the energies of interest (which in the present case are only
a few) in the energy range above all thresholds. The larg-

est calculations are for symmetries I" and D with thir-
teen "free channels" in each case, i.e., the terms of the
first sum in Eq. ( la), and with 31 and 29 "bound chan-
nels" [the second sum in Eq. (1b)], respectively.

2. Distorted wave

With /, I' & l5 the number of total SI m. states is much
larger than for the CC case. If we write 2L for twice the
total orbital angular momentum of the e plus ion system,
and (2L),„ for its maximum value, then the states

+"(2L,2L,„,2) required for the collision problem are
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TABLE V. (Continued. )

Transition

2 P2-3 Po
2 P2-3 Pi
2 P2-3 P2
23P)-3'Sp
2'P2-3'P,
2'S -2'P,
2 So-3 Si
2 So-3 Po
2'So-3 P&

2 So"3 P2
2'S -3'S
2'So-3'P)
2'P)-3 S)
2 P]-3 Po
2'Pi-3 Pi
2'Pl-3 P2
2'P

~
-3'So

2'P, -3'P,
3 S]-3 Po
3 S)-3 P)
3'S,-3'P,
3 S)-3 Sp
3 Si-3'P~
3 Po-3 P)
3 Po-3 P2
3 Po-3'Sp
3 Po-3
3 P)-3 p2
3 P]-3 So
3 Pi 3'Pi
3'P2-3'S,
3'P~-3'P,
3'Sp-3'Pi

0.8737

8.21(—1)
2.45(0)
2.20(1)
3.21(—1)
2.17(0)
1.82(2)
3.24( —1)
9.02(—2)
8.46( —1)
4.58(—1)
4.21(0)
2.85(0)
6.09(—1)
4.64( —1)
1.45(0)
2.16(0)
3.06(—1)
1.29(1)
3.14(2)
7.63(2)
1.13(3)
2.29(0)
1.13(2)
4.44(0)
3.73(1)
3.86(—1)
2.45(0)
7.59(1)
3.10(2)
3.91(1)
1.93(0)
2.43(1)
5.62(2)

1.2976

7.11(—1)
1.46(0)
2.42(1)
5.43(—2)
5.16(—1)
2.50(2)
4.51(—2)
1.16(—2)
2.19(0)
5.90(—2)
5.42(0)
9.69(0)
3.13(—1)
6.70(—2)
8.03(—1)
5.12(—1)
1.12(0)
1.5S(1)
7.64(2)
1.87(3)
3.18(3)
8.95(—1)
3.13(2)
1.2S(0)
2.60(1)
1.97(—2)
1.20( —1)
4.90(1)
6.39(2)
2.53(1)
1.01(—1)
1.27(1)
1.66(3)

Energy (Ry)/Z
1.7301

5.92(—1)
1.15(0)
2.44(1)
2.08(—2)
3.09(—1)
2.7S(2)
1.73(—2)
4.62( —3)
3.00(0)
2.08(—2)
5.60(0)
1.34(1)
3.63(—1)
2.54( —2)
6.27( —1)
3.09(—1)
1.63(0)
1.56(1)
8.36(2)
2.04{3)
3.S3(3)
6.22( —1)
3.50(2)
7.77(—1)
2.00(1)
5.78(—3)
4.39(—2)
3.73(1)
6.76(2)
1.93(1)
3.12(—2)
9.41(0)
1.84(3)

4.3253

2.45(—1)
4.S8{—1)
2.37{1)
2.31(—3)
9.71(—2)
3.26(2)
1.16(—3)

5.76(0)
1.16(—3)
5.56(0)
2.58(1)
7.72(—1)
2.31(—3)
2.50(—1}
9.83(—2)
3.64(0)
1.50(1)
1.01(3)
2.47(3)
4.39(3}
1.43(—1)
4.39(2)
1.61(—1}
8.38(0)

4.62( —3)
1.56(1)
7.66(2)
8.10(0)

