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Angular distributions of photoelectrons from resonant two-photon ionization via the 2p *P,,, or
2p *P;, state of lithium have been measured. The quantum beats of hyperfine levels strongly affect
the angular distribution. Three microscopic parameters are extracted: the ratio of the radial matrix
elements from 2p excited states to /=0 and 2 final states, the difference of the phase shifts of the
continuum electrons in final channels, and a time-dependent parameter for hyperfine interaction.
The experimental results agree with theoretical quantum-defect calculation and extrapolated

bound-state data.

INTRODUCTION

The study of resonant multiphoton ionization can pro-
vide information concerning ground and excited states and
the interaction of free electrons with atomic or molecular
species.

Information available from measurements of total pho-
toionization yields includes ionization potentials, transi-
tion probabilities to excited states, and total photoioniza-
tion cross sections. Measurements of the angular distribu-
tions of photoelectrons, the subject of this paper, provide
information concerning the transition amplitudes from
bound excited states to the individual free partial waves,
the difference in phase shifts of these partial waves, and
some characteristics of the radiation fields causing the
transitions. Additionally, pulsed excitations can be used
to generate coherent superpositions in the intermediate
states. An example occurs when pumping the hyperfine
states of an atomic level. In this situation, the angular
distribution is affected by the hyperfine splittings, the
laser-pulse durations, and the time between excitation and
ionization.

In the theoretical section of this report, the general
form of the angular distribution of photoelectrons from
resonant two-photon ionization is developed, based on that
form of density-matrix formalism called the Liouville rep-
resentation. The influence of hyperfine levels is also dis-
cussed.

In previous reports,”? the angular distribution of pho-
toelectrons resulting from the resonant two-photon ioniza-
tion of a sodium atomic beam was studied. In the experi-
ment reported here, an analogous study was made of lithi-
um. Lithium atoms were excited to the 2p2P;,,
or 2p2P,,, state by linearly polarized light from a
tunable-dye-laser pulse and then ionized by a pulse of
linearly polarized light from a nitrogen laser. The angular
distributions of photoelectrons were measured as functions
of the angle between the two polarization directions, and
as functions of the time interval between the two laser
pulses. Three microscopic parameters are extracted from
the data: the ratio of the radial matrix elements
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2p—e€s and 2p—ed, the difference of the s- and d-wave
phase shifts, and a parameter associated with coherent
pumping of the hyperfine levels.

REVIEW OF THEORY

For a resonant two-photon process involving a transi-
tion from initial states i to final states f, the differential
cross section is proportional to

_Zf ‘2<¢f|V2|¢a><¢a|V1|¢i)|2'

To avoid the complexity of summing over all the magnet-
ic sublevels, it is convenient to use the density matrix and
observable operator formalism known as the “Liouville
representation.”® The theoretical method introduced to
interpret our measurement of angular distributions of
photoelectrons from resonant two-photon ionization of Na
with hyperfine interaction!? is presented in this section.
The method was previously outlined very briefly, but the
following discussion develops it in enough detail to be
used by others. By imposing symmetry constraints on the
density operator and detector operator levels directly, the
phenomenological equations can be derived in a particu-
larly straightforward way.

The purpose of this section is to formulate the angular
distributions of photoelectrons from resonant two-photon
ionization of atoms using the irreducible Liouville repre-
sentation. A related result, the distribution of spin polari-
zation from two-photon ionization with hyperfine interac-
tions, was derived in a related density-matrix formalism
by Nienhuis et al.* This formalism could be used to
derive the present result but the explicit inclusion of the
detector operator, as done here, makes the derivation and
the final expressions more transparent. This is especially
important as the complexity of the problems increases, for
example, to molecular photoionization.

The density operator is expressed in the irreducible
Liouville representation as a ket vector:
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and the subscript L of the ket refers to Liouville represen-
tation. The ((jj'VJM |p(t)); amplitude of the
| (ji’YJM); basis vector is equivalent to Fano and
Racah’s  definition® of the statistical  tensor
[(j | p(2)] )15 Equation (2) shows that a knowledge of
the density matrix is entirely equivalent to a knowledge of
the Liouville amplitude of the density operator.

Similarly, the observable & may also be represented by
a covector ; (& | with the components ; (& | (jj’')}JM ) in
the ; ((jj')JM | basis. The expectation value of the opera-
tor & may then be viewed as a scalar product of two vec-
tors & -p(t) or (& | p(t))y.

