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For the computation of convolution integrals of 8 functions [Eq. (2.14) of E. Filter and E. O.
Steinborn, Phys. Rev. A 18, 1 {1978)jwhich are a special class of exponential-type functions, dif-
ferent analytic representations are available. We have investigated the numerical properties of these
convolution formulas and found out that results of sufficient accuracy can be obtained for molecular
calculations. We have also investigated the numerical properties of the corresponding one-center in-

tegrals. Some new mathematical properties of B functions that are essential for the understanding of
the numerical properties of the convolution formulas are derived.

I. INTRGDUCTIGN

It is generally accepted that the use of Slater-type func-
tions (STF's) or other exponential-type functions (ETF's)
as basis functions in molecular ab initio calculations
would be highly desirable. These ETF's are able to fulfill
the cusp condition' at the origin and they decline exponen-
tially for large distances just as the exact solutions of
atomic or molecular Schrodinger equations do. Accord-
ingly, ETF's are able to approximate atomic and molecu-
lar bound-state wave functions quite accurately.

Unfortunately, the notorious problems with the evalua-
tion of the molecular multicenter integrals which occur
inevitably in the linear combination of atomic orbitals
(LCAO) ansatz have so far prevented a systematic applica-
tion of STF's or other ETF's. Instead, molecular ab initio
calculations are now mainly performed by the use of a
basis constructed from Cxaussian-type functions (GTF's).
Although GTF's are not able to describe bound-state
atomic or molecular wave functions properly in the vicini-
ty of the nucleus or for large distances they have the great
advantage that molecular multicenter integrals over GTF's
can be evaluated relatively easily. As a result, sophisticat-
ed program packages can be developed which allow rou-
tine calculations of small or moderately sized molecules.
Nevertheless, it is felt that because of their unphysical na-
ture, GTF's are not able to yield extremely accurate ap-
proximations which for some applications seem to be
necessary, and that large-scale calculations may require
too large a number of GTF's. Therefore, in spite of the
undisputed success of GTF s in molecular ab initio calcu-
lations, the search for manageable analytical expressions
of multicenter integrals over STF's and other ETF's has
been continued.

In this article we are dealing with a special class of
ETF's which seems to be quite promising for use in
molecular calculations, namely, the reduced Bessel func-
tions (RBF's) and their nonscalar generalization, the so-
called 8 functions. In previous articles it could be shown
that RBF's and 8 functions possess relatively simple addi-
tion theorems, ' convolution or overlap integrals, ' and

Coulomb integrals. ' The advantageous properties of 8
functions in multicenter problems can best be explained in
terms of their extremely simple Fourier transforms. "'
Because of their simple Fourier transforms the four-center
exchange integral over 8 functions could recently be
evaluated with the use of numerical Fourier-transform
techniques. '

The extremely compact analytical representations for
the convolution integrals of 8 functions were also a very
important intermediate step for the derivation of new ex-
pansions of multicenter integrals and orbitals in terms of
complete biorthonormal' and orthonormal' ' sets of
functions.

Recently, Antolovic and Delhalle' investigated the nu-
merical properties of the convolution formulas of 8 func-
tions. They came to the conclusion that the numerical ap-
plicability of the convolution formulas of 8 functions is
severely limited because they found ranges of parameters
and quantum numbers where, according to their experi-
ence, no satisfactory computational method exists for the
evaluation of the convolution integrals. Consequently,
Antolovic and Delhalle recommended that some alterna-
tive methods for the evaluation of these integrals should
be sought.

There would be some very unpleasant consequences not
only for multicenter integrals of 8 functions, but also for
multicenter integrals of STF's, if the conclusions of Anto-
lovic and Delhalle concerning the numerical applicability
of the convolution formulas of 8 functions were correct.
For instance, when we investigated the analytical struc-
tures of the Fourier transforms of STF's and 8 func-
tions, ' we found that 8 functions should be considered as
a class of basic ETF's in momentum space. Consequently,
many multicenter integrals of STF's or other ETF's are
best expressed as a linear combination of the correspond-
ing multicenter integrals of 8 functions. One example of
considerable importance would be the case of overlap in-
tegrals of STF's. These integrals do not only occur in ab
initio calculations but are also the basis of most semi-
empirical approaches. If the analytical structures of the
various representations of the Fourier transforms of STF's
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are analyzed, ' it becomes obvious that overlap integrals of
STF's are best expressed in terms of overlap integrals of 8
functions. Also, in the analytical representations for the
Coulomb integrals of 8 functions' —which are also much
more compact than the corresponding integrals of
STFs "onvolution integrals occur as essential building
blocks.

%'e therefore want to demonstrate in this article how
the convolution formulas can be used for the evaluation of
overlap integrals, and that the conclusions of Antolovic
and Delhalle are incorrect. We shall show that the repre-
sentations known so far for the convolution integrals of 8
functions are indeed sufficient for a satisfactory evalua-
tion of these integrals. We shall do this by analyzing the
merits and limitations of the computational algorithms we
use and by comparing them critically with the algorithms
that were described by Antolovic and Delhalle. ' For that
purpose we also have to discuss some mathematical prop-
erties of RBF's and 8 functions that are necessary for the
understanding of the numerical properties of the convolu-
tion integrals of 8 functions.

II. DEFINITIONS

The RBF of arbitrary order v is defined by3 ~

k, (z) =(2/~)'"z "rC,(z), (2.6)

n & Z, —l & n & tx)

Here, 9'~ (r ) stands for the regular solid harmonic

9'( (r)=r Yi (0,$) .

(2.7b)

The spherical harmonics YI (9,$) are defined with the
use of the phase convention of Condon and Shortley, ' i.e.,
they are given by the expression

+
I
~ (21 + 1)(l

47r(l+
/

m
[

)!

where X„(z) is the modified Bessel function of the second
kind (MOS, p. 66).

As a nonscalar generalization of the RBF's the so-called
8 function was introduced:

8„,(ar) =[2"+'(n+I)!]-'k„„,(a~)B P(ar),
(2.7a)

For the commonly occurring special functions of
mathematical physics we shall use the notations and con-
ventions of Magnus, Oberhettinger, and Soni' unless ex-
plicitly stated. This reference will be referred to as MOS
in the following.

In this article we shall make extensive use of the Gauss-
ian hypergeometric function 2F, (MOS, pp. 37—65) and
the confluent hypergeometric function, F

&
(MOS, pp.

262—295):

XPI (coso)e' (2.9)

Here, P~~ (cos8) is an associated Legendre polynomial. '

For the integral of three spherical harmonics, the so-
called Gaunt coefficient, we write

(l3m3 ~12m2
~

1)m) ) =IYI, '(Q)F(, '(A)YI, '(A)dA .

(2.10)
(a)„(b)„zn

F2&( ba;c;z)= g (c)„n!
ao (a) zn

tF((a;c;z)= g
o (c)„n!

(2.1)

(2.2)

For the overlap or convolution integral of two 8 func-
tions with scaling parameters a and Ag we use the notation

S„'I,' '(a, P,R)= I[8„,'I, (ar)]*[8„,'1, (P(r —R))]dr .

Here, (a)„stands for the Pochhammer symbol (MOS, p. 2)
which may be defined in terms of the Gamma function
I (z) (MOS, p. 1) according to

(a)„=I (a +n)/I (a) =a (a +1) (a +n —1), III. CrENERAL PROPERTIES OF RBF S
AND 8 FUNCTIONS

(2.11)

(a)o= 1 . (2.3)

The binomial coefficient ( ) is defined by (MOS, p. 4)

1 (m —a) I (a+1)
m .'1 ( —a) m!1 (o;—m + 1)

(2.4)

The Jacobi polynomials P„' '~'(x) (MOS, pp. 209—217)
may be expressed in terms of special terminating hyper-
geometric functions 2F~, for instance (MOS, p. 212),

In this section we shall discuss only those mathematical
properties of RBF's and 8 functions that are of immediate
relevance for the understanding of the numerical proper-
ties of the convolution theorems of 8 functions. A more
complete treatment of these functions was given by
Weniger. " Most of the facts we shall present in this sec-
tion are direct consequences of known properties of the
modified Bessel function of the second kind, K (z).