3.62(0)
2.26(3)

8.6505

1.54(—1)
2.86(—1)
2.10(1)

5.90(—2)
3.61(2)

8.58(0)

4.62(0)
3.84(1)
1.17(0)

1.56(—1)
5.90(—2)
5.43(0)
1.33(1)
1.13(3)
2.76(3)
4.98(3)
4.16(—2)
5.00(2)
4.51(—2)
4.60(0)

1.16{—3)
8.57(0)
8.38(2)
4.45(0)

1.90(0)
2.55(3)

~4'~[0, 32,2]

for even m and

'[2, 30,21]

for odd m. where the 2L is incremented in steps of 2 (note
that there are no ' ' 'S' states). Thus altogether there are
80 symmetries for the (%+1)-electron system to be con-
sidered. Calculations are carried out at a small number of
energies above the n =3 states, up to about ten times the
threshold excitation energies. The energy mesh for each
ion is chosen so as to bring out some structure that is
present in the nonresonant collision strengths (which will
be discussed later). In addition, DW calculations are also
done at a fairly large number of energies, mainly in the re-
gion somewhere above the n =2 states, in order to com-
plement the analysis of resonance structures converging
on to the n =3 states (paper II). The DW calculations are
described in our earlier work (PNH) and most of the de-
tails concerning the nonresonant calculations remain the
same.

3. Coulomb-Bethe

The contribution to the collision strengths from large I
values for optically allowed transitions may be evaluated
using the CB approximation which has been rendered in a
convenient computational form by Burgess and Sheorey. '
The partial CB collision strength is expressed as

4 g(J;)f(&;J;,hf Jf)
QQQ kj Jjykf Jf —~ G

(10)

where subscripts i and f refer to initial and final levels, f
is the absorption oscillator strength, and G (k, k') is the
free-free Gaunt factor evaluated by Burgess' ' in terms
of the regular Coulomb functions in a closed form. The
applicability of Eq. (10), with particular reference to very
highly charged ions where IC effects become prominent,
has been discussed in detail by Jones. ' We take into con-
sideration the points made by Jones and employ the fol-
lowing steps to calculate the high-l contributions: (i)
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TABLE VI. Z times the total collision strengths for (e+Mo +).

Transition

1'SJ-2 SJ
1'SJ-2 Pp
1'SJ-2 PJ
1'SJ-2 P2
1'SJ-2'Sp
1'SJ-2'P J

1'SJ-3 SJ
1'SJ-3 Pp
1 S,-3 PJ
1'SJ-3 P2
1'SJ-3'So
1'SJ-3'PJ
2 SJ-2 Pp
2 SJ-2 PJ
2'SJ-2 P2
2 SJ-2 Sp
2 SJ-2'PJ
2 SJ-3 SJ
2 SJ-3 Pp
2 SJ-3 PJ
2 SJ-3 P2
2 SJ-3'Sp
2 SJ-3'PJ
2 Po-2 PJ
2'Pp-2'P,
2 Pp-2 Sp
2 Pp-2'PJ
2 Po-3 SJ
2 Pp-3 Pp
2 Po-3 P
2 Pp-3 P2
2 Pp-3 Sp
2 Po-3 P
2 PJ-2 P2
2 PJ-2 Sp
2 PJ-2'PJ
2 PJ-3 SJ
2 PJ-2 Po
2 PJ-3 PJ
2 PJ-3 PP
2 PJ-3'Sp
2 PJ-3 PJ
2 P2-2'Sp
2 PP-2 PJ
2 PP-3 SJ

