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Rotational energy of the hydrogen molecular ion in a magnetic field
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A general method which combines hypervirial relations with the Hellmann-Feynman

theorem and perturbation theory is applied in order to calculate the rotational eigenvalues of
the hydrogen molecular ion in a magnetic field. Analytical expressions as well as numerical

results are presented for both low and high field strengths.

I. INTRODUCTION

(3a)

Htt — p'r, —sin '8 sinO —M sin 8

+ V(8), (3b)

where L and M are the quantum numbers associated
to the total angular momentum and its z component,
respectively.

In the zero-field case (y=O), the energy eigen-
values 8'L,M are well known:

Recent experiments on semiconductors motivated
a theoretical study of the hydrogen molecular ion
Hz+ in a magnetic field. ' The foiiti of the potential
function for the rotational-vibrational motion of
protons under the Born-Oppenheimer approxima-
tion was detetiriined by Larsen. ' Under certain con-
ditions, it is a fairly good approximation to write the
total potential for the proton motion in the form

U (x)+ V(8),
where x represents the displacement of the nuclei
from the equilibrium position r„and 8 is the angle
between the internuclear axis and the direction of
the applied magnetic field.

Using a least-squares procedure, Larsen fitted the
change in energy with 8, by means of the function

V(8)= (A~ +Bit sin 8)sin 8,
where A~ and Btt depend on the dimensionless mag-
netic field y. '

In a first approximation we can neglect the
rotation-vibration interaction. Under these condi-
tions, the rotational energy WLM is given by the
Schrodinger equation

WL,M Pr,——L*, L =L (L +1) .

In the small-y limit, V(8) produces energy shifts
which are easily calculated by use of perturbation
theory. On the other hand, for large y Larsen' ap-
proximated V(8) as 2+8 . The function +LM(8)
behaves like an harmonic oscillator eigenfunction in
this small amplitude approximation.

The purpose of this paper is to determine the
eigenvalues associated with Eq. (3) both in the large
as well as in the low magnetic-field strength limits.
We will not consider any issue regarding the validity
of those approximations that lead to Eq. (3), because
our aim is this equation in itself. Besides, the accu-
racy of our calculations might probably be much
higher than the aforesaid model for the H2+ mole-
cule, as will be seen later.

Our interest about this problem is motivated by
the fact that Eq. (3) appears frequently in several
problems of physical concern. For example, rota-
tional energies of diatomic and symmetric-top
polyatomic polar molecules in an electric field can
be calculated by solving an equation similar to
(3) 2 —16

This paper is organized as follows. In Sec. II we
develop the hypervirial relationships (HR) that satis-
fy second-order differential self-adjoint operators in
one dimension. Sections III and IV deal with the
combination of HR with perturbation theory to cal-
culate the eigenvalues corresponding to Eq. (3) in
the low (y & 1) and high (y) 1) field strength cases.

The method that relates the HR with perturbation
theory [termed hypervirial perturbative method
(HPM) in this paper] was first developed by Swen-
son and Danforth' and then applied by various au-
thors to study many different problems. ' ~s Not-
withstanding, the version to be given below is more
general than previous ones and, consequently, it al-
lows us to apply the method to a larger class of
problems. The present generalization of the HPM is
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due to the fact that the HR to be used include, as
particular cases, those employed before. ' 5 This
point is described at length in the first part of this
Pspcr.

Finally, in Sec. V we discuss some of the results
obtained in previous sections as well as other prob-
lems of current physical interest which are tractable
by means of the HPM.

II. CxENERAL HYPERVIRIAL RELATIONS

The stationary states of the majority of one-
dimensional nonrelativistic problems in quantum
mechanics can be obtained from the resolution of a
second-order differential equation with the general
or&1

LV(x) =ER (x)%(x), a (x (b

(
—(fP' —2Pf')(Q E—R) +((PF')') i
P 1

+ (f(ER —Q)') i
——0 (9)

with
b

&A), = jl eAedx . (10)

In what follows, we will assume that 4' is noriiial-
ized with the metric R (x)dx, i.e.,

f '@'(x)R(x)dx =1

and the definition
b

(w ) = f ea ez dx, (12)

holds for the expectation value of any linear opera-
tor A.