For all real orders v and all real arguments x ~0 the
RBF's are positive and are bounded by their values at
zero, i.e.,

n+P
P(aP)(x) ( 1)n

n 0&k„(x)&k (0) . (3.1)

x+1X,F, n, a, +P+n —1;P+1;— (2.5)
For positive orders v the RBF's are finite at the origin:

k, (0)=2 I (v)/(2~)'i (3.2)
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We conclude from the relationship

k „(z)=z "k„(z) (3.3)

that in the case of negative orders v the RBF's are singular
at the origin.

It mn also be proved that for all real orders v the func-
tion k„(x) is monotonically decreasing in the interval

10&x & oo and for v~ —, the function k, (x) possesses a
maximum at zero.

These monotonicity properties of RBF's mn be quite
helpful if one tries to prove the convergence of certain ex-
pansions in terms of RBF's. Let us assume that we want
to investigate the convergence of the infinite series

g c„(x)k„+„(x).
n=0

If we are able to show that the series

~

c„(x) k,+„(0) (3.5)

converges for sufficiently large XH N we may immediate-
ly deduce from the inequality (3.1) that the infinite series
(3.4) converges absolutely and uniformly.

With the help of inequality (3.1) we may also show that
for all x ~ 0 and v~ —, the RBF's increase rapidly with in-

creasing order v. This can be seen quite easily from the
homogeneous three-term recurrence formula satisfied by
the RBF's:

k +, (z)=2vk, (z)+z k, i(z) . (3.6)

As the RBF's are the dominant solution of this difference
equation, the recurrence formula (3.6) may safely be used
in the upward direction. Hence, as soon as two starting
values k„](z) and k„(z) are known, a whole string of
RBF's may safely and reliably be generated. However, it
should be noted that in the case of arbitrary real or com-
plex orders v the computation of the starting values is ap-
parently a nontrivial problem for which no completely sa-
tisfactory solution has been found yet. This can be con-
cluded from the relatively large number of papers that
have appeared in recent years which deal with the evalua-
tion of the modified Bessel function of the second kind,
K„(z).

Fortunately, in connection with the convolution
theorems, we are only interested in RBF's with half-
i~tegral orders v=n + —,', n HZ. In that case, RBF's can
be represented by an exponential multiplied by a terminat-
ing confluent hypergeometric function ]F] ":

nk„+]/z(z)=2"( ~ )„e ]I']( n; 2n;2—z),—n )0 .
(3.7)

These polynomial parts of the RBF's with half-integral or-
ders v=n.+ —, have been investigated exhaustively in the
mathematical literature. There the following symbol is
used for the polynomial part:

ly related polynomials are called Bessel polynomials.
They have been applied in number theory, statistics, and
the analysis of complex electrical networks.

We are going to make use of known properties of the
Bessel polynomials to derive new properties of RBF's.
For instance, from some known asymptotic properties of
other Bessel polynomials we obtain the following for the
asymptotic behavior (n ~ oo, z fixed) of the RBF's:

k. +]/2«)-2"( z )n . (3.9)

Comparison of Eqs. (3.2), (3.7), and (3.9) shows that in the
limit of large orders n+ —,

' the RBF's approach their
values at the origin. Equation (3.9) is quite helpful if one
wants to obtain some estimates for the rate of convergence
of infinite expansions in terms of RBF's.

It can be seen from the asymptotic behavior of RBF's,
Eq. (3.9), or from the recurrence formula (3.6), that RBF's
increase quite rapidly with increasing order. Hence, if
large orders are needed some precautions are required in
order to avoid overflow. This is most easily accomplished
by the introduction of another normalization. We define

k„]/2(x) =(2"n!) 'kg ]/2(x) . (3.10)

The values of these k functions with orders & —,
' lie for all

arguments x )0 between 0 and —,'. Thus overflow cannot
occur.

The fact that RBF's are rapidly increasing functions of
the order has some unpleasant consequences for infinite
series as it will slow down the rate of convergence. This
can immediately be seen if we consider the multiplication
theorem of RBF's

(3.1 1)

The infinite series converges only if
~

1 —A,
~

&1 holds.
On the other hand, for the modified Bessel function of the
first kind, I„(z) (MQS, p. 66), there exists also a multipli-
cation theorem which is formally almost identical with
Eq. (3.11)

(~) I„(M)=&'" g z"+"I (z)
o 2"n ~

(3.12)

Here, the infinite series converges for all values of A.. This
can be attributed to the fact that for a fixed positive argu-
ment the function I,(z) decreases monotonously with in-
creasing order (MOS, p. 151) whereas the function IC„(z)
increases monotonously.

The numerical properties of the multiplication theorem
(3.11)—good convergence of the infinite series if

~

1 —A,

is small and bad convergence if
~

1 —A,
~

approaches
unity —are best understood by taking into account that
Eq. (3.11) represents the Taylor-series expansion of the
function k„(kz) around the expansion point A, =1. This
is most easily proved by showing that the function
2 e' k (z'/ ) satisfies Truesdell's functional equa-
tion

8 (z) =e k + ]/p(z) (3.8)

and the polynomials 8„(z) together with some other close-
F(z,a)=I (z,a+1—) .

Bz
(3.13)
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Now the Taylor-series expansion of such a function
F(kz, a) about the point k =1 yields the following multi-
plication theorem

oo (k 1 )nzn
F(kz, a)= g F(z,a+n) ..=O

(3.14)

Hence, we only have to use Eq. (3.3) in order to obtain the
multiplication theorem of RBF's, Eq. (3.11), from which
the multiplication theorem of B functions can be derived
quite easily ':

of B functions which have a greater exponential parame-
ter, all terms in the infinite series have the same sign, i.e.,
no catastrophic cancellation of significant digits will
occur.

IV. ONE-CENTER OVERLAP INTECzRALS

In this section we want to discuss nuxnerical and analyt-
ical problems which occur if one-center overlap integrals
over B functions are to be evaluated:

B (ar) =(a/P)" +'
~„,'t,','(a,P, O)= fB„,'I, (ar)B„,'t (Pr)dr . (4.1)

n+l+p
X X p t. l (~/P—)'1B. , (pr) .

p=0 .

(3.15)

The infinite series converges if
~

1 —(a/p)
~

& 1. It
should be noticed that if a B function is expanded in terms

With the help of the orthonormality of the spherical har-
monics the overlap integral (4.1) can be reduced to a radial
integral for which a representation in terms of gamma
functions and a nonterminating hypergeometric series 2Fi
is known. Two different expressions for the overlap in-
tegral (4.1) can be derived:

1 1

m ( 2 )n/+n2+i] 2 I/+&
n~l~lll ~

spt l~lg ttl ~llR2
( + +2[ + 1 )t

2n& +1& —1

z +i +z 2F1(iii+iip+I]+ 2 ri&+I]+1;n~+n +221, +2;I—(a/p)2) (4.2)

1 1

2 )n)+np+I(( 2 )l(+ j

(n i +n 2 +le +1)!

2n2+ll —1

X 2 I ~ F2)(n i+n i+1 +i2,n2+l)+1;n(+np+2li+2;I —(P/a) ) .
2n2l ) +2 (4.3)

n212~2 2 n& +n2+1) 2 1) + 1( —') ( —)
S„ i' (a,a,O) =5, , & 'a (n +n2+2li+1)!

(4 4)

These two relationships were derived by Filter and
Steinborn by considering the limiting case 8 —+0 in some
representations of the two-center overlap integral which
are based upon the multiplication theorem of B functions,
Eq. (3.11),and which we shall discuss in Sec. VI.

The numerical applicability of Eqs. (4.2) and (4.3) de-
pends crucially upon the rate of convergence of the two
nonterminating hypergeometric series 2F1. It is well
known that the rate of convergence of a hypergeometric
series zFi(a, b;c;z) does not only depend upon the magni-
tude of the argument z, but also upon the three parameters
a, b, and c. Accordingly, we may expect that the rate of
convergence of the two hypergeometric series in Eqs. (4.2)
and (4.3) will not only depend upon the ratio of the two
exponential parameters but also upon the quantum num-
bers n1, n2, and I1.