The time evolution of a density operator can be
described by the equation®

|p(8)) =e ™% | p(0)) L =5 | p(0)), , @

where L is the Liouville operator and % =e ~*L*/# is the
]
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transition operator in Liouville representation.
From Egs. (1) and (4) we obtain an expression for the
expectation value of the observable

(&)=(& |p(t)),

= 2
ji’ji' ’jfrj;'
My T, M
X Ui Mg | 2 | Giji WiM; )

L& | Grip WMy )

X Giji WiM; | p(0)) . (5)

The computational advantage of the Liouville represen-
tation appears here: One obtains probabilities or intensi-
ties directly rather than amplitudes. This is especially im-
portant for simplifying problems with many coupled an-
gular momenta. With suitable metrics, the spaces of ob-
servables and density states are distinct but dual to each
other, conventional Racah algebra can be used, and a
theorem, precisely analogous to the Wigner-Eckart
theorem, holds for intensities just as the Wigner-Eckart
theorem holds for the amplitudes.®’

The following discussion summarizes the theory of
two-photon ionization in the Liouville representation in
order to interpret the experiments described in the subse-
quent sections. Specifically, the expression for the angular
distribution of electrons resulting from resonant two-
photon ionization is derived.

From Eq. (5) and the Wigner-Eckart theorem, the angu-
lar distribution can be expressed as

X((lzl’Z )Lz,(SzS;’)‘ )Sz,(lz,l’z )IZ;JllyH(lala)Ia’(Ja.]a )Ja,(ll)Pl,(ll)Pz;J>L

X igig)y,(Gaja (1P, (11)Py;JM | p(0)), (6)

where [, (I5) and s, (s3) are the orbital and spin angular momentum of the free electron, i, (i5) is the angular momen-
tum of the ionic core left, and i, and j, the initial nuclear spin and electron angular momenta, respectively. The dipole
approximation is also assumed and P, and P, are the polarization moments (0 or 2 for linearly polarized light) of the
first and second photon, respectively.

The Liouville amplitude describing an electron detector with unobserved nuclear and electron spin is given by’

2 (1, 15 L,
00 O

(21, +1)(215+1)
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)]
The Liouville amplitude describing two different polarized photons and an isotropic atomic state is given by
igig)y,(Gaja W, (1P, (11)Py;JM | p(0)) .
= 3 [(2j,+1)2i,+ 1] V(11)P;m, | pp, Y ((11)Pym, |pp2)2(P1m1P2m2 [JM) . (8

my.my

The irreducible component of the photon state {(11)Pm |pp ) can be calculated from Eq. (2) if the ellipticity and the
polarization direction of the light beam are known.®
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For this two-photon process the reduced transition matrix of Eq. (6) can be decomposed into three parts: ionization

&5, hyperfine interaction %, and excitation .#;. Thus

((115)L,(55)0,(i3i2)0; L, | |7 | |(igi )0, (aja )0, (1P, (11)P2;J )
= ((1315)L,,(55)0,(i3i3)0; L | |7 ]| (1j1 W 1,(i1i ) )OCI1)Py; Lo ) p € (Gi1i )0, (1 ji W 13 F 1 ||l 1G181)0,(i1j 1) 13 F 1 ) p
X (01i1)0,(j1j 1) 13F1 | 7110160, (jaja )0, (YDP 3Py )85 1, 8,1, 8P, F,
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where [j]=(2j +1) and {j’||r||j,;j') is the reduced tran-
sition matrix in Hilbert space.
The time-dependent parameter W (j;,?) has the follow-
ing expression:
2

Ji1 J1 i .
W= Unfr1|i 0 0 e T o)
hr £ fa

where f is the total angular momentum and I is the life-
time of the excited state.

Thus, the density-matrix elements connecting different
hyperfine levels precess with angular frequency wgp
=(Eys—Ey)/# between excitation and ionization, where
E; and E are the energies of hyperfine levels with total
angular momentum f and f’, respectively. If the dura-
tions of the light pulses are not negligible compared to the
precessional periods 27/, the effects of time evolution
must be constructed by suitable convolutions of W (j,?)
[Eq. (10)] with the intensity profiles I(¢;) and I(¢,) of
both laser pulses. The resulting functions
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;

¢
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FIG. 1. System geometry. Electron trajectory is defined by 6
and ¢. Second photon polarization axis defines the z axis. Axis
of the first photon polarization lies in the x-z plane at an angle 9
from the z axis. Lithium beam traverses the x axis.
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become key quantities that can be computed from theory
or treated as phenomenological parameters.