1.87(—1)
1.20( —1)
7.46(—1)
5.84( —4)
5.31(—1)
1.63(O)
5.29(—2)
3.70(—2)
1.73(—a)
1.96(—1)
8.82{—2)
3.42( —1)
8.17(1)
2.01(2)
3.05(2)
1.14(0)
4.09(1)
9.08(0)
1.39(0)
3.35(0)
6.69(0)
2.95(—1)
1.52{0)
3.33(0)
4.79(0)
1.75(—1)
1.47(o)
2.15(—1)
2.91(0)
3.93(—1)
8.36(—1)
6.00(—2)
4.8O( —1)
1.24(1)
1 ~ 30(2)
7.07(0)
6.12(—1)
3.92(—1)
9.61(0)
2.49(0)
2.19{—1)
1.50(0)
8.64(—1)
8.98(0)
1.12(0)

1.55(—1)
9.35(—2)
7.85(—1)
4.57(—1)
S.77(—1)
1.94(0}
4.41(—2)
2.82( —2)
1.59(—1)
1.50(—1)
1.01(—1)
3.61(—1)
9.95{2)
2.28(2)
3.81(2)
8.77(—1)
4.83(1)
a.o6(1)
2.31(0)
5.33(0)
1.07{1)
1.18(—1)
1.75(o)
2.36(0)
4.50(0)
1.01(—1)
8.01(—1)
2.27( —1}
3.35(o}
1.64( —1)
6.88(—1)
2.82( —2)
2.10(—1)
1.01(1)
1.38(2)
6.10(0}
6.50(—1)
1.64( —1)
1.06(1)
1.65(0}
1.96(—1)
1.05(o)
5.01(—1)
6.72(0)
1.39(0)

Energy (Ry)/Z
1.1338

1.36(—1)
7.76(—2)
8.27(—1)
3.83(—1)
6.17(—1)
2.19(o)
3.7O( —2)
2.29(—2)
1.59(—1)
1.23(—1)
a.o9(—1)
3.97(—1)
1.06{2)
2.42(2)
3.9S(2)
7.62( —1)
5.24(1)
1.11(1)
2.99(0)
6.85(0)
1.38(1)
7.06(—2)
2.1O(0)
1.91(O)
4.41(0)
7.O6( —2)
5.45(—1)
2.67(—1)
3.51(o)
9.88(—2)
6.58(—1)
1.76(—2)
1.29(—1)
9.30(0)
1.43(2)
5.77(0)
6.59(—1)
9.88(—2)
1.09{1)
1.43(0)
2.13(—1)
9.3O( —1)
3.51(—1)
5.77(0)
a.70(o)

2.8340

3.70(—2)
1.41(—2)
1.47(Q)
6.88( —2)
7.74( —1)
4.71(0)
8.82(—3)
3.53(—3)
2.43(—1)
1.94{—2}
1.52( —1)
8.48(—1)
1.33(2)
3.05(2)
5.36(2)
2.26( —1)
7.15(1)
1.23(1)
7.34(0)
1.68(1)
3.38(1)
3.53(—3)
4.73(0)
3.85( —1)
3.81(0)
5.29(—3)
4.06(—2)
6.37(—1)
3.81(0)
5.29(—3)
2.86(—1)
1.76(—3)
7.06(—3)
6.76(0)
1.63(2)
4.59(0)
1.52(0)
5.29(—3)
1.16(1)
5.17(—1)
4.3O( —1)
3.49(—1)
3.00(—2)
2.70(0)
4.86(0)

5.29(—3)
1.76(—3)
2.s9(o)
7.06{—3)
8.56(—1)
8.01(0)
1.76(—3)

3.76{—1)
1.76(—3)
1.73(—1)
1.35(0)
1.54(2)
3.53(2)
6.42(2)
3.53{—2)
8.59(1)
1.05(1)
1.42(1)
3.25(a)
6.56(1)

9.16(0)
5.29(—2)
2.35(0)

3.53(—3)
1.22(0)
3.48(0)

1.24( —1)

4.07(0)
1.77(2)
2.80(0)
2.94(0)

1.06(1)
2.19(—1)
7.74( —1)
1.50(—1)
1.76(—3}
1.32(0)
1.05(1)

determine a sufficiently high-/ value beyond which to ac-
tivate the CB approximation (see below), (ii) use relativis-
tic dipole oscillator strengths in Eq. (10), and (iii) use rela-
tivistic energy separations. This approach should yield a
fairly accurate summation over the partial waves l ~ l,„,
where, following Seaton, '

l,„=(k r +2zr+ 4
)'

and where we take r to be the mean expectation value of r
for the farthermost orbital in the target ion; k is the in-
cident kinetic energy and z is the ion change. Further-

more, in order that Q be independent of the uncertainty
in the transition energy AE, one must have

l AE «k,.',
where k, ss the energy relative to the initial level.