III. LOW-FIELD CASE

L being a self-adjoint operator

L = P(x) +Q(x) .d d
(5b)

The stationary Schrodinger equation (3) may be
rewritten in the general fornI (5) if we perfoiixi the
identifications

L,f (2Pf ' fP—')(L —Q—)+[L,F]

For any differentiable function f(x) we know that
a =0, b =n., P(8)= —sin8,

R (8)=sin8, E =pr, WI~

Q (8)=M /sin8+ pr, V(8)sin8 .

(13)

+ (PF')' fQ', —
Since

~
Aii

~
) i Bit ~, we restrict ourselves just to the

first terin of Eq. (2), i.e.,

Q(8)=M /sin8+A. sin 8, A, =IJt,r, AIi . (14)

[A,B]=AB —BA

F'(x) = , [(fP'/P)' f—"] . —

As usual, S'=ds/dx. When the function
P[%'(f%')' —f%" ] is null in the points a,b, it fol-
lows from Eq. (6) that

This restriction is really not necessary nor funda-
mental, because the HPM allows us to treat both
teriris in Eq. (2) without any trouble. The only pur-
pose in choosing Bli ——0 is to simplify and shorten
the presentation of the method.

Substituting (13) in (9) with

f(8}=sin8cos"8,

we deduce the equation

[2(n +1)E n(n /2+3n/2—+1)]A'"+"+n (n +2M —2E)A'" "— (n —1)(n —2)—A'"
2

+A, [2(n +2)A '"+ ' —4(n + 1)A '"+"+2nA '" "]=0,
where

A'"'=(cos"8) .

(16a)

(16b)

In the present case (low field strength), A, is small enough so as to expand A '"' and E in a power series in A, :

E = g E'"V E"'=I,
s=0

(17a)

(17b)
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The Hellmann-Feynman theorem

BE/a~=(sin 8) =1—A( '

allows us to write E"' in terms of A,' '&.

Finally, replacing (17) and (19) in (16) we get the following recursion relationship:

S

[2(n +1)L* n(n—/2+3n/2+1)]A, '"+"+2(n +1) g j '(5o& &
—AJ & )A,

'" J"

(18)

(19)

+n (n +2M 2L*)A—,'" ' 2n —g 1 '(6o
&

—A' '&)A,'" "— (—n —1)(n —2)A, "
j=l

—4(n +1)A,'"+& "+2(n +2)A,'" ~
'+2nA, '"

&

"——0 . (20)

This last forinula enables us to calculate all perturbation corrections E" of any order. For example, in the
cases s= 1 and 2 we have

E"' =2(L*+M' —1)/(4L ' —3),
E' '=[(4L*—3) (30—8L*)] '( —16L* +60L" —68L*+96L*M 104L*M ——80L*M

+120M —132M +12) .

(21a)

(21b)

In Table I we present the first eigenvalues corre-
sponding to the problems of (13) and (14) calculated
by way of the HPM [E(L,M)] for several A, values.
In every case we have included a sufficient number
of perturbation corrections, N, to assure the stability
of the last decimal place. We have determined the
same eigenvalues by diagonalizing a large enough
Hamiltonian matrix in the zeroth-order basis set

~
LM ). Since it is a standard procedure" we do not

detail it here nor do we give the matrix elements.
Both calculations are coincident up to the last de-
cimal place reported in Table I. It is found that for
a given N value the exactness of the perturbative
eigenvalues increases with L. On the contrary, if we
want to include larger L values in the variational
calculation, it is mandatory to modify the basis set.
This fact constitutes a clear advantage of the pertur-
bation method. In addition to this, the HPM gives
us analytical approximate expressions for eigen-
values.

Q (8)=M /sin8+ k(sin38+a sin 8),

a=B~/A (22)

The procedure developed in this section may be ap-
plied to this actual problem without any extra modi-
fication being necessary. In addition to the 1,
power-series expansion (17), this case admits an ex-
pansion in A, and P (=A,a) power series through the
application of the double perturbation theory.
Both methods yield identical results but the second
possibility may be more appropriate when the mag-
nitudes of A, and a are very different from each oth-
er.

l

The second terin of the potential function (2) may
be included without any further difficulty within
our computational scheme by just writing Q(8) as
follows:

TABLE I. First rotational energy levels of the hydrogen molecular ion in weak magnetic
fields.