The dependence of the convergence upon the exponen-
tial parameters a and p can be understood quite easily. In
the case of equal parameters, a =p, both infinite series ter-
minate after the first term and we obtain for the overlap
integral

It should be noted that we could have obtained Eqs. (4.2)
and (4.3) from Eq. (4.4) by a straightforward application
of the multiplication theorem (3.11). The infinite series in
Eq. (4.2) converges only if

~

1 —(a/p)2
~

& 1 holds,
whereas the infinite series in Eq. (4.3) requires

~

1 —(p/a)
~

&1. Hence, we see that the two different
representations (4.2) and (4.3) may be considered to be an-
alytic continuations. In fact, they may be transformed
into each other by the use of the following linear transfor-
mation (MOS, p. 47):

2F~(a, b;c;z)=(1—z) '2F~ a, c b;c; . —(4.5)z—

If the two exponential parameters a and p differ only
slightly we may expect a rapid convergence of the infinite
series in Eqs. (4.2) or (4.3). However, in the case of larger
differences of a and P a computationally very unfavorable
property of the two hypergeornetric series emerges. It is
well known that a nonterminating hypergeornetric series
2Fi(a, b;c,z) converges on the boundary of its circle of
convergence, i.e., for ~z

~

=1, only if Re(a+b —c) &0
holds (MQS, p. 37). Direct comparison shows that in the
case of "physical" orbitals Bn i, i.e., for n i, n2 & 1, the two
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I (z +a)/I (z +b) -z' (4.6)

With the help of this relationship we can show that the
terms of the hypergeometric series in Eq. (4.2) are asymp-
totically, i.e., for large summation indices, proportional to
the terms of the series

iFo(ni ——, ', 1 —(a/P) )

1

[1—(a/0)']~ .
qf

(4.7)

In the same way we can show that the terms of the hyper-
geometric series in Eq. (4.3) are asymptotically proportion-
al to the terms of the series

hypergeometric series under consideration diverge if their
arguments become unity. Unfortunately, this unpleasant
property is not only felt on the boundary of the circle of
convergence, but already in the vicinity of it. Hence, if
the two parameters differ greatly we have to expect a very
slow convergence.

It is much harder to estimate the influence of a varia-
tion of the quantum numbers n ~, n2, and l ~ upon the rate
of convergence of the two hypergeometric series. Accord-
ingly, we only do an approximative analysis of the
behavior of the terms of the hypergeometric series under
consideration. We shall also restrict ourselves to an
analysis of the behavior of terms with large summation in-
dices because then substantial simplifications may be
achieved with the help of asymptotic approximations. In-
spired by the series transformation of Kummer we shall
construct simple hypergeometric series ~Fo whose terms
are asymptotically, i.e., in the limit of large summation in-
dices, proportional to the terms of the two hypergeometric
series 2Fi in Eqs. (4.2) and (4.3). To do this we use the
following asymptotic approximation for the quotient of
two gamma functions

1(ni ——, )~
,Fo(n, ——,';1—(P/a)')= g, [1—(Pia) ]~ .

q=o

(4.8)

pFi(a, b;c;z) =(1—z)' ' qFi(c a,c b;c;z—) . —(4.9)

With the help of this relationship we obtain for Eqs. (4.2)
and (4.3)

If our asymptotic analysis is correct, the rate of conver-
gence of the infinite series in Eq. (4.2) should become
worse with increasing n

&
and should be relatively insensi-

tive to variations of n2 and l&. Analogously, the rate of
convergence of the series in Eq. (4.3) should become worse
with increasing n2 and should be relatively insensitive to
variations of ni and li. Numerical tests conformed our
asymptotic analysis.

Therefore, it should be emphasized that contrary to the
statements by Antolovic and Delhalle' a reliable compu-
tation of the overlap integral (4.1) using either Eq. (4.2) or
(4.3) is always possible. One only has to choose that repre-
sentation of the two available ones in which the argument
of the hypergeometric series is positive, i.e., Eq. (4.2) for
a ~ P and Eq. (4.3) for a ~ P. Then all terms of the infin-
ite series have the same sign and no appreciable rounding
errors will occur. We shall show later (in Table I) that
machine accuracy can be achieved even for very large
differences of the exponential parameters a and P.

Unfortunately, these tests showed also that particularly
for larger differences of the exponential parameters the
rate of convergence of the hypergeometric series may be-
come catastrophically slow. It is, however, a simple
matter to accelerate the rate of convergence of the two in-
finite series in Eqs. (4.2) and (4.3) considerably. One only
has to use the following linear transformation (MOS, p.
47):

n&12m 2
(
—')
2 n

1 +n2+11 2 I
l + &

(
—) li

+3 2F1(li + n2+li + 1;ni +n2+21) +2; 1 —(a/p)2)
n, +n, +21, +1! ~'i+'
1 1

( 2 )., +.,+i, ( 2 )i, +i P'~
l&l& m&m2 21 1 ~ i +3 2Fi(li + &,ni +li + I;n i +n2+21i +2; 1 —(/3/a) ) .

n i +nq+2li + 1 ! ii+3

(4.10)

(4.11)

What is gained if we use Eqs. (4.10) and (4.11) instead of
Eqs. (4.2) and (4.3)'? It should be noticed that the two hy-
pergeometic series in Eqs. (4.10) and (4.11) converge in the
case of physical orbitals, i.e., n&, n2 & 0, even on the boun-
dary of the radius of convergence, whereas the hyper-
geometric series in Eqs. (4.2) and (4.3) diverge, as we al-
ready mentioned. Because of this fact we may expect an
improved convergence particularly for larger differences
of the exponential parameters. In addition, the infinite
series in Eqs. (4.10) and (4.11) should converge faster with
increasing n& and n2 whereas the infinite series in Eqs.
(4.2) and (4.3) converge slower as already mentioned. To
demonstrate this we again use Eq. (4.6). It can be shown

that the terms of the infinite series in Eq. (4.10)
asymptotically proportional to the terms of the series

q 'f

q=0

(4.12)

Analogously, we can show that the terms of the series in
Eq. (4.11) are asymptotically proportional to the terms of
the series

1

( —, n )qi-
Fo( —, —n;1 —(a/P)') = y [1 (a/P)']—
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TABLE I. Comparison of Eqs. (4.2) and (4.10), numbers in parentheses are powers of factors of ten.

n) n2 I) Equation (4.2)
Number
of terms Equation (4.10)

Number
of terms

1 1

1 1

1 1

3 1

3 1

3 1

3 3
3 3
3 3
3 5
3 5
3 5
5 3
5 3
5 3
5 5
5 5
5 5

0 1.2S 3.30 0.530 805 989 083 974 834 488 058( —02 }
0 1.25 6.60 0.103 362030939 873 531 387042( —02)
0 1.25 9.90 0.360 699 385 287 090 109 108 855( —03)
0 1.2S 3.30 0.141 066 450 969 273 954 474 048( —02)
0 1.25 6.60 0.204 027 734 000 549 582 929 799( —03)
0 1.25 9.90 0.625 180 111531 651 837 546 816(—04)
1 1.25 3.30 0.121 930 888 138 194 123 841 632( —03)
1 1.25 6.60 0.121 851 315009 315970411496{—04)
1 1.25 9.90 0.271 515 846 839 219 140 858 403( —05)
2 1.25 3.30 0.123 096 478 525 647 882 847 482( —04)
2 1.25 6.60 0.905 628 750 431 281 246 158 146( —06)
2 1.25 9.90 0.150964 254 268 928 201 692 057( —06)
2 1.25 3.30 0.508 065 471 617953 082 777 236( —05)
2 1.25 6.60 0.250498 622 349 493 306087 137(—06)
2 1.25 9.90 0.366 142 552 244 832 638 534 424( —07)
5 1.25 3.30 0.101 369 663 914979 211 683 848( —07)
5 1.25 6.60 0.135 509 602 882 144 576 423 248{—09)
5 1.25 9.90 0.723 129931 823 622 212 201 820( —11)

349
1430
3189
398

1647
3689
401

1651
3695
405

1658
3703
442

1824
4087

449
1835
4100

O.S30 805 989 083 974 834488 058( —02)
0.103362030 939 873 531 387 043( —02)
0.360 699 385 287 090 109 108 859( —03 )
0.141 066 450 969 273 954 474 048( —02)
0.204 027 734 000 549 582 929 798( —03 }
0.625 180 111531 651 837 546 804( —04)
0.121 930 888 138 194 123 841 633( —03)
0.121 851 315009 315970411496( —04)
0.271 515 846 839 219 140 858 402( —05)
0.123 096 478 525 647 882 847 482( —04)
0.905 628 750431 281 246 158 147( —06)
0.150964 254 268 928 201 692 058( —06)
0.508 065 471 617953 082 777 234( —05)
0.250498 622 349 493 306 087 137( —06)
0.366 142 552 244 832 638 534417( —07)
0.101 369 663 914979 211 683 847( —07)
0.135 509 602 882 144 576 423 248( —09)
0.723 129931 823 622 212 201 800( —11)

321
1292
2852

273
1025
2165

293
1102
2333

307
1151
2440

267
934

1879
297

1046
2121

1

go( —, —n2il —(P/&) )= y [1—(P/a) ]~.
q=0

(4.13)

On the basis of this asymptotic analysis we can expect
that the rate of convergence of the hypergeometric series
in Eq. (4.10) will improve with increasing n& and will be
relatively insensitive to variations of n2 and l~. In Eq.
(4.11) the rate of convergence will improve with increasing
n2 and variations of n I and l

&
will not matter much.