For the three ions under study, Fe +, Se +, and
Mo +, r =r(3p) since the 3p orbital is the most extended
one (more than the 3d, which is for correlation purpose
only). In the TFD potential V(k~, r) we choose Az —0.836,
and A,d=1.0 for all three ions. We obtain r&Fe)=0.50,
r(Se)=0.38, and r&Mo)=0. 30. For k up to at least five
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TABLE VI. (Continued. )

Transition

P2 3 Po
2'P2-3'P,
2 P2-3 P2
2 Pp-3 Sp
2'P, -3'P,
2 So-2 P
2'S3-3 S)
2 Sp-3 Pp
2 Sp-3 Pi
2 Sp-3 P2
2'So-3 So
2 Sp-3 P)
2'Pi-3 Si
2 P]-3 Pp
2 Pl-3 P1
2'P)-3 P2
2 P]-3 Sp
2'P~-3'P&
3 S]-3 Pp
3 S)-3 P)
3 S)-3 P2
3'Si-3'So
3 SI-3'Pi
3 Po-3 P
3'Po-3'P
3 Pp-3 Sp
3 Pp-3'Pi
3 P)-3 P2
3 Pi-3'Sp
3'P, -3'P,
3 P2-3 Sp
3 P2-3'P]
3 Sp-3 P~

0.8900

8.00(—1)
2.31(0)
2.15(1)
2.95(—1}
2.05(0}
1.49(2)
2.98(—1)
8.29(—2)
1.10(0)
4.23(—1)
4.26(0)
2.82(0)
5.73(—1)
4.29(—1)
1.41(0)
2.03(0)
2.92(—1)
1.26(1)
3.48{2)
4.01(2)
1.06(3)
2.10(0)
1.44(2)
3.97(0)
3.58(1)
3.28( —1)
2.24(0)
6.76(1)
1.15(2)
4.57(1)
1.64(0)
2.77(1)
4.90(2)

1.0200

7.29(—1)
1.67(0)
2.28(1)
1.41(—1)
1.07(0)
1.78(2)
1.22( —1)
3.53(—2)
1.77(0)
1.80(—1)
4.94(0)
5.03(0)
4.01(—1)
1.89(—1)
1.09(0)
1.06(0)
5.51{—1)
1.39(1)
6.51(2}
4.73(2)
2.35(3)
1.22(0)
3.20(2)
2.08(0)
3.10(1)
7.76(—2)
5.05(—1)
5.47(1)
9.26(1)
3.81(1)
3.88(—1)
2.06(1)
1.12(3)

Energy (Ry)/Z
1.1338

7.29(—1)
1.51(0)
2.33(1)
9.00(—2)
7.89(—1)
1.93(2)
7.41(—2)
2.12(—2)
2.27(0)
1.08(—1)
5.17(0)
6.60(0)
3.74( —1)
1.16(—1)
1.03(0)

, 7.87(—1)
7.51(—1)
1.44(1)
7.19(2)
4.76(2)
2.69(3)
1.07(0)
3.67(2)
1.63(0)
2.88(1)
4.06(—2)
2.49(—1)
5.03(1)
7.95(1)
3.53(1)
2.01(—1)
1.87(1)
1.28(3)