0.2
0.4
0.6
0.8
1.0
2.0
3.0

E(0,0)

0.132 74
0.264 27
0.394 57
0.523 62
0.651 40
1.270 61
1.855 67

E(1,0)

2.079 73
2.158 91
2.237 55
2.315 64
2.393 21
2.773 10
3.140 12

E(1,1)

2.159 82
2.31926
2.478 33
2.63701
2.795 30
3.580 71
4.355 40

E(2,0)

6.095 65
6.192 13
6.289 47
6.387 69
6.486 80
6.99648
7.531 02

E(2, 1)

6.114 13
6.227 95
6.341 45
6.454 65
6.567 52
7.127 20
7.678 96
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IV. STRONG MAGNETIC FIELDS where

d2

dx 2dx x 4

E' —, g F, +—2a'+ x'+
s=0

At the same time as the field strength increases,
the molecule tends to align along the direction of the
applied magnetic field, and the rotation becomes an
oscillation around 8=0 [where V(8) attains its
minimum value]. The larger the field strength is,
the smaller the oscillatory amplitude that results.
The force constant corresponding to these rotational
oscillations increases with the increase of the field
strength, as does the energy.

At sufficiently large magnetic fields, the zero-
point rotational oscillations around 8=0 have
higher energy than the zero-point vibrational energy
evaluated at the same field. Under these cir-
cumstances, the rotational energy can represent a
significant fraction of the molecular dissociation en-
ergy. '

The HPM may also be applied, without any fur-
ther difficulty, in the limit of high magnetic-field
strengths whenever Eq. (3) is properly modified.

The change of variables 8=(ox)'~, with
lT=A, '~, allows us to exPand Hj( in a o Power
series. When V(8) possesses the general form (2)
with Bz ——0, we obtain

X=(sin8)'~ VLM, (23b)

0E = — —Pr, WL,M, (23c)

s —3

F, = — 2C, ,+ g C, C.

F2 ———2C(), (23d)

Gs ——2D, + g D;D, ; I, G() —2D(), (23e)

( 1 )s+I 2(22$+I 1 )
C,=, D, =(»+3)! ' ' (2s+2)!

(23f)

Q =(4M —1)/16, (23g)

and Bs are the Bernoulli numbers.
Multiplying (23a) by x ' we obtain a self-

adjoint differential equation like that discussed
fol lllerly in Sec. II, Eq. (5), where P (x ) =x '

R(x)=x '~, and Q(x) is the remaining polynomi-
al.

+ P g G,(r'+'x' — X,
s=0

J

(23a)
The application of the procedure sketched in Sec.

III yields, in this case, the following result:

2N —1 s —1
X(n —2)+ X()v) X()v —I) + g y(2N +j 1 )G X (N+J' —I) g (2N +j+ 1 )F y(A'+ j+ I)

j=0 j=0
s

+E "'(2N 1)X,' "+(2—N 1) g E'J'X,'—",. "=0,
j=l

(24a)

where

j=o
(24b)

(25)
E~(j ) j E~(0)

j=0
n =2L —~M

~
+1, (24c)

(2 = —,(1—N)(2N —1)(2N —3)+2(N —1)$ .

(24d)

allows us to relate both sets of perturbation correc-
tions IX,' ') and IE'")I:

s —1.E"=—,', n„,—(t g (j+1)G,x,'J',
j=o

In a fashion similar to that in Sec. III, the
Hellmann-Feynman theorem

s —1

+ —, g (j+ )Fj+2X,'~+j ' .
j=0

(26)
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From Eqs. (24) and (26) we can calculate the whole
set of perturbation corrections in an analytical or
numerical way. After some algebraic manipula-
tions, we obtain the following expressions for the
first two energy corrections:

E'"=—,(n —M +1),
Ei(2) n (n2 M2+1)/32 . (27b)