In Table I we compare the numerical properties of the
two representations (4.2) and (4.10) for different quantum
numbers. Because of systematic reasons we always try to
obtain the limiting machine accuracy, which is 24 decimal
digits on our machine in double precision. Two of the
columns in Table I list the number of terms of the corre-
sponding infinite series that are required to obtain this
machine accuracy. The numerical results demonstrate
that the new representations (4.10) and (4.11) converge sig-
nificantly faster than the original representations (4.2) and
(4.3), particularly for larger differences of the exponential
parameters and for larger quantum numbers. We may
also conclude that our asymptotic analysis leads to a quan-
titative understanding of the dependence of the rate of
convergence upon the quantum numbers n ~, n2, and l &.

In the case of positive arguments of the hypergeometric
functions which can always be achieved, both representa-
tions are apparently numerically stable, and reliable results
can always, i.e., even for very large differences of the ex-
ponential parameters, be obtained. Unfortunately, the nu-
merical results also demonstrate that, even for the new
representation, Eq. (4.10), convergence may become quite
slow. Accordingly, Antolovic and Delhalle' tried to find
computationally more attractive alternatives for the
evaluation of the overlap integral (4.1). They advocated
the use of a known integral representation of the hyper-
geornetric series for numerical quadratures:

r(c) ] ta —1( 1 t)c —a —1

2Fi(a, b;c;z) = dt .I (a)l (c —a) o (1 zt)&
(4.14)

+s we already mentioned, the hypergeometric series in
Eqs. (4.2) and (4.3) no longer converge if their arguments
approach one. If the integral representation (4.14) is to be
used for the evaluation of these hypergeometric series, the
integrand will then become singular. Accordingly, Anto-
lovic and Delhalle required a very large number of in-
tegration points in order to obtain the required accuracy.
In the close vicinity of the boundary of the circle of con-
vergence Antolovic and Delhalle used a representation of
the overlap integral (4.1) in terms of Jacobi polynomials
which, however, becomes numerically unstable if the ex-
ponential parameters do not differ by much. They also
derived 15 other representations of hypergeometric series
of the general type 2F&(1+—,',m;n;z) with I,m, n H N in
terms of Jacobi polynomials. Unfortunately, none of these
representations is numerically stable for all positive values
of the exponential parameters a and p. We think that if
one really wants to use the integral representation (4.14)
for the computation of the overlap integral (4.1), one
should at least use the new representations (4.10) and
(4.11) instead of Eqs. (4.2) and (4.3) because the integrand
will not become singular, and a much smaller number of
integration points will be required.

Nevertheless, we do not think that the numerical quad-
rature of the integral representation is an efficient method
for the evaluation of the overlap integral (4.1). Instead we
prefer to use the representation of a RBF as an exponen-
tial multiplied by a polynomial, Eq. (3.7), together with
the well-known integral representation of the gamma
function (MOS, p. 1)

I (z)= J e 't' 'dt, (4.15)

which leads to the following double sum for the overlap
integral (4.1):
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1 1

S„,'i,','(a, P, O) =5i, i,5
(a+p) ' 4 '

(n& +l~ )!(n i+?&)!

(1 n—i )i, 2a
X

o (2 2—n&)zp! a+p
2P (2?)+p+q +2)!

o 2 —2&i g qq! cx+
(4.16)

Compared with Eqs. (4.2), (4.3), (4.10), and (4.11), where
nonterminating hypergeometric series have to be evaluat-
ed, this representation has some remarkable advantages.
The number of terms which have to be computed does not
depend upon the exponential parameters a and p and is
equal to n~nq. Also, all terms are positive, i.e., we do not
have to worry about significant rounding errors. One
minor disadvantage of Eq. (4.16) is that unlike the previ-
ously described representations the computational corn-

plexity remains unchanged if the two exponential parame-
ters a and p are equal.

We may therefore conclude that Eq. (4.16) is computa-
tionally much more attractive than the previously
described representations, Eqs. (4.2), (4.3), (4.10), and
(4.11). But it can still be improved. One of the two nested
summations in Eq. (4.16) can be written as a terminating
hypergeometric function:

1 1

Sn&1~m& (+~p~O) 5I)liam)mi ii +3 j~+1' (~+p) ' 4 ' (ni+li)!(ni+lg)!

' (1 n, )~(21,—+@+2)!
(2—2n ( )qp!

2' 2P
zF& 21

& +p +3, 1 —nq, 2 —2na+p ' a+p
(4.17)

(up) '

21 +3 1+&
(~+p) ' 4 ' (n, +li)!(np+&i)'

' (1—n, ),(21, +q+2)!
(2—2n, ),q!

2P 2cx
2&i +q +»1—ii ii2 —"i ~a+ a+ (4.18)

m (z —1)+ zF~(m +1, n; 2n;z) —. —
m +271

(4.19)

It is immediately obvious that this recurrence relationship
is stable backwards if the argument z satisfies the inequali-

ty 1(z (2, because then only positive terms will be add-
ed. The restriction for the argument z is no obstacle as ei-
ther 2p/(a+p) in Eq. (4.17) or 2a/(a+p) in Eq. (4.18)
will satisfy this requirement.

In our opinion the use of Eqs. (4.17) and (4.18) together
with the recurrence formula (4.19) is the most accurate
and most efficient method for the computation of the

What is gained if we rewrite the double sum in Eq. (4.16)
as a sum of terminating hypergeometric functions~ We
can evaluate the hypergeometric functions recursively. In
Eqs. (4.17) and (4.18) terminating hypergeometric func-
tions of the general type qF~(m, n; 2—n;z) w—ith m, n ~ N

and z&R occur. Using a known contiguous relationship
of the hypergeometric series iF& (MOS, p. 46) we obtain
the following recurrence formula in m:

zF& (m —1, n; 2n;—z)—
(m +1)(2—z)

zFi (m, n; —2n—;z)
m +2n

I

overlap integral (4.1) which is known so far. How does it
compare with the nuinerical quadrature of the integr»
representation (4.14)'? It is obvious that the»meric»
quadrature will be less accurate than the use of Eqs. (4.17)
and (4.18) which obtain the limit of machine accuracy. In
addition, our algorithm based upon Eqs. (4.17), (4.18), and
(4.19) is much faster than the numerical quadrature. If
the integral representation (4.14) is to be used for the
evaluation of any of the hypergeometric series in Eqs.
(4.2), (4.3), (4.10), and (4.11), at least one of the exponents
of the integrand will be half-integral. Hence, for each in-
tegration point, at least one square-root evaluation (and
also some other operations) will be required. Antolovic
and Delhalle needed between 50 and 200 integration
points. If we now take into consideration that for one
evaluation of the integral S55O(a, a, O) we need a CPU
(central processing unit) time which corresponds to ap-
proximately 13 calls of the FORTRAN function DsqRT,
we may expect that our algorithm should be at least one
order of magnitude faster than the numerical quadrature
used by Antolovic and Delhalle. It should be noted that
the polynomial representation (4.17) and (4.18) can also be
viewed as new nonlinear transformations of some special
hypergeometric series.
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V. TWO-CENTER OVERLAP INTEGRALS WITH EQUAL PARAMETERS

In this section we want to discuss analytical and numerical problems which occur if two-center overlap integrals over 8
functions with equal exponential parameters are to be evaluated:

S„,'I,'~'(a, a, R)= f8„'I (ar)B„'I,(a(r —R))dr .

For these integrals a very compact representation is known:
I

2 2 2 ~ 4'
Sn&I&m, (a a R)=( —1)', Q "'(/2m2

I
l, m,

I
lm, m-,l=l

hl)~(—1)' 8 '
Bn, + + I, +I I —t+—i, I (aR)

~=0

(5.1)

(S.2a)

6/=(ii+12 —1)/2 . (5.2b)

I&+I2+$=2n, n E N

/, „=I ) +I2,
/;„=max(

I
/, —/~ I, I

m
I

)

if max(
I
li —12 I, I

m
I
)+/, „ is eveli,

1 =max(
I /I /21 I

m
I
)+1

if max(
I

1 i
—12 I, I

m
I
)+/, „ is odd .

(5.3b)

(5.3c)

(5.3d)

(5.3e)

The symbol g' ' indicates that the summation is to be
performed in steps of two. The summation limits lm;„and
lm, „of the 1 summation are direct consequences of the
selection rules satisfied by the Gaunt coefficient. It is well
known that for fixed li, mi, 12, and mq a Gaunt coeffi-
cient (/zmq I

1im I I

lm ) is different from zero only if the
following conditions are satisfied

Pl =m2 —Pl) (5.3a)

From these selection rules it follows immediately that bl
is always an integer with 0 & b, / & (1,„—1;„)/2.

In the convolution theorem with equal parameters, Eq.
(5.2), there occur Gaunt coefficients, spherical harmonics,
binomia1 coefficients, factorials, and RBF s. In this arti-
cle we shall only discuss the computation of the binomial
coefficients and RBF's. Programs which make possible a
very efficient and reliable computation of Gaunt coeffi-
cients and spherical harmonics even for extremely large
angular momentum quantum numbers (1i, /2 & 200,
1 &400) were described elsewhere.

For coding purposes we express the binomial coeffi-
cients and factorials in Eq. (5.2) in terms of Pochhammer
syinbols (m)„with m, n E N. These Pochhammer symbols
are computed recursively and stored in a two-dimensional
array. The 8 functions are expressed in terms of the k
functions which were defined in Eq. (3.10). We then ob-
tain for Eq. (5.2)

Imax

'(a, a,R)=( —1) ' g ' '(/&m& I/imi
I
lm2 mi) — &I (R/&)

( —1)'(&/ —I + 1),
kn +n +I +I —I t+I/2(a+ ) '— (5.4)

What accuracy can be expected if we use this expression
for the overlap integrals'? A comparison with tabulated
values of overlap integrals of STF's which can be ex-
pressed in terms of integrals of RBF's does not help be-
cause the integral tables which are known to the authors
have an accuracy of, at most, five decimal digits. Also, no
alternative representation which could be used for in-
dependent numerical checks is known. Hence, we have to
rely on indirect evidence. In Sec. VI we shall use the mul-
tiplication theorem of 8 functions, Eq. (3.15), in order to
express an overlap integral of 8 functions with different
exponential parameters in terms of an infinite series of
overlap integrals with equal parameters. As we can obtain
very accurate results even if the two exponential parame-
ters a and P differ greatly, which yields a very slow con-
vergence of the corresponding infinite series, we may safe-
ly conclude that Eq. (5.4) yields very accurate results even
for very large values of ni and n2. This is, of course, an

F„(x)=g ( —jL)~ fq(x) .
q 0 q q (5.5)

It is well known that such sums are severely affected by
rounding errors for larger values of the summation limit
n. Hence, we may expect that for larger values of

immediate consequence of the fact that the number of
terms that occur in Eq. (S.2) or (5.4) does not depend at all
on n

&
or n2, and hence the numerical computations needed

do not increase with increasing n ~ or n2.
It is much harder to say something substantial about the

accuracy of Eq. (5.4) for larger values of the angular
momentum quantum numbers I& and I2. It is, however,
likely that Eq. (5.4) is much less accurate for larger values
of li and /2 than for larger values of ni and n2. This is
probably a consequence of the fact that in Eq. (5.2), or
equivalently in Eq. (5.4), there occurs a sum of the type
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b./=(ii+12 —1)/2, the inner sum in Eq. (5.4) will lose
some significant digits. Fortunately, extremely large
values of I do not occur and for all practical applications,
Eq. (5.4) should yield a satisfactory accuracy.

VI. TWO-CENTER OVERLAP INTEGRALS
WITH DIFFERENT PARAMETERS

Now we come to the central part of this paper. In this
section we want to discuss analytical and numerical prob-
lems which occur if two-center overlap integrals over 8
functions with different exponential parameters a and p

are to be evaluated:

~n, i, m,'(a Pt R)= JBn, ,'I, (ar)Bn, ', I, (P(r —R))dr .

(6.1)

For these integrals two analytical representations are
known so far: one representation containing Jacobi poly-
nomials which involves only a finite number of terms, and
an infinite-series representation which is based upon the
multiplication theorem of B functions, Eq. (3.15). Let us
first consider the Jacobi-polynomial representation:

max

S„"'",
,
'(a, p, R)=( —1)"4~ g '"(12m2

~
limi

I
lm2 —mi &

1=1

1l]+I] l2 ~$+~]
( —1) ' '(a/p) ' ~'P' ni ai2+—' 2+— i ((p2 2)/(p2 2))B 2™&(R)

p3[ 1 ( /p)2] 2 2 i O

+ ( —1) ' '(P/a) '

3[1 (p/ )2]"1+Ii+

n2+ 12

t=0
(6.2a)

~li =(1—ii+12)/2, 612——(1+ii —12)/2 . (6.2b) .

This expression is remarkably compact. It is easy to show
that at most [min(li, l2)+1](ni+n2+1, +12+2) terms
will be needed to compute one overlap integral. Accord-
ingly, a program which is based upon Eq. (6.2) should be
very fast provided it is possible to compute the Jacobi po-
lynomials efficiently. The other functions which appear
in Eq. (6.2) are already known from the convolution
theorem with equal parameters, Eq. (5.2), and are compu-
tationally quite convenient.

The major disadvantage of Eq. (6.2) is the fact that for
R~O as well as for a~P canceling singularities occur
which can lead to an unacceptable loss of accuracy. For
most practical applications the singularity at 8 =0 is
unimportant as extremely small internuclear distances do
not occur. Hence, we shall not consider it any further.
More important is the singularity at a=p which is caused
by the following expressions:

lz 2nz+I& —ia
(p2 2) 2 2

Ii 2ni+Ii —1a
(

2 p2) 1 1

)+, ), +512)X „,+I, ,
' ((a'+ p )/(a' —p')) . (6.3b)

In both cases singularities of degree n&+n2+II+12 —t
+1 occur. We may therefore conclude that the intrinsic
numerical instability of Eq. (6.2) will be felt much more
strongly in the case of larger quantum numbers. Conse-
quently, the range of parameters a and p for which Eq.
(6.2) will yield a satisfactory accuracy does not only de-
pend on the accuracy of the computer but also upon the
magnitude of the quantum numbers involved.

The central computational problem in connection with
Eq. (6.2) is the efficient computation of the required Jaco-
bi polynomials which are of the general type

&„":, '"'((x'+y')/(~' —y'));

n, m, k, i e N; x,y e R . (6.4)

(6.3a)
It should be noted that the arguments of these Jacobi poly-
nomials all lie outside their orthogona1ity interval which is
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[—1, 1] (MOS, p. 209). If we take into consideration that
the zeros of all orthogonal polynomials are all located
within their orthogonality intervals, ' we may conclude
that the Jacobi polynomials in Eq. (6.2) will never be zero.
This property of these Jacobi polynomials is quite advan-
tageous for their evaluation because it eliminates a poten-
tial source of error. It is well known that serious rounding
errors may occur if one comes into the vicinity of a zero
of a given function.

Now we have to develop an algorithm for the Jacobi po-
lynomials. The use of explicit expressions like Eq. (2.5) is
not recommendable as it would be quite time consuming.
A recursive algorithm would be much imore attractive.
Unfortunately, the recurrence relationships of the Jacobi
polynomials which can be found in the mathematical
literature (Abramowitz and Stegun, Ref. 28, p. 782) are
not suited to allow a direct computation of a string of
Jacobi polynomials I'n', '"' with 0 & t & n.

Lacking a better alternative Antolovic and Delhalle
combined known recurrence formulas to obtain a relative-
ly complicated multidimensional recursive scheme for the
evaluation of all required Jacobi polynomials. In order to
demonstrate the numerical stability of their algorithm,
Antolovic and Delhalle presented in Table I values of
Jacobi polynomials obtained with their algorithm. Unfor-
tunately, all Jacobi polynomials in Table I have the argu-
ment x = —,

' which does not occur as we mentioned earlier.
Of course, the conclusion of Antolovic and Delhalle, that
their multidimensional recurrence scheme is numerically

stable, may be correct, but nevertheless their reasoning is
not conclusive.