2.8340

3.67(—1)
6.40(—1)
2.35(1)
5.29(—3)
1.99(—1)
2.60(2)
5.29(—3)
1.76(—3)
5.53(0)
5.29(—3)
5.59{0)
1.64(1)
7.36(—1)
7.06(—3)
4.66(—1)
2.03(—1)
2.28(0)
1.47(1)
9.45(2)
4.52(2)
3.79(3)
2.93(—1)
5.23(2)
3.42( —1)
1.22(1)
1.76(—3)
7.06(—3)
2.10(0)
1.98(1)
1.49(1)
3.53(—3)
7.25(0)
1.78(3)

8.5030

1.57(—1)
2.68(—1)
2.06(1)

7.94(—2)
3.08(2)

1.07(1)

4.59(0)
3.19(1)
1.59(0)

1.98(—1)
8.11{—2)
4.79(0)
1.29{1)
1.14(3)
5.34(2)
4.74(3)
4.23(—2)
6.59(2)
4.76(—2)
4.67(0)

8.04(0)
9.67(0)
5.70(0)

2.59(0)
2.23(3)

times threshold, these values yield l,„&15 for all ions.
/, „ is therefore set equal to 15 and the CB approximation
is employed to obtain the contribution to collision

strengths from the sum g&,6 Q . Atomic structure data
given in Tables I and II is used for the calculations (as
mentioned earlier, the NBS values are used for the oscilla-
tor strengths of iron). DW partial collision strengths were
found to converge to the CB values at some I'& 1,„ for
all cases where checks were made. It is also seen that the
transitions from the ground state do not contain contribu-
tions from / & l,„until very high incident energies, where
any error in QCB, if present, would be small.

4. Transformation to intermediate coupling

The I.S reactance matrices computed in the DW or the
CC approximations are transformed to IC (in a pair-
coupling formulation) employing term-coupling coeffi-
cients obtained by diagonalizing the nonrelativistic and
the Breit-Pauli parts of the total Hamiltonian. Partial IC
collision strengths QI 0 0 (IC) are computed by the
method used by Saraph on summing over all contributing

LSD states in Eq. (5). The resulting total Jtr states range
from 0.5 to 16.5 for both parities. The majority of Jm.
states, from J=2.5 to 12.5, contain 33 channels in the
pair-coupling scheme. As an example, in Table III we list
these channels for one case, J=2.5 (odd parity), for
scattering with Mo +. The ion energies listed are target
term energies in L,S coupling. Comparison with Table I
shows that for an ion as highly charged as Mo +, these
differ from the relativistic energies by a significant
amount. In the present approach, the fine-structure level
separations are considered to be small relative to the JS
terms and all fine-structure states are taken to be of the
same energy as the nonrelativistic term. For permitted
transitions this approximation does not result in a large
error so long as condition (12) is fulfilled (see Jones' ). In
the present calculations, there may therefore be some error
in the collision strength at energies close to the excitation
threshold although a specific determination of its magni-
tude was not made.

IV. RESULTS AND DISCUSSION
The total nonresonant IC collision strengths for Fe +,

Se +, and Mo + are given in Tables IV, V, and VI,
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respectively, for all transitions involving all states up to
the n =3 levels including the fine structure. The collision
strengths are multiplied by Z and the incident electron
energies k ) (in Rydbergs, relative to the ground state) have
been divided by Z in order to emphasize the obvious scal-
ing of these two quantities with Z. The incident energies
were chosen so as to bring out some structure in a few
transitions such as 1'S0-2 P) (see below). In principle, all
transitions not affected by IC, i.e., those involving the lev-

els n 'I ], should correspond to the same scaled collision
strength. Thus the spread in Z 0 for such transitions
(e.g., 1'S0-2 S) ) is an indication of the error in the present
calculations. Comparing the values for all transitions at
the first scaled energy (approximately the same for the
three ions), we find that the maximum spread is about
18% for the transition 2 Po-3 Po. We expect that, in gen-
eral, the error should be about 5—10% which is the
spread found for most of the non-IC transitions. In fact,
it is somewhat remarkable that the differences in Z Q are
not larger than we find, since the calculations are indepen-
dently carried out for each ion and involve a number of
steps with potential numerical errors (in particular, the
summation for about 80 total SLY states). Although it is
not possible to go into the details of the computational
techniques, the size and scope of the present calculations
provides a useful check on the methods employed in a
number of different ways; for example, the choice of inter-
nal integration mesh, the sensitivity to variational parame-
ters in the TFD potential, the precision at very high
scattering energies (where the relevant matrix elements are
small), etc.

In order to interpolate or extrapolate the collision
strengths to other Z values we recommend that the mean
Z Q of the three values, in Tables IV—VI, for each transi-
tion (non-IC type) and energy be used. Some of the transi-
tions are of special interest for a variety of reasons. These
are discussed in Sec. IV A.

A. Particular features of some transitions

We now have the following:
1'So-2 P&. This is an intercombination-type transition

of considerable importance in the observed spectra of He-

like ions (where it is commonly designated by the letter y).
For ions with lower Z (Z &20), the collision strength may
be calculated in LS coupling. However, as the spin-orbit
coupling becomes stronger with Z there is increasing devi-

ation from the LS scheme and the transition becomes
more and more like an optically allowed one in the IC
scheme. In Fig. 2(a) we plot Q(1'So-23P)) for Fe +,
Se +, and Mo + at energies from threshold up to values
where the Bethe form for allowed transitions becomes evi-

dent, i.e., Q-lnt. . The log-log plot shows a straight line
behavior at high energies (circles are the calculations by
Sampson, Parks, and Clark ). At lower energies we find
different structure in the collision strengths for the three
ions. In Fe + it is clear that the contribution from high
partial waves manifests itself only at energies about two
times above threshold and until then the collision strength
behaves in a monotonically decreasing manner like a semi-
forbidden transition. As the ion charge increases the rela-
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FICz 2. (a) Collision strengths for the transitions 1'So-2'P& in
Fe "+, Se +, and Mo +. (b) Departure from LS coupling with
ion charge and incident electron energy (in threshold units).

tivistic effects get stronger and, for Mo +, Q(1'So-2 P) )

is nearly a completely optically allowed transition with
only a slight inflection at energies close to threshold. We
further study the departure from LS coupling in
Q(1'So —2 P) ), with Z, by plotting Fig. 2(b) where the ra-
tio [Q(IC)-Q(LS)]/Q(LS) is given at various energies X,
in threshold units. As we know, Z Q(LS) is constant
with Z and therefore, knowing the LS collision strength
and the ratio from Fig. 2(b), one may obtain Q(IC) for
any ion up to about Z =45 to energies corresponding to
X=1.6. It is seen that for Fe +, at threshold, Q(IC) is
about 18%%uo larger than Q(LS). For Ca' + the correspond-
ing increase is negligible, although at higher energies the
collision strength is affected. Z Q(LS) at energies
X= 1.0, 1.6, and 2.2 is approximately 1.30, 0.65, and 0.20,
respectively.

2 S)-2 P). This transition exhibits a very large IC ef-
fect. In Fig. 3 we have plotted the contribution to the col-
lision strength from l, l'(15 for Fe + and Mo + in LS
and IC coupling. The difference between the LS and the
IC is up to a few orders of magnitude at higher energies.
In fact, the IC collision strength would be enhanced fur-
ther if we were to include the CB contribution from I ~ 15
as well [the total Q(IC) is given in Tables IV—VI]. The
change in the transition from an LS forbidden to IC al-
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lowed has interesting implications in the resonance
enhancement in the collision strength for this transition
found by PNH. We had calculated earlier that in LS cou-
pling the rate parameter y(2'P~2 S) would be enhanced
by up to about a factor of 5 due to resonances at 10 K in
Fe +. However, in IC the transition is found to be a
strong optically allowed one and the background scatter-
ing cross section is much larger than before. Therefore
the relative enhancement due to resonances is expected to
be much smaller. In paper II we give the IC and the reso-
nance contributions.

FIG. 3. LS and IC collision strengths for the transition
2 Si-2'Pi, summed over the first 15 partial waves, for Fe + and
Mo~+.

n'So —n''So. The term-coupling coefficients, as de-
fined in Eq. (7), depend on the coefficients of diagonaliza-
tion of the nonrelativistic Hamiltonian as well as the
Breit-Pauli Hamiltonian, which includes one-body opera-
tors (mass-variation and the Darwin terms). Thus, config-
uration interaction between different complexes affects the
total eigenfunction representation of states n'So through
mixing between the three configurations ls, ls2s, and
ls 3s. Differences are therefore found between the LS and
the IC values for transitions 1'S0-2'So, 1'S0-3'So, and
2 So-3 So. This problem has been commented upon by
Jones' and by Sampson et al. Since there are no fine-
structure type interactions that would cause the differ-
ences, we think it is more accurate to substitute the LS
values for these three transitions in Tables IV—VI (as has
been done). Sampson et al. do not allow for configuration
mixing between the states involved and therefore their LS
and IC values are identical and are found to be in reason-
able agreement with the present LS values (see Table VII).

2 P, -2'So. Sampson and Clark' found a large
discrepancy for this transition between their calculations
and those of Jones' for Fe +. The present value (Table
VII) is fairly close to the former, confirming that Jones' s
value [9.83(—3) at 676 rydbergs] is in error. Jones's calcu-
lations for the lower partial waves extended up to l =9
whereas the present ones go up to I =15. We are not
therefore able to isolate precisely the cause of the error,
but it appears that it lies mainly in the CB summation
where Jones's line strength is approximately a factor of 2
lower compared with the present one (see Table II), which
is in agreement with that of Sampson and Clark. Our

TABLE VII. Comparison of nonresonant collision strengths with earlier calculations.

Transition

1 Sp-2 Si
1 Sp-2 So

1 Sp-2 Sp(I S)
1'S -2'Pi

1 Sp-2 Pi (LS)
1'Sp-3 Pi
1'So-3 Pi
2 Pi-2'Pi
2 Pi-2 Pi
2 Po-2 P2
2 Pi-2 P2
23P i-2'Sp
2'P, -2'Sp
2 Si-2 Pi
2 Si-2 Sp
23Si-33Pi
2'So-3'Pi
2 Si-3'Pi
2 Pi-3 Si

X'

1.4
1.4
1.4
1.4
1.4
1.0
4.0
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.0
1.0
1.0
1.0

~Pb

2.42( —4)
7.45( —4)
8.42( —4)
3.45( —3)
3.81(—3)
2.78(—1)
1.11(0)
1.55(—2)
3.87(—3)
6.94(—3)
1.86(—2)
7.00(—2)
1.04(—3)
3.78(—1)
1.36(—3)
5.18(—3)
4.58(—3)
1.54(—3)
1.02(—3)

Z =26
~Jc

2.37(—4)
7.34(—4)

3.44( —3)
3.78(—3)

1.36(—2)
3.77(—3)
6.45( —3)
1.74(—2)
9.83(—3)
7.71(—4)
3.93(—1)
1.33(—3)

2.48( —4)
8.94(—4)
8.94(—4)
3.77(—3)
4.05(—3)
2.65(—1)
1.17(0)
1.52( —2)
4.15(—3)
6.66(—3)
1.82( —2)
7.45( —2)
8.51(—4)
3.89(—1)
1.41(—3)
5.53(—3)
4.73(—3)
1.61(—3)
1.06(—3)

1.2
1.2
1.2
1.33
1.33
1.0
4.0

1.0
1.0
1.0
1.0

Z =42
n'

1.06(—4)
2.05(—4)
2.62( —4)
1.04( —3)
1.48( —3)
1.81(—5)
1.47(—4)

1.90(—3)
1.60(—3)
8.62( —4)
3.74(—4)

~spc

1.11(—4)
2.84( —4)
2.84( —4)
1.18(—3)
1.45( —3)
8.84( —5)
1.76(—4)

1.84( —3)
1.54( —3)
8.90(—4)
3.93(—4)

'X is in threshold units.
P, present work.

'J, Jones (Ref. 12).
SPC, Sampson, Parks, and Clark (Ref. 21); SC, Sampson and Clark [Ref. 14, approximation p 2, Eq.

(66)].
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partial collision strengths, at 676 rydbergs above the
ground state, are 1.10(—2) and 5.79 for QI o and

,5 oo, respectively, compared with 6.44( —3) and
3.39(—3) for gl 0 and gl 9 obtained by Jones.

2 S~ —2 P~. We expect some significant differences be-
tween the present IC calculations and our previous L,S cal-
culations (PNH). In the LS scheme we obtained the f
values for 2 S-2 I', upon Z extrapolation from Z & 10, to
be 2.73(—2), 2.06(—2), and 1.66(—2) for Fe +, Se +,
and Mo +, respectively. These values (quite different
from the ones in Table II) were used by PNH to sum over
the large contribution from I ~ 15. The present results,
summed over the fine structure, i.e., g~ oQ(2 S~ 2PJ),-
are 1.02(0), 5.50( —1), and 3.37(—1), respectively, for the
three ions at X=1.2 in threshold units. The PNH values
at the same energy for Q(2 S—2 P) are 1.18(0), 7.20( —1),
and 4.90(—1), respectively. Of course, the differences be-
tween the two calculations are larger, in percentage terms,
if the fine-structure collision strengths are compared with
the ones obtained from the L,S collision strengths with
simple statistical weight assignments.

1'So-3 P&. In Fig. 4 we plot the collision strengths for
this transition for all three ions and compare with the cal-
culations for Fe + and Mo + by Sampson et al. The
difference between the two sets of results is larger than for
1'So-2 P&, particularly in the high-energy region for
Mo +. The discrepancies are probably due to different
oscillator strengths used for the contribution from the
high partial waves. In the case of Mo + some difference
is also found in the region just above threshold, arising
from the contribution from low partial waves. The max-
imum discrepancy is about 12% at the last point of com-
parison in Mo +.

B. Previous calculations

The two sets of calculations' ' ' already mentioned
are available for detailed comparison for a number of
transitions considered here. In Table VII we select and

present a few of these according to the different types of
transitions, i.e., from the ground state, hn =0, b,n&0, etc.
Also, the comparison is made at different energies (in
threshold units) for Fe + and Mo +. The overall agree-
ment is fairly close, confirming the expectation that for
ions as highly charged as these, the Coulomb-Born ap-
proximation (used in Refs. 14 and 22) and the DW (used
in Ref. 12 and the present work), yield similar results.
The high partial waves for optically allowed transitions
are treated in the CB approximation in all calculations.
The one difference that exists between the different sets of
calculations is due to different eigenfunction representa-
tions. Here again, the final effect on the collision
strengths is slight, since configuration interaction dimin-
ishes as the ion charge increases.

V. CONCLUSION

Nonresonant IC collision strengths are computed for
Fe +, Se +, and Mo + in a 9 I3W approximation.
Close-coupling calculations were also found to agree with
the DW ones for l (4 showing that, even for low partial
waves and near threshold energies, the coupling effects on
the background excitation cross sections are negligible (the
CC and the I3W results are too close to be given for de-
tailed comparison). There is good agreement between the
results presented here and available earlier calculations.
However, the aim of the calculations reported here in pa-
per I is not merely to compute IC collision strengths (al-
though these in themselves should be useful for practical
applications for a number of transitions), or to provide a
check on previous such work, but also to obtain scattering
matrices in order to analyze detailed resonance effects in
highly charged ions that are now known to be important,
and to incorporate these in the total scattering calcula-
tions. That is the subject of paper II.
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