V. SUMMARY AND CONCLUSIONS

The HPM developed in this paper makes up a
generalization of the original method first proposed
by Swenson and Danforth' and applied later with
some modifications ' by several authors. '

The greater general character of our proposal lies on
the HR (9) which includes all those formerly em-
ployed as particular cases. '

In Secs. III and IV we have shown that HPM is

In Table II we give the values of the ground-state
rotational energy W (= Woo) for several magnetic
field strengths (y), calculated in the zeroth-order
[W(0)], first-order [ W(1)], and second-order [ W(2)]
approximation levels, respectively. Units are the
same as in Ref. 1 so that W(0) corresponds exactly
to the haririonic-oscillator energy ER (0,0) of
Larsen's work. ' We have also added the A, and
E(0,0) (=pr, W~&) values in order to make a close
comparison between the results of Tables I and II.

The W(i) values of Table II show plainly that the
error introduced when one replaces V(8) by A+8 is
larger than 1% for those field strengths of the inten-
sity considered by Larsen. ' However, as we pointed
out before, the errors involved in the assumptions
which lead to Eq. (3) might be probably much
higher.

The addition of the term Basin 8 to the potential
function V(8) just modifies the polynomial Q(x)
slightly. Moreover, the HPM may be applied
without extra difficulties in the manner indicated
before. Since ~Bz

~
& ~A„~, the correction terms

associated to this new term in the potential function
will be even smaller than those calculated in this
section.

very useful to calculate the rotational energy levels
of diatomic molecules within uniform magnetic
fields. This procedure can be applied to handle both
the low as well as the high field strength limit, pro-
vided that the Schrodinger equation is properly writ-
ten. In the first case, our results compare favorably
with those obtained via the Rayleigh-Ritz variation-
al method. In fact, if the perturbation polynomial
converges for an Lo state, it also converges for any
other L state with L ~Lo. On the contrary, it is
necessary to modify the basis set in order to include
higher L states in the Rayleigh-Ritz calculation.

There is a large gap between the largest A, value in
Table I and the smallest one in Table II because it is
necessary to perform a careful numerical calculation
of higher-order perturbation terias and, perhaps, a
good summation technique in order to match the re-
sults of the A, and o power-series expansions
smoothly in the intermediate A, regime. Since our
goal is only to show how to generate the tei-ins of
these power series easily, we do not consider it ap-
propriate to discuss here the aforesaid calculation.

The HPM is especially suitable and useful since
knowing the approximate dependence of the energy
levels on the quantum numbers because it gives us
analytical expressions for all perturbation correc-
tions. Furthermore, the recursion formulas can be
easily programmed and it enables us to calculate
higher-order perturbation terms at once. This fact is
of great importance in those cases where sufficiently
accurate rotational energies are required.

Several quite rough simplifying assumptions were
needed for settling the model of the Hz+ molecule
just described. However, the great accuracy of our
eigenvalues are necessary because any improvement
of the model has to be followed by an improved
computation of its associated eigenvalues.

Another useful feature of the HPM consists in the
possibility of applying it to several other problems
such as diatomic and symmetric-top molecules in
the presence of uniform electric fields. This cal-
culation may be accomplished within the rigid rota-
tor approximation framework or, if necessary, the
polarization effects can be taken into account. In
both cases the computation of the rotational

TABLE II. Ground-state rotational energy level (L =M=0) of H2+ molecule in strong
magnetic fields. W(0), W(1), and W(2) include up to the zeroth-, first-, and second-order
correction, respectively, and the energies are given in units of 9F. Also E(0,0) =pr, W(2).

1

10
100

1000

163.84
196

1128.96
1608.01

W(0)

0.0091
0.1321
0.3643
1.7756

W(1)

0.0088
0.1274
0.3389
1.7534

W(2)

0.0087
0.1273
0.3388
1.7533

E(0,0)

24.580
26.982
66.193
79.194
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eigenenergies can be perforiaed in the way just
described in Secs. III and IV. To change the
quantum-mechanical rotating system under study
only implies modification of the polynomial Q, but

the procedure remains the same as was discussed be-
fore. At present, we are working in this particular
field and results are planned to be given elsewhere in
a forthcoming paper.
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