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Configuration-interaction wave functions are calculated for all intrashell doubly excited
states of the %=2 shell for He and isoelectronic ions Li+, Be +, and Ne + with the use of a
basis of Sturmian functions. The density function p(r»8&2

~

r2 ——u), which is the conditional
probability that one electron will be found at distance r& from the nucleus with interelec-
tronic angle 0~2 given that the other electron is at distance a from the nucleus, is computed
for each of the states and for various values of a. Density plots for the 'S' states of He are
compared with those from Hylleraas-Kinoshita wave functions to assess the quality of the
Sturmian basis. Sequences of plots are then examined to investigate the possibility of collec-
tive motion in doubly excited states. For He the form of the densities p(r &, 8&2

~
u) is in qual-

itative accord with the molecular model proposed by Kellman and Herrick in that the col-
lective rotational and bending vibrational states are readily identifiable. With increasing nu-

clear charge a transition occurs to less collective behavior, corresponding to superpositions
of hydrogenic configurations associated solely with the %=2 shell. Some states, e.g., 'D',
correspond to single independent-particle configurations. Electron density distributions are
also presented for the lowest S and I' states of the He n ~

——2, n2 ——3 intershell manifold with
a view to extension of the molecular interpretation to this case. Results are compared with
those of calculations of the quantum states of model problems such as particles on concen-
tric spheres.

I. INTRGDUCTIQN

The nature of electron correlation in doubly excit-
ed states of two-electron atoms is a problem of con-
siderable theoretical interest (a necessarily incom-
plete selection of references pertaining to the point
of view developed in the present work is given in
Refs. 1—22). While the ground state ( ls ) and sing-
ly excited states ( Isnl) of two-electron atoms can be
well represented by a particular zeroth-order config-
uration, extensive mixing of degenerate and near-
degenerate configurations occurs in many doubly ex-
cited states so that a description of such states in
terras of a dominant single-particle configuration is
not possible. In particular, single-particle angular
momenta are no longer good quantum numbers.
Configuration-interaction (CI) wave functions for
doubly excited states have been calculated using very
large bases (see, for example, Refs. 23 and 24).
However, to gain physical insight into the dynamics
of correlation, the central problem is to identify ap
proximate constants of the motion to provide new
quantum numbers for the classification of doubly
excited states.

Work on this problem has proceeded along several

different lines. It has been shown by Macek, Pano,
and Lins that the two-electron problem exhibits an
apparent near separability when expressed in hyper-
spherical coordinates. Adiabatic channel quantum
numbers are approximate constants of the motion in
this case, and correspond to particular patterns of
radial and angular correlation. ' The fact that the
hyperspherical radius is a quasiseparable coordinate
is not well understood at present; an analysis of
O(6)-symmetry breaking in two-electron systems
might clarify the nature of the approximate separa-
bility. The detailed effects of nonadiabaticity, i.e.,
channel mixings, have also yet to be investigated.

Following the pioneering suggestions of Moshin-
sky, there have been several attempts to treat the
problem of correlation in two-electron atoms as a
symmetry breaking in ihe direct-product group
O(4))&O(4) ' ' ""' ' [Recall that the X de-
generate states of a hydrogenic system with princi-
pal quantum number X span a single irreducible
representation of the group O(4), which describes
the so-called hidden symmetry of the one-electron
atom. ] Both Wulfman and Herrick and Sinano-
glu have shown that for intrashell (n& ——n2) doubly
excited states . diagonalization of the difference

Q~1983 The American Physical Society



COLLECTIVE AND INDEPENDENT-PARTICLE MOTION IN. . .

B&—82 of one-electron Runge-Lenz vectors B; in
the manifold of hydrogenic states yields eigenfunc-
tions which are very close to those obtained by di-
agonalizing the interelectronic repulsion r ~z (for a
recent review see Ref. 27). The effectiveness of this
operator replacement has been rationalized in classi-
cal terms by considering the coupled precession of
elliptical single-electron orbits ' (see also Ref. 22).