In the experiments described in the next section, atomic
lithium 2s S, ,2 was resonantly excited to the 2p 2P,
or 2p *P, ;, state and then photoionized. The laser beams
were collinear and linearly polarized with an adjustable
angle 77 between the polarization directions. For conveni-
ence the photon propagation direction is defined as the y
axis and the polarization direction of the ionizing photon
is defined as the z axis (see Fig. 1), so 6 is the colatitude
with respect to the axis of polarization of that photon.

The intensity of the electron signal in the {(0,¢) direction
assumes the general form
do

9 CooPoo(cos0) + CyoPyo(cosB) + Cy1 P,y (cosh)cosd

+ C22P22(COSG)COSZ¢ + C40P40( cos6)

+ C41P41(cosO)cosd + Cyp Py, (cosO)cos2e (12)

where Pr,s(cos0) is the associated Legendre function. The
coefficient C;,, can be expressed in terms of the micro-
scopic parameters, thus,

Coo=+{[2X(0,0)+(2—3sin’n)X(2,)]d 3

F[4X(0,0+ +(2—3sin’n)X(2,0]d3}
Cao= 2 {[ —4X(0,0)+2(sin’n —2)X(2,0)]

X dodocos(89—5,)

+[2X(0,0)+ (3 — sin’n)X(2,01d3} ,
Ca1 =+ —dod,cos(8o—8,) + 2d3IX(2,1)sin(27)
Cp=~+(3d3sin?n)X(2,1) ,
Cao=35(2—3sin’n)d3X(2,1) ,
Ca1=55sin(29)d3X(2,1) ,
Cyr=~sin’nd3X(2,1) ,
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where, as previously described, the X(J,?) factors are time
dependent and account for the hyperfine interaction in the
intermediate state. The d; and §; factors for the /th par-
tial wave correspond to the dipole radial matrix element
and the phase shift, respectively.

If the measurement is confined to the plane perpendicu-
lar to the propagation direction of the light (¢=0,7), the
general form Eq. (12) can be reduced to only five indepen-
dent functions.'

A special case results when the 2p 2P| ,, state is pumped
with linearly polarized photons. The intermediate state
(%P, ) is isotropic so the resulting two-photon ionization
expression reduces to the same form as the one-photon
case:

do

20" (d}+2d3)Pyy(cosh)

+2[d3 —2dodcos(8y—8,)1Po(cosO) .

EXPERIMENTAL

The general feature of the apparatus used to measure
the angular distribution of photoelectrons has been previ-
ously described,! although some modifications have been
made for the experiments with lithium. In particular, the
energy of the photoelectrons from lithium 2p 2P is much
lower than those from sodium 3p 2P with the same 3371- A
ionizing radiation, so it is more difficult to preserve linear
trajectories of the photoelectrons from lithium.

An NRG nitrogen laser triggered at 60 Hz was used in
this experiment. Part of the nitrogen laser beam pumped
a dye laser tuned to the desired lithium excited state, and
the other part of the nitrogen laser beam was adjusted to
the desired time delay and then used to ionize the excited
atom. Each laser beam passed through its own linear po-
larizer and moving polarization rotator. The collinear,
linearly polarized beams intersected the atomic lithium
beam inside the vacuum chamber.

For the nitrogen laser beam the polarizer is a calcite
prism and the half-wave device is a quartz half-wave plate
cut specifically for 3371 A. For the dye laser beam the
polarizer is a Wollaston prism and the half-wave device is
a quartz Fresnel rhomb. Each half-wave device is in a ro-
tating mount driven by motors synchronized to line fre-
quency; the half-wave devices rotate at 1.5 Hz so that the
axis of polarization of the linearly polarized light rotates
at 3 Hz. Thus, with a fixed detector, the angular distribu-
tion of photoelectrons at ten different angles, each channel
differing by 18° from the one preceding it, can be collected
six times per second.

The photoelectrons were detected by a Galileo channel-
tron electron multiplier in the plane perpendicular to the
propagation direction of the light and containing the col-
lision region (i.e., ¢ =0). The electron counts were accept-
ed only during a gated window of 50-nsec duration and
were stored into a CAMAC input register. The data were
then collected by a Nova 1220 minicomputer.

The homemade dye laser has a resolution of about 0.5
A at 6710 A and the fine-structure splitting of the 2p P,
and P;/, levels of lithium is 0.15 A. To pump only one of
the fine-structure levels, a coated, 2.5-mm-thick etalon
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FIG. 2. Schematic of the laser system. G, grating; E, etalon;
T, telescope; L, cylindrical lens; C, dye cavity; W, wedge prism;
H, heat pipe; D, photodiode; P 1,P2, polarizers; R 1, half-wave
Fresnel rhomb; R 2, half-wave plate.

with 87% reflection at 6710 A was used. The resolution
with the etalon is approximately 0.05 A. To increase the
dye-laser output power, a Hiansch design!® with an oscilla-
tor and amplifier in a single cavity was employed as is
schematically depicted in Fig. 2.

The dye used was DCM in dimethyl sulfoxide and the
concentration of ~1.0X 1072M was used to obtain max-
imum lasing power. A wickless lithium heat-pipe oven
filled with 50 Torr of argon acted as an absorption cell for
tuning the dye laser to the resonance absorption frequen-
cy.

The laser-beam—lithium-beam interaction region was
located at the center of two concentric copper spheres in
which screen-covered bands allowed photoelectron pene-
tration. The potential of the inner copper sphere was
maintained at ~ —50 V relative to the grounded outer
sphere, so the signal electrons were accelerated but main-
tained their linear trajectories. The channeltron electron
multiplier subtended a solid angle of ~2.6X 1073 sr. In
front of the electron detector a small screen biased at — 15
V eliminated spurious electrons. The copper spheres were
cleaned with dilute HCI before each run to reduce the
stray electric fields from surface charge buildup.

To preserve the linear trajectory of the slow photoelec-
trons, the entire apparatus is surrounded by three sets of
Helmbholtz coils which reduce the magnetic field to a few
milligauss at the interaction region. At this level, the
0.13-eV electrons experience less than 2° deflection, due to
magnetic fields, along their trajectories to the electron am-
plifier.

The channeltron counting system saturates at 60
counts/sec, so the count rate was kept ~5 counts/sec to
minimize saturation effects which, additionally, were ac-
counted for in the data reduction. At this count rate typi-
cal signal-to-background ratios were about 100:1 and each
measurement took 3—4 hours. Replicate experiments
were performed on different days, with fresh oven
charges, to ensure the reliability of the data.
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FIG. 3. Angular distributions of photoelectrons for coin-
cidence pulses (At =0) with different %: (a) 25.7°, (b) 77.3°, (¢)
88.6°, (d) 176.8°. Solid curves show least-squares fits of the mea-
sured angular distributions to Eq. (14). Scaling corresponds to
the total number of experimental counts—the sum of the experi-
mental peaks—being set to 1. Dashed curves represent the an-
gular distributions expected from the average values of the mi-
croscopic parameters. (a) Shows the uncertainties of the data
points (statistic X2=0.578) which is typical for all of the experi-
mental data.

DATA ANALYSIS

Each angular distribution measured as described above
was corrected for background and fit by a nonlinear
least-squares method to Eq. (12). Typical experimental
data and least-squares fits are shown in Figs. 3 and 4, the
solid lines represent least-squares fits to the individual an-
gular distribution while the dashed lines represent simula-
tions computed from the average experimental values
determined from all of the experimental runs.

Our experimentally determined values for the difference
in the phase shifts and the ratio of radial matrix elements
are

cos(8p—98,)=—0.38+0.04 ,
dy/d,=0.43+0.15 .

The experimental results for roughly the same polariza-
tion angle n with different time delays are shown in Fig.
4. The mean values of X(2)/X(0) for the time delays be-
tween the laser pulses are (in nsec)

X(2)/X(0)=0.84+0.07 at At~0
=0.5740.05 at At~20
=—0.073+£0.020 at At~40.

The time variation of X(2)/X(0) is shown in Fig. 5.
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FIG. 4. Angular distributions of photoelectrons for roughly
the same angle 7 with different time delays. (A) 7=135.9°,
At =0 nsec; (b) =130.5°, At =20 nsec; (c) n=130.9°, At =40
nsec. (See Fig. 3).
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FIG. 5. Theoretical curve for X(2)/X(0) with the experimen-

tal values for three different time delays.
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DISCUSSION

The phase shift in the continuum wave of the (0.134-
eV) photoelectrons and the ratio of radial matrix elements
connecting the 2p excited state and the s and d continuum
states have been directly measured. In addition, the effect
of the hyperfine interaction on the angular distribution of
photoelectrons has been observed. Naturally, we wish to
compare the results with theoretical predictions.

From the quantum-defect theory,!! the total phase shift
8, for a continuum wave is given by a combination of a
long-range Coulomb phase shift and the more interesting
short-range phase shift:

§;=argl(l +1—i/k)+mu,(e),

where k is the electron’s momentum in atomic units and
uile) is the extrapolated quantum defect which is practi-
cally constant for electron energies near threshold. From
bound-state data,'> one expects py=0.400 and pu,
=0.00192, leading to §,—8,=4.097 for the 0.134-eV
photoelectrons. Also theoretical predictions'> of u, and
M, at threshold indicate a value of §,—&, between 4.083
and 4.287. These results are in agreement with our experi-
mental value of 4.32+0.04.

The ratio of the radial matrix elements d,/d; is related
to the ratio of the partial cross sections o,/0, as follows:

0'0/0'2: %(do/dz )2 .

From the calculations of Aymar et al.'* we infer a ratio
of cross sections to be approximately 0.11 which gives for
dy/d, a value of 0.47 in agreement with our experimental
value of 0.43+0.15. In spite of its rather substantial uncer-
tainty, our value of dy/d, is consistent with the assign-
ment by Aymar et al. of the total cross section of ioniza-
tion of the lithium 2p state as being largely hydrogenic in
character.

]
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The theoretical curve for X(2)/X(0) shown in Fig. 5 was
obtained from Eq. (10) by assuming Gaussian time pro-
files for the laser pulses and by using the reported value!’
of the hyperfine splitting constant for "Li, a3/, = —3.055
MHz and bgy,q=—0.221 MHz. Also considered was the
effect of the natural abundance (7.42%) of °Li using a
suitably scaled value of a;,,. Assuming a mixture, we
compute values of X(2)/X(0) of 0.975, 0.584, and
—0.0144 for the delays, 0, 20, and 40 nsec, respectively.
The resulting agreement between the experimental results
and theoretical values is excellent. The small discrepancy
for the delay of O nsec may be due to deviation from the
Gaussian shape of the laser pulses. The value of
X(2)/Xx(0) is especially sensitive to pulse shape for coin-
cident pulses.
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APPENDIX

In this appendix we list several equations involved in
the Liouville representation.

The time evolution of a density operator can be written
as

plt)=e ~Hin(0)eiH!
=Rp(O)RT .
Comparing this with Eq. (4), one obtains
Zp(0)=Rp(O)RT .

From Eqgs. (1)—(4), the transition matrix has the form

= 3 (=1 me T Grmpip—mj | T MM | fimifi —m{)jgmg | R | jim: ) Gimi R jpmg)

’
m;,m;

mf,m;

(A1)

Since R is a scalar operator, it is diagonal in j and m; hence we may use the Wigner-Eckert theorem to write

<jfmf'R ,jimi>=<jf|’R|lji)ﬁj,.jfamimf ’

(A2)

where the scalar quantity {j||R[|j;) is called the reduced matrix element of R.
Substituting Eq. (A2) into (A1) we obtain a theorem in Liouville representation precisely analogous to the Wigner-

Eckart theorem in Dirac representation:

g My | 1 Gidi i Y= Gl IR Y 1R 17 Y850, 8na,0a,85,5,8

= U Wl NGidi Wi 185,580 5185, -

Jilf J,-j' Jilg=jlj
f f

(A3)

Similarly, the scalar quantity {(jj')J||*||(ij’)J ) is called the reduced matrix element of .% in the Liouville repre-

sentation.

Finally, one other equation used in this paper is the separation and expansion of the reduced matrix element in irredu-

cible tensors:
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((Jc.]r.l‘ )Jc | lyl l(jaja; )Ja’(jbjllv )Jb;Jc )L = <(]c.’c: )Jc | |f| I((.’a]b, )Jc’(.’t;]l; ).Icl )Jc )L((jajb )]c’(.]t;]I; )Jc' ;Jc l (jajr; )Ja:(jbjl; )Jb;Jc)

= el IR jadvsic Y adbsie \R TG eiiTado 12 s 7 it

Ja Jb Je
(A4)
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