It is usually almost impossible to control the numerical
stability of the arithmetical operations involved in the
multidimensional recurrence schemes. Also, such schemes
usually need a relatively large storage space. We therefore
feel on much safer ground if we only have to deal with
one-dimensional recurrence equations. Fortunately, this
can be achieved quite easily here. If we use Eq. (2.5) we
obtain for the Jacobi polynomials that occur in Eq. (6.2):

+(t —mk) X +y2 2

n —t
X —y

( 1)g g (n +k t)!—
(n —t)!k!

X
&&,F, t n, n ——m+k+1;k+1;, , (6.5)

X

The advantage of this transformation is that on the right-
hand side the summation index t occurs in only one of the
three parameters of the hypergeometric function 2F~. It is
now a trivial matter to use the corresponding contiguous
relation of the hypergeometric function 2F& (MOS, p. 46)
to obtain

2 2
&(t —mr) X +y

n —t
X

2(n —t)+k —1 &~~ — +i,ki x +3'
n —t —1 2 2n —t X

n —t+k —~ y IJ(t —m+2 k) X +y2 2 2

2 2 n —t —2 2 2—y X —y
(6.6)

Numerical tests confirmed that this homogeneous three-term recurrence formula is numerically stable in the direction of
increasing n —t. The starting values are

2 2
&(n —mk) X +y

2 2X
(6.7a)

2 2
p(n —m —1,k) X +y

2 2X

n —m —k —1 n —I +k+1 x +y2 2
—+

2 X

The central computational problem in connection with Eq. (6.2) is, as we already mentioned, the efficient computation of
the required Jacobi polynomials. It is therefore recommendable to invert the order of the two inner t-summations in Eq.
(6.2) because then the three-term recurrence formula (6.6) in connection with the starting values (6.7) can be used most ef-

ficiently. We also express the B functions in Eq. (6.2) in terms of the k functions just as we did it in the case of equal pa-
rameters. We then obtain
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Imax

=(—1) '4m g ' )(l2m2
~
l)m)

~
1m2 —m) )I'l ' '(R/8)

min

(a/p) '
p3

2
~

I' n2+l2+1

p —a2 2

' I ni+11 I —1

( —1)' (al s, n—2+)il) ) P2+ a
kn +l i s--)i2-(a&»s(n)+l) —l —s+ 1)l p —a

n )+ll

t =max(0, n
l +Il —I)

r

, (1 —n, —l ) + t + 1 )!
( —1)'

(n) +I) —t)! 2

()il —r, n2+al) ) p2+a2
X kt n, -l, +-t+)n«&)&s

p2 a2

n (+I)+1
+ (p/a)' a'

3 a2 p2

2

n2+ l2 —I —1 s

( —1)'
k

(hl sn+—h, l ) a +p
+I ~ + 1) n2+& —1I—s —)/2(p )P,

a

n2+ 12

t =max(0, n2+12 —I)
( —1)', ( I n2 —l2—+ t + 1)! pg

(n2+12 —t)! 2

(hl t, n2+tsl2) —a2+ p2
X kt „ l +, +)g2(P& )P,

2 2 2 p2 9 (6.8a)

61=(l) +l2 —I)/2, 51) ——(l —l) +12)/2, hl2 ——(I + l) —12)/2 . (6.8b)

It is not easy to program this expression efficiently be-
cause a large number of special cases have to be dis-
tinguished. For instance, in Eq. (6.8) summation limits
like n1+l1 —I —1 or n2+I2 —I —1 may become negative.
If this happens, the corresponding sum must be set equal
to zero. On the other hand, our program which is based
upon Eq. (6.8) is extremely fast due to the recursive com-
putation of the Jacobi polynomials. For instance, the
evaluation of the integral S55&(a,p, R), where 132 Jacobi
polynomials have to be computed, requires a CPU time
which corresponds to approximately 180 calls of the FOR-
TRAN function DsgRT.

For which values of the exponential parameters a and p
does a program based on Eq. (6.8) yield numerical results
of satisfactory accuracy? Particularly important is the

question how much "closeness" of the two exponential pa-
rameters can be tolerated. As we pointed out earlier, this
will not only depend upon the accuracy of the computer
but also upon the magnitude of the quantum numbers in-
volved.

In order to answer this question we require an alterna-
tive representation of the overlap integral (6.1), different
from that of Eq. (6.2) or (6.8), a representation that does
not become singular where the two exponential parameters
approach each other. To obtain such a representation we
use the multiplication theorem of 8 functions, Eq. (3.15).
We then find two different series expansions of the over-
lap integral with different scaling parameters in terms of
overlap integrals with equal parameters

(6.10)

n212gyg2 ~ a ~ 1+ 1+I a n
2n&+1& —1 n j' 2 p

(6.9)
P

p 2+ 2+0 p „,+qt, ,
' 2n2+12 —1 n I 2 iq

1 — — S„'l ' '(a,a,R) .a a n&I2m2

The infinite series in Eq. (6.9) converges if
i

1 —(a/p)
~

(1 holds and the infinite series in Eq. (6.10) converges if
~

1 —(p/a)
~
( l. It should be noted that all terms in the infinite-series expansion of an overlap integral with different

exponential parameters will have the same sign if we expand the B function with the smaller parameter in terms of 8
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functions having greater parameter. In that case appreciable rounding errors are only to be expected if the terms of the
infinite series —the overlap integrals with equal parameters —are affected by some appreciable inaccuracy. It should also
be noted that the two infinite series (6.9) and (6.10) can be viewed as Taylor-series expansions. This is a consequence of
the fact that the multiplication theorem of B functions, Eq. (3.15), can be derived as a Taylor-series expansion as we men-
tioned in Sec. III. Of course, this also implies that we have to expect the typical numerical properties of Taylor-series ex-
pansions for the two infinite series (6.9) and (6.10).

For coding purposes we combine Eqs. (6.9) and (6.10) with Eq. (6.4) and obtain

a'"'+" ' " (It]+1]+1), a=( —1) '4n. 1—
p2ni +I] +2 p] pp=0

max
' '(12m2

~
l, m]

~

1m2 —m] )
min

'I
I'I ' '(R/R)

Al ( —I )'(b, l t +—1),

o t!(n]+n2+1]+12+p —1 t +2—)I

+ kg&+n&+l&+l&+p —I —&+1/2 (I3R )

]max 1

(12m2
~
1]m]

~
1m2 —m] ) yi (R/R)

1=1 2

(6.11)

( —1)'(hl I +—1),
+ +1 +1 + 1 t +2) n]+n 2+I ]+I 2+0 —I —t+]/2 (aR) . 6.12

The numerical applicability of these two representations
depends crucially upon the rate of convergence of the cor-
responding infinite series. As in the case of the hyper-
geometric series qF~ that were discussed in Sec. IV and
that can be obtained from Eqs. (6.11) and (6.12) by setting
R =0 we inay expect that the rate of convergence will not
only depend upon the ratio of the two exponential parame-
ters a and P but also upon the quantum numbers n], 1],
n2, and 12. We shall show later that the rate of conver-
gence will also depend upon the magnetic quantum num-
bers m] and m2. This is a consequence of the fact that
the summation limits l;„and l,„depend, via the selec-
tion rules of the Gaunt coefficients, upon m] and m2.

The dependence of the rate of convergence upon the ra-
tio of the exponential parameters a and p can be under-
stood quite easily. In the case of equal scaling parameters,
a=p, both infinite series terminate after the first term

I

I

and we obtain the formula for the overlap integral with
equal parameters, Eq. (5.2) or (5.4). If the two exponential
parameters a and p differ only slightly, we may expect a
good convergence. However, in analogy with the results
in Sec. IV we have to expect a very bad convergence if the
two parameters a and p differ greatly.

The dependence of the rate of convergence of the infin-
ite series in Eqs. (6.11) and (6.12) upon the quantum num-
bers remains to be analyzed. In order to do so we want to
proceed in the same way as we did it in Sec. IV when we
investigated the rate of convergence of some hyper-
geometric series 2F]. However, the infinite series we have
to investigate here have a much more complicated struc-
ture than those in Sec. IV. Hence, we have to introduce
some further simplifications. First, we rearrange the order
of summations in Eqs. (6.11) and (6.12). For Eq. (6.11) we
then obtain

2n)+I) —1 I
PR=( —1) '4~, , g '2](12m2 ~1]m]

~

1m2 —m] )
I= min

I'I ' '(R/R)

«( —1)'(bl t+1), m (n]+1]—+1)p[l —(a/P) ]Pxg tt ,p!(n]+n, +1,+1,+p —1 t +2)I—
x k. , +.,+I, +I,+p I~+]n«R )- (6.13)

This series rearrangement is possible because for a & p both series converge absolutely. In the next step, we analyze the
convergence of the infinite series in Eq. (6.13). Just as in Sec. IV we shall analyze only the behavior of the terms with
large summation indices. Therefore, we can replace the RBF s in Eq. (6.13) by their asymptotic approximations, Eq.
(3.9). Then we can show that the terms of the infinite series in Eq. (6.13) are proportional to the terms of the hyper-
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geometric series.

zFi(ni+1, +l, n i+nz+I i+l2 —I —r+ , —;ni+nz+l i+i@—t+2;1—(a/P) ) . (6.14)

p=o p1
(6.1S)

In the same way we conclude that the convergence
behavior of the terms of the infinite series in Eq. (6.12) is
described by the hypergeometric series

iFp(n2+12 —I ——,';1—(Plier) )

(6.16)

Two critical remarks concerning the validity of Eqs. (6.15)
and (6.16) for the convergence behavior of the infinite
series in Eqs. (6.11) and (6.12) seem to be appropriate. (1)
The starting point of our derivation was the rearrange-
ment of the infinite series, i.e., the step from Eq. (6.11) to
Eq. (6.13). Although it is clear that this rearrangement
does not affect the convergence of the infinite series it
may well change its rate of convergence. (2) In Eq. (6.13)
we replaced the RBF's by their asymptotic approximation
(3.9). However, in the case of large arguments RBF's con-
verge quite slowly to their values at the origin and Eq.
(3.9) may be a relatively bad approximation. Hence, we
see that in the case of two-center overlap integrals our

Proceeding as in Sec. IV we may conclude that in the limit
of large summation indices the terms of the infinite series
in Eq. (6.11) should have the same behavior as the terms
of the hypergeometric series

iFp(ni+li —1 ——,';1—(a/P) )

asymptotic analysis of the rate of convergence has,
mathematically, a much more insecure foundation than
the analogous analysis in Sec. IV, and the validity of Eqs.
(6.15) and (6.16) should be verified experimentally.

In Table II we compare the two alternative methods for
the overlap integral (6.1), the Jacobi-polynomial represen-
tation, Eq. (6.8), and the infinite-series expansion based
upon the multiplication theorem of B functions, Eq.
(3.15). Without loss of generality we only consider
a= 1.50 and a &P in Table II. For the sake of numerical
stability we always expand the S function with the smaller
parameter in terms of 8 functions with greater parame-
ters. Under these circumstances only Eq. (6.11) contri-
butes to Table II. In the last column of Table II the num-
ber of terms of the infinite series (6.11) is listed that is re-
quired to obtain a relative accuracy of 10 which corre-
sponds approximately to the machine epsilon of the com-
puter we use.

From the numerical results presented in Table II and
other, more detailed investigations, we may conclude that
the numerical instabilities inherent in the Jacobi-
polynomial representation, Eq. (6.2) or (6.8), are in fact
felt much more strongly in the case of larger quantum
numbers. We may also conclude that the rate of conver-
gence of the infinite series (6.11) deteriorates with increas-
ing quantum numbers n& and I& which is in agreement
with our asymptotic approximation, Eq. (6.1S). If the two
exponential parameters a and P differ greatly, the conver-
gence of the infinite series (6.11) becomes very bad. And
yet, at least in the cases with small values of
b, l =(Ii +12 —I)/2, we get an excellent agreement between
the Jacobi-polynomial representation and the infinite

TABLE II Compar. ison of Eqs. (6.8) and (6.11). We always have a= 1.SO, R =2.0, 0=4S.O' and /=0. 0'. Numbers in parentheses
are powers of factors of ten.

n] I) m] n2 lp mg Equation (6.8)

1 0
1 0
1 0
1 1

1 I
1 l
3 1

3 1

3 1

5 0
5 0

0
5 S

5 5
5 5
5 5
5 5
5 5

0 2.20 0.241 222 730 889 277 951 797 377( —02)
0 5.56 0.1S5 947 042412479 991133595( —03)
0 9.90 6.266 333 516751266 814 197 107( —04)
0 2.20 0.113546037053703333444862(—03)
0 5.SQ 0.656024 309 177 991 884 629144( —05)
0 9.96 0.722 245 444 690 668 052 342 243( —06)
1 2.20 0.191 855 872 151 891 881 320 1S3(—03)
1 5.50 0.229 394 207 154 352 634 698 907( —04)
1 9.90 0.280729793721 37284233S 670( —05)
0 2.26 0.883967476162948400561760{—63)
6 5.50 6.839 121 794 539 339 196877 705( —04)
0 9.90 0.152 891 828 672 758 145 394420( —04)
5 2.20 0.361 964 649 766 618 438 755 214( —07)
5 5.50 0.126 343 903 632 905 072 511 485{—09)
5 9.90 0.106466 616488 298 411 777 009( —11}

2.20 0.158 723 132 293 731 028 497 063( —13)
—5 5.50 0.566 639 531 964 675 184 549 835( —14)
—5 9.90 0.397085470133692722989423( —15)

Equation (6.11)

0.241 222 730 889 277 951 797 377( —02)
0.155 947 042412479991 135 595( —03)
0.266 333 516751 266 814 197 104{—04)
0.113546 037 053 703 333 444 857( —03)
0.656 024 309 177 991 884 629 141{—05 )

0.722 245 444 690 668 652 342 235( —06)
0.191 855 872 151 891 881 319901(—03)
0.229 394 207 154 352 634 698 906( —04)
0.280 729 793 721 372 842 335 667( —05)
0.883 967 476 162 948 400 560 460( —03)
0.839 121 794 539 339 196 877 697{—04)
0.152 891 828 672 758 145 394 417( —04)
0.301 964 649 719667 481 813 599( —07)
0.126 343 903 632 905 069 516314{—09)
0.106466 616488 298 810222 856( —11)
0.167 342 472 707 276 739 347 582( —13)
0.566 639 531 964 675 18S 988 072( —14)
0.397 685 470 133 692 722 989 429( —15)

Number
of terms

92
716

2333
99

762
2479

96
676

2188
ill
877

2867
118
969

2977
106
715

2246
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(n i+Ii+1)~
pi

(6.17a)

n2+l2+q
(6.17b)

series. From that result we may conclude that the compu-
tation of overlap integrals with equal parameters with the
use of Eq. (5.4) yields numerically reliable results even for
extremely large values of n

&
and n2.

Unfortunately, the formula for overlap integrals with
equal parameters, Eq. (5.4), is much less accurate in the
case of large angular momentum quantum numbers hi and
l2 than for large values of n& and n2. This becomes im-
mediately evident if we compare the numerical results in
Table II for the integrals S555 and S&5& . In the case of
the integral Sqq5 we have, for large differences of the pa-
rameters a and P, an excellent agreement between the
Jacobi-polynomial representation and the infinite series,
whereas in the case of the integral S55& there occur rela-
tively larger discrepancies. This can best be explained in
terms of the different angular momentum coupling. From
the selection rules of the Gaunt coefficient we obtain in
the case of the integral S5~& 1;„=1,„=10,whereas for
the integral S&5~ we obtain lm;„=0 and lm, „=10. Hence,
in the case of S555 the two inner summations reduce to a
single term, whereas in the case of S555 the l and t summa-
tions are relatively long and may lead to some rounding
errors because of the occurrence of alternating signs.

It should also be noted that the different rate of conver-
gence of the infinite series (6.11) for the integrals S555 and
S555 is in perfect agreement with our asymptotic
analysis, Eq. (6.15). Hence we see that the rate of conver-
gence depends also, via the selection rules of the Gaunt
coefficient, upon the magnetic quantum numbers.

In their article, Antolovic and Delhalle' investigated
the numerical properties of the convolution formulas of 8
functions. Quite in agreement with our observations they
found that the Jacobi-polynomial representation, Eq. (6.2),
may lead to intolerable rounding errors for smaller differ-
ences of the two exponential parameters. However, when
they analyzed the numerical properties of the infinite-
series representations, Eqs. (6.9) and (6.10), they found
that the rate of convergence of these infinite series is too
slow to be of much practical use. Then they concluded
that because of the bad convergence there exist ranges of
parameters and quantum numbers for which no satisfacto-
ry computational path is available, and they recommended
that some alternative procedures for the evaluation of the
overlap integrals for 8 functions should be sought.

It cannot be denied that the convergence of the infinite
series (6.11) and (6.12) may become extremely slow and,
accordingly, an application of these series may become
quite time consuming, particularly when compared with
our extremely fast program which is based upon Eq. (6.8)
together with the recurrence formula of the Jacobi polyno-
mials, Eq. (6.6). However, the results presented in Table
II nevertheless demonstrate that the infinite series will
yield a satisfactory accuracy even under unfavorable con-
ditions. How can this discrepancy be resolved'? In Eqs.
(6.9) and (6.10) there occur binomial coefficients

n~+l~+p

(ni+li+1)~
X ~

iP.
(6.18)

Here, no overflow can occur for a (p. Instead, the quan-
tities which are computed with the help of Eq. (6.18) tend
to zero rapidly enough to guarantee the convergence of the
infinite series (6.11). Of course, all other quantities in
Eqs. (6.11) and (6.12) that depend upon the summation in-
dex of the outer infinite summation have to be computed
recursively as well.

Hence we conclude that the numerical problems Antolo-
vic and Delhalle encountered are not so much due to in-
trinsic pathological properties of the convolution formulas
but are probably consequences of an unfortunate choice of
computational algorithms.

The numerical properties of the convolution formulas
are also of considerable importance for a project undertak-
en by Jones. 9 Starting from known analytical repre-
sentations for overlap and Coulomb integrals over STF's
which all have the general structure "exponentials
X powers X coefficients, " Jones tried to find for each indi-
vidual integral an analytical representation of maximum

simplicity. In order to achieve his aim, Jones used com-
puter algebra. Only the nonzero coefficients are then
stored on tape. If one wants to compute a certain integral,
one only has to read in the nonvanishing coefficients and
multiply them with the corresponding exponentials and
powers. Jones derived computer-generated formulas for
STF overlap integrals with equal scaling parameters
which are equivalent to the overlap integral of 8 functions
with equal parameters, Eq. (5.4). Jones also derived for-
mulas for STF overlap integrals with different scaling pa-
rameters which contain singular terms if the two exponen-
tial parameters approach each other and which are
equivalent to the Jacobi-polynomial representation, Eq.

where p and q are the summation indices of the infinite
summations. When Antolovic and Delhalle discussed the
possibility of transforming the infinite series (6.9) and
(6.10) into continued fractions, they wrote on p. 1822 of
their paper': "Also, the upper limit to the computation
lies in the request that the upper index of binomial coeffi-
cients in (3.15) be smaller or equal 40." Equation (3.15) of
Antolovic and Delhalle is equivalent to Eq. (6.11) here.

This statement of Antolovic and Delhalle suggests that
they precomputed all binomial coefficients (k ) with
0(n &40 and 0&k &n and stored them in some array.
As some of the binoinial coefficients may become quite
large, only relatively small values of n are adniissible be-
cause, otherwise, overflow would occur. However, for the
special binomial coefficients (6.17) such an approach is
inappropriate, and the restriction of the magnitude of the
upper index is unnecessary. In our program we use the re-
cursive scheme:

2 p+1(n&+ii+1)&+i a1—
(p +1)! P

2
n (+hi +p+ 1

P p+1
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(6.2). As this representation cannot be used if the two
scaling parameters differ only slightly Jones derived an in-
finite series for the overlap integral via Taylor-series ex-
pansion. As an example, Jones gives a truncated
Taylor-series expansion for the overlap integral of two 1s
STF's. However, a 1s STF is, apart from an unimportant
numerical factor, equal to 8 i o. Hence we see that because
of the uniqueness of a power-series expansion the formula
given by Jones is proportional to the first four terms of
the infinite series

2 p

S ]00(a p R)= g 1 k&+5/2(pR )
p=O &'

(6.19)

which is just a special case of Eq. (6.11). In Tables I and
II of his article, Jones demonstrates that his two repre-
sentations of the ls STF overlap integral are sufficient to
obtain an accuracy of 12 decimal digits. Jones also con-
cludes on p. 1079 of his paper "that the same accuracy
can be achieved for all orbitals regardless of their quan-
tum numbers, as the structure of all of our computer-
generation formulas is the same. " However, he overlooks
that the singularities of his formula, which is equivalent to
the Jacobi-polynomial representation, will be felt much
more strongly in the case of larger quantum numbers, and
their range of applicability becomes more and more re-
stricted. At the same time, the rate of convergence of the
Taylor-series expansions deteriorates with increasing
quantum numbers. This follows immediately from the
uniqueness of a Taylor-series expansion, from the fact that
STF's can be expressed in terms of 8 functions and vice
versa, and from our asymptotic analysis, Eqs. (6.15) and
(6.16). Therefore, we may conclude that the approach of
storing the numerical coefficients on a tape will become
quite inconvenient in the case of larger quantum numbers,
as the convergence of the Taylor-series expansion may be-
come relatively slow.

VII. SUMMARY

In this article the numerical properties of the convolu-
tion theorems of 8 functions and their applicability were
analyzed.

For that purpose we first investigated some mathemati-
cal properties of RBF's that are needed for the under-
standing of the numerical properties of the convolution
formulas, particularly monotonicity and asymptotic prop-
erties of RBF's. The connection between RBF's and
Bessel polynomials which are currently investigated in the
mathematical literature was also emphasized.

We then analyzed the numerical properties of the hith-
erto known representations of the one-center overlap in-
tegrals in terms of nonterminating hypergeometric series
2F~. We showed that machine accuracy can be achieved
with these representations, although the convergence of
the infinite series may be slow. However, the rate of con-
vergence may be improved by a simple linear transforma-
tion of the hypergeometric series 2E&. Our numerical re-
sults were supported by an approximative analysis of the

dependence of the rate of convergence of the infinite series
upon the quantum numbers. As the convergence of the
hypergeometric series may be inconveniently slow in spite
of, the acceleration achieved by the linear transformation,
we developed a representation by a finite number of terms
which is numerically stable for all exponential parameters
and allows an extremely fast computation.

Two-center overlap integrals of 8 functions with equal
exponential parameters have the remarkable property that
their computational complexity does not increase with in-
creasing orders n& and n2. Accordingly, we could show
that our computational algorithm allows a reliable and
fast evaluation of these integrals even for extremely high
values of the orders n~ and n2. Unfortunately, the com-
putational complexity of these and also of other multi-
center integrals increases considerably with increasing an-
gular momentum quantum numbers. We also found that
there occurs some loss of significant digits. However, as
extremely large angular momentum quantum numbers do
not occur in overlap integrals, our program should be suf-
ficiently accurate for all practical purposes.

Overlap integrals with different exponential parameters
are much more complicated than overlap integrals with
equal parameters. Two different representations are avail-
able, one by a finite number of terms involving Jacobi po-
lynomials and one by infinite series which is based upon
the multiplication theorem of 8 functions. We derived a
new homogeneous three-term recurrence formula for the
special Jacobi polynomials that are required for the over-
lap integral. Because of that recurrence formula which al-
lows a very economical evaluation of the Jacobi-
polynomial representation our program is extremely fast.
Unfortunately, the Jacobi-polynomial representation con-
tains terms which become singular if the two exponential
parameters approach each other. Hence, for exponential
parameters that differ only slightly we have to use an
infinite-series expansion. These series can be viewed as
Taylor-series expansions and are closely related to the rep-
resentations of the one-center overlap integral in terms of
nonterminating series 2F~. We analyzed the numerical
properties of these infinite-series representations and
showed that contrary to the opinion of Antolovic and
Delhalle' they may be used even under unfavorable cir-
cumstances, i.e., if the two exponential parameters differ
greatly. In addition, we extended the approximate asymp-
totic analysis we had done in the one-center case to two-
center overlap integrals and are now able to make predic-
tions about the dependence of the rate of convergence
upon the quantum numbers involved.

The algorithms which were described in this paper are
more efficient and extend further than those of Antolovic
and Delhalle, and should be sufficient for the practical ap-
plication of the given formulas in molecular calculations.
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