By defining suitable O(4)-related quantum num-
bers, Herrick and Kellman were able to organize
manifolds of doubly excited states into "supermul-
tiplets" of states, '5' and thereby recognize both vi-
brational and rotational excitations in spectra of
two-electron atoms' (thus extending earlier work'
in which rotor series had been recognized). The
energy-level patterns were found io correspond to
the rotation bending-vibration spectrum of a linear
XF2 triatomic molecule, albeit truncated due to
the finite number of states involved. The essential
physical picture emerging from this analysis is that,
for low values of the nuclear charge at least, doubly
excited two-electron systems behave as rather "flop-
py" XY'2 molecules, exhibiting both collective rota-
tions and bending vibrations. The possibility of
such collective motions in atoms is a relatively un-
familiar idea which, as well as providing a simple,
physically appealing way of picturing the effects of
strong electron correlations, suggests previously un-

suspected parallels between atomic and molecular
dynamics.

The aim of the present work is to investigate
whether a naive molecular picture of electron corre-
lation in doubly excited states of two-electron atoms
is valid (Fig. 1). That is, to what extent are the two
electrons actually localized at roughly the same dis-
tance from but on opposite sides of the nucleus, un-

dergoing large-amplitude bending vibrations togeth-
er with collective rotations'? In other words, does a
doubly excited atom have a shape? And how does
the tendency toward having a shape depend on such
factors as nuclear charge'?

In order to answer this question, we have under-
taken a detailed study of the two-electron density

p(r„rz, 8&z) via the associated conditional probabili-

ty p(&~, 8~2 l
r2 ——a) for the %=2 intrashell doubly

excited manifolds of He and isoelectronic ions Li+,
Be +, and Ne +. The function p(r&, 8&2,

~

rz ——u) is
the probability of finding an electron at distance r,
from the nucleus with interelectronic angle 8&2

given that the other electron is at distance a from
the nucleus. ' It therefore excludes all information
concerning the orientation of the electron-nucleus-
electron triangle in space, information not directly
relevant to the interparticle correlations. Graphs
of the conditional probability distribution

Go I l e cti ve

rotation

E. lectrons
loca I i zed on
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large- amplitUde
bending vibrations

FICy. 1. Molecular picture of electron correlation in

doubly excited states of two-electron atoms.

p(r&8&2l r2 ——a) have been used previously to study
electron correlation in ground ' and excited S (Refs.
12,13) and P (Ref. 32) states of two-electron atoms
represented by CI or Hylleraas-type wave functions,
as well as some higher angular momentum doubly
excited states described by DESB (doubly excited
symmetry basis) -type functions. ' We present here
the first systematic study of a complete doubly ex-
cited manifold using high quality CI functions (Sec.
II) for all states including P and D angular momen-
tum states.

Previous work' using Hylleraas-Kinoshita wave
functions for He and H showed that the Kellman-
Herrick molecular picture is essentially confirmed
for S' and P' states of the %=2 shell, and that the
intershell state 2s3s S' has the character of a first
excited antisymmetric vibration. In addition, model
studies of the quantum states of electrons on the
surface of the same or concentric spheres demon-
strated the possibility of pronounced collective
motions with characteristic associated rotation-
vibration spectra, as well as a smooth transition to
independent-particle motions (see also Refs. 35 and
36). In the present work we examine the occurrence
of collective motion in real three-dimensional atoms
for low values of the nuclear charge and the transi-
tion to more familiar independent-particle or
single-configuration dynamics as the nuclear charge
is increased.

The work presented here is complementary to the
recent studies of Lin, who has given extensive
graphs of the two-electron density in a series of dou-
bly excited S state channels of He and H . Thus,
while we plot the density function p(r&, 8&z l r2 ——a),
Lin prefers to plot the density p(P, 8~2), for fixed
values of the hyperradius R—:(r & +r2)', where the
hyperangle P=tan '(r&/r2). However, whereas the
densities we plot are derived from wave functions
whose exactness is limited only by the CI procedure
itself, the channel functions plotted by Lin are cal-
culated within the adiabatic approximation and so
correspond to correlation of two electrons con-
strained to lie on a hypersphere. Moreover, channels
with angular momentum greater than zero have not



yet been treated graphically by Lin.
The plan of the paper is as follows: Section II

and the Appendix are concerned with the details of
the choice of basis for our CI calculations on two-
electron atoms. Section II outlines our method of
computation and provides a detailed comparison be-
tween two-electron densities derived from CI and
from explicitly correlated Hylleraas-type wave func-
tions for S' states of He in order to assess the quali-
ty of basis used, while the Appendix gives details of

I

the Sturmian functions used. In Sec. III we present
graphs of densities p(r, O, z ~

rz) derived from Stur-
mian CI functions for %=2 shell doubly excited
states of He„Li+, Be +, and Ne + and discuss the
collective or independent-particle-like nature of the
states. Section IV gives some results on electron
correlation in selected n&

—2, nz ——3 intershell dou-
bly excited 5 and J' states, with particular attention
paid to the extension of the molecular picture to this
case. Concluding remarks are given in Sec. V.

II. CGMPARISGN GF CI AND HYI.LERAAS WAVE FUNCTIGNS: 'S' STATES GF He

In this section we consider the choice of basis functions for our two-electron CI calculations. Previous dis-
cussions' ' of electron correlation in S' states of He showed graphs of p(r~, 9~z

~
rz) derived from accurate

Hylleraas-Kinoshita functions of the form (1):

P(ri rz, r»)=exp[ —Nri+rz)] g c~„.(r&+rz)"

The nonlinear parameter g together with the coeffi-
cients czar„(A, , p, and v are integers) were deter-
mined using a program written by Roothaan. To
study the systematics of electron correlation
throughout the entire intrashell doubly excited man-
ifold and, in particular, the phenomenon of collec-
tive rotation, we ideally require explicitly correlated
wave functions of the form (1) for higher angular
momentum states. It is well known, however, that
the calculation of such functions presents consider-
able technical difficulties. (These wave functions
have nevertheless been obtained by Bhatia and Tem-
kin and a detailed comparison with our CI func-
tions is in progress. ) For this reason, we have
chosen in the present work to generate two-electron
CI wave functions of the form

m rl~r2 = cjlvlj2V2 V1 r] V2 r2
J1~~1
j1~2

(2)

and calculate the corresponding densities
P(r&, 8&z

~

rz). Here, j and m are the total and az-
imuthal angular momentum quantum numbers,
respectively, and the coupled spherical harmonics
R][C

[& '(r~) X & '(rz)]'

F ', (r))F ' (rz)(j),m(, jz„mz
~ j,m ) .

Pl 1,Nl2

(3)

I

CI functions of the form (2) are relatively easy to
calculate and give a uniform level of approximation
for the set of states of interest. As we shall see
below, the short-range (r~z -0) cusp behavior of the
accurate wave function is completely absent from
the CI functions; however, the questions pertinent to
collective, correlated behavior are primarily ques-
tions concerning the long-range or global behavior
of the electron density, which is generally well
represented in our CI functions.

An important question concerns the choice of ra-
dial basis functions. It has long been known that, '
using a complete set of orthonormal hydrogenic
one-electron orbitals to expand the two-electron
function, it is necessary to include both the discrete
spectrum and continuum states to ensure conver-
gence to the exact wave function. Since bound-state
hydrogenic functions with quantum numbers n and l
behave as

P(r) -r" 'e "~", n ) l

they rapidly become radially diffuse with increasing
principal quantum number n due to the 1/n depen-
dence of the exponent. An expansion of intrashell
doubly excited state wave functions in a hydrogenic
basis might therefore be expected to converge more
slowly than an expansion in terms of basis functions
whose radial parts are more compact and better lo-
calized in the most important regions of configura-
f.lGI1 SPB,CC, 1.C., P] f'p.

For the CI calculations reported here we have
therefore used a Sturmian type of radial basis con-
structed from Slater orbitals

P(r)-r" 'e &', n ~ 1
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Hydrogenic CI'

TABLE I. Calculated energy levels for He doubly excited %=2 intrashell states: E—(Ry).

Sturmian CI' Callaway's Slater CI Hylleraas QHQ

lee
3p0
3pe

lac
lpe
lee

1.556 06
1.520 78
1.420 86
1.405 99
1.385 15
1.242 29

1.556 79
1.51998
1.419 98
1.398 70
1.381 37
1.238 33

1.55049
1.51658
1.413 76
1.394 96
1.376 73
1.230 28

1.557 63
1.522 98
1.421 00
1.405 63
1.385 79
1.245 50

'The present work.
Reference 24.

'Reference 23.
Space of discrete functions (Ref. 37); by using the Feshbach projection-operator technique,

the portion of the resonance at 8' may be determined vanationa11y by minimizing the func-
tional 8'=(NQHQC )/(4Q@), where Q is a projection operator such that QHQ has a
discrete spectrum.

where the exponent g' is held fixed for fixed values
of the single-particle angular momentum l. This
basis of radial functions [essentially Laguerre poly-
nomials of order (2l+1)] was originally introduced
by Hylleraas and has been applied by Hol@ien o

and Shull and Lowdin, ' among others. It is com-
plete with no continuum and is well suited to
describe the pronounced angular correlations occur-
ring in intrashell doubly excited states. As we shall
see below, in using such a basis it is possible to ob-
tain a good representation of the long-range correla-
tions in the "exact" Hylleraas 'S' functions. We
note also that the elimination of the continuum in
favor of a discrete spectrum is characteristic of Lie-
algebraic approaches to the one-electron problem. ~~

For irttershell doubly excited states, in which the
single-particle shell structure leads to localization of
the electrons at different distances from the nucleus,
a basis of hydrogenic functions may well be more
suitable (cf. Sec. IV). Further studies of convergence
properties in multiply excited states are needed to
deterniine optimal radial basis sets.

To obtain two-electron densities p(r~, 6)~2
~
r2) we

therefore proceed as follows:
(a) CI functions of the form (2) are calculated us-

ing a radial basis (5) of Sturinian functions. The

secular matrix is set up using a modified version of
Callaway's program, which evaluates matrix ele-
ments of the two-electron Hamiltonian in a sym-
metrized basis of Slater orbitals. Matrix diagonali-
zation and orthonormalization of the resulting
eigenvectors is performed using standard EISPAcK
routines.

Several comments are in order here. First of all,
the doubly excited wave functions we calculate are
approximations to the bound-state portions of au-
toionizing states, which are in fact resonances in the
one-electron continuum. Since, in contrast to use of
a hydrogenic basis or an explicitly projected Hyl-
leraas basis, use of a nonorthonormal basis of Slater
orbitals does not allow lower states (1s and lsnl ) to
be projected out easily, we must rely on a stabiliza-
tion method to identify the doubly excited states
among the solutions to our secular problem. This
means that, except for the I" doubly excited state,
which is the lowest of its symmetry type, the ener-
gies we find for %=2 intrashell states are not neces-
sarily upper bounds to the unshifted resonance ener-
gies. Qur calculated energies for He are given in
Table I, where they are compared with other varia-
tional results. It can be seen that agreement with in-

He N=~ Shett

TABLE II. Calculated energy levels for %=2 intra-
shell doubly excited states with Sturmian CI basis: —E
(Ry).

l.3—
ioe

Vp =P

lge
3p0
lae
lpo
3pe
lge

He

1.55606
1.520 78
1.405 99
1.385 15
1.420 86
1.242 29

3.808 90
3.756 21
3.545 82
3.51346
3.593 06
3.257 16

Be+

7.064 73
6.991 10
6.681 57
6.636 81
6.76513
6.270 30

Ne+

47.593 02
47.398 32
46.473 41
46.351 81
46.796 73
45.341 34

5

l.6—

3pO

Se

V2=0

Z='l (-) Z=& (+)

Vp =1

FIG. 2. Calculated energy levels for %=2 intrashell
doubly excited states of He (Sturmian basis). Assignment
of molecular quantum numbers is shown.
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dependent calculations is very good. Energies for
doubly excited N =2 states of He, I.i+, Be + and
Ne + are shown in Table II. Agreement with the
hydrogenic CI values of I.ipsky et al. is good.
Calculated Sturmian CI levels for the six states of
the He X =2 shell are shown in Fig. 2. We return
to the significance of this energy-level pattern below.

In Table IV we list the exponents g' used to define
our orbital basis (5) for nuclear charge Z=-2, 3, 4,
and 10. While we have not performed extensive op-
timization of the exponents associated with each
value of the single-particle angular momentum, it is
worth noting that slight screening of the s orbitals

greatly improves the stabilization of doubly excited
levels. For our calculations we use a single-particle
basis with quantum numbers n &6 and 1&5 which
gives, for example, a CI basis of maximum dimen-
sion 63 for the 'S' states (see the Appendix).

(b) Having obtained the coefficients cj „1„ in the2&&&jz"z

expansion (2), the next step is to integrate over the
Euler angles describing the orientation of the
electron-nucleus-electron triangle in space to give
p(r, , rz, 8i2), which is the rotational trace of the di-
agonal two-electron density matrix, expressed in
terms of internal variables r, , r2, and 8i2. This is
done using a procedure outlined previously to give

p(r, , r2, 8,2)= g c., „..„cJ.,„,J,~2$, ( i 4„4&,( i)dv, (r2 —,[(2ji +1)(2ji+1)(2j2+1)(2j2+1)]'
~t "1 Jz "z

j& "]»z "z

min(j&+ j&,jz+jz )

r r

Jl Ji k Jp J2 k ji
( —1)J (2k+1) 0 0 0 0 0 0 .J2

k j'i
'Pk(cos8, 2) .

J Jz

(c) Integrating over ri and 8i2 to fmd the one-
particle density S(r),

QO m'

S(r) = r idri sin8i2d8i2p(ri, r2 ——r, 8i2),0 0

we finally obtain the conditional probability density
p(r»8»

I
rz =a)

p(ri, 8i2 I
r2 a) =p(ri, r2 ——a, 8—»)/S(r =——a.) .

Integration of (6) over the angle 8i2 is trivial. Using
a radial basis of Slater orbitals the integration over
r, can be performed analytically. Note that

f QO

r,dr, sin8i2d8i&(ri 8i2 I "2=a)=1

(9)

(d) The conditional probability density
p(r„8,z I

r2 ——a) [more accurately r ip(ri, 8iz I
rz)] is

then calculated at a grid of ri, 8,2 points for given

I

value of r2 and plotted. In this way we are able to
explore the three-dimensional two-electron density
as a function of the atom's geometry. The condi-
tional probability density is particularly useful for
studying the interaction between "radial" and "an-
gular" correlations of electrons.

Figur~ 3 shows densities p(r i 8i2 I r2) for the
"2s " 'S' state of He, calculated fmm the 14-terna
Hylleraas-Kinoshita function of Ref. 13 and our
63-term Sturmian CI function, respectively, for four
values of r2. The most probable configuration (larg-
est S value) occurs with r2 —2 9bohr. Co.mparison
of the two sets of graphs shows that the two-
electron density associated with our CI function is
virtually identical with that for the Hylleraas-
Kinoshita function, which explicitly includes terms
in the interelectronic distance ri2. Note that the
most probable configuration (r2-2. 9 bohr) has both
electrons at the same distance from but on opposite
sides of the nucleus, with a distribution with respect
to 8» that is very close to Gaussian. In other words,
the lowest 'S' state of the He %=2 manifold is
indeed a rotor state, qualitatively similar to the rota-
tionless ground state of a linear triatomic molecule
XF2 (Sec. III).

Figure 4 gives a corresponding comparison of
Hylleraas-Kinoshita and CI two-electron densities
for the upper "2p " 'S' state of He. This provides a
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44O w

l = 2.875

FIG. 3. Com arp ison of Hylleraas-Kinoshita and Sturmian CI conditional robabilit
"2 ~"'5' . ( ) =0.01 boh '(b) =0.4b h; = . 1
are on the left.

a= . o r; (c) r=1.l bohr 1 r=, (1) r =2.875 bohr. The Hylleraas-Kinoshita functions

more stringent test of the quality of the Sturrnian CI
basis we use since the "exact" Hyll K' h'y eraas- inosmta
function of Ref. 3 shows pronounced angular

s can e seencorrelation in this excited state. As b
rom ig. 4, our CI function succeeds very well in
up icating the long-range behavior of th t

e ectron density but fails (as all finite CI expansions
in unctions not involving r&2 must) to represent the

sence of a direct comparison with Hylleraas-type
unctions for higher angular momentum states, we

simi ar accuracy canassume that wave functions of sim'1
e obtained for states in the doubly excit d 'f ld

wi tfferent symmetries. These wave functions

e "
p

" ' ' state is described within the molecular
picture as a rotationless state with two quanta of

S III
ending vibration. This point is al t k

III. X =2 INTRASHELL
DOUBLY EXCITED STATES:

CI FUNCTIONS
FOR He, Li+, Be +, AND Ne +

In this section we examine two-electron densities
or N =2 intrashell doubly excited states of He and

isoelectronic ions Li+, Be +, and Ne + c»cu»ted
using Sturinian CI functions. (In contrast to calcu-
ations with a Hylleraas basis, attempts to obtain

corresponding eigenvalues and eigenvectors for H
failed to give stabilized results. ) In the following dis-
cussion, we point out the occurrence of collective
motions for low values of the nuclear charge (He)
and discuss the transition to more independent-
particle-like dynamics with increasing nuclear
c arge.

Consider once again Fig. 2, which shows o«c»-
culated %=2 energy levels for He. The levels have
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FIG. 4. Comparison of Hylleraas-Kinoshita and Sturmian CI conditional probability densities p(r~, 8~2
~
r2 a) for He-—

"2p~" 'S' state. (a) a=0.3 bohr; (b) r= 1.1 bohr; (c) r=2.0 bohr; (d) r=2 875 bohr. .The Hylleraas-Kinoshita functions are
on the left.

been arranged so as to emphasize the molecular in-
terpretation of the doubly excited spectrum pro-
posed by Kellman and Herrick. ' Thus, the lowest
S' state is interpreted as the ground state of a linear

XF2 triatomic molecule; as seen in Sec. II, the calcu-
lated electron density corresponds very closely to
this model. In the molecular picture the P' and
D' states are members of a rotor series based on the

ground S' state, corresponding to overall rotation
of the linear electron-nucleus-electron configuration
with angular momentum perpendicular to the linear
axis. Energies of the He rotor states for %=2 fit
only very roughly to a J(J+1) rigid-rotor expres-
sion, although better fits are obtained for longer se-
quences of rotor states in higher excited shells. The
rotor states 'S', I", and 'D' are assigned the bend-
ing quantum number U2

——0. The near-degenerate
P' and 'I" states then correspond to a pair of levels

with one quantum of bending, u2 ——1, and one unit
of vibrational angular momentum along the
electron-nucleus-electron axis, l = 1. By analogy

I.Q--

0.8

0.6

Q p

0.2

0.0
I 0 20 30 40 50

R (O. l a. u. }

FIG. 5. Single-particle radial distribution function
r S(r) for He "rotor series": 'S', P', and 'D' states.

with the case of l doubling in linear poly-
atomics such as CO&, the I" and 'I" states are
split by a so-called T doubling. ' ' Note, however,
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He Ne

0

IbII

FIG. 6. Conditional robabilit dp
'

y densities p(r„8,2
~

r2 a) fo——r rotor series states 'S', P' and 'D'. Nu 1

(He), 3 (Li+), 4 (Be +) and 10 (N +) R O' I
, an . uc ear charge Z=2

shapes r h 't t b bl
n e . a ia coordinates have been scaled to faci'i

as i s los pro a e va ue in each case.
cilitate cornparIson of wave-function

the opposite signs of the splittings in He and linear
polyatomics (see below). The molecular interpreta-
tion of the He %=2 doubly excited manifold is
completed by assigning the upper 'S' level to a rota-
tionless state with two quanta of bending vibration
excited, uz ——2. We now consider to what extent this
molecular model is supported by calculated electron
densities.

We first examine the rotor series states. Figure 5
shows the single-particle radial distribution function
r S(r) for the 'S', P' and, 'D' states of He. The
plot clearly shows well-defined peaks at the charac-
teristic shell radius 2.5—3.0 bohr. It can also be seen
that the one-particle distribution contracts slightly
with increasing angular momentum, just as for hy-
drogenic functions. This result indicates the strong
persistence of one-electron radial shell structure in
these doubly excited states and is consistent with the
finding that a fit of doubly excited levels to molecu-
lar term formulas requires a negative centrifugal dis-
tortion constant, i.e., the atom "contracts upon rota-

»16, 17

Figure 6 shows conditional probability densities
p(ri, Oi2

~
r2 ——a) for "rotor" states as a function of

nuclear charge Z with the value a chosen to corre-
spond to the most probable value in each case, i.e.,
the peak of the one-particle radial distribution func-
tion. The radial coordinates have been scaled for
each value of Z to facilitate comparison of the
shapes of density distributions. We note that densi-
ties for all doubly excited states considered in this
work have been studied over extensive ranges of the
radial distance r2., restriction in this paper to most
probable values of a is merely to save space while
bringing out the essential points as clearly as possi-
ble.

l.et us compare the 'S' and P' states of He. The
3 0P density is remarkably similar to that of the 'S'
state at the most probable value of r2, exhibiting the
same angular correlation and localization of the two
electrons at the same distance from the nucleus. We
therefore conclude that the P state corresponds to
collectiue rotation of the two-electron atom in that
there is an intrinsic function or shape which is very
slightly distorted by addition of one unit of angular

45momentum. Angular correlation is somewhat less
pronounced in the He 'D' state. It is, however, still
clearly recognizable as a rotor state with two units
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of collective angular momentum. Th d
i

e enssties

p otted in Fig. 6 show that a naive molecular inter-

p etation in terriis of collective rotation is, in
essence, correct for He (Z =2).

We now consider changes in the rotor nature of
t e states with variation of nuclear charge Z. Fig-
ure 6 shows that the appropriately scaled condition-
a probability densities at the most probable values
of r2 are remarkably similar for He Li+ B +
Ne+ in 1 e 3 0

i, e, all
e in both S' and P' states, and are indeed close

to the corresponding densities for DESB wave func-
tions shown in Ref. 12 [cf. Figs. 9(e) and ll(f) of
Ref. 12]. This suggests that the 'S' and P' rotor
states of He remain rotorlike for all values of Z, an
that an O(4) or DESB description ' of the wave
unctions is very close to the exact doubly excited

function for all Z. For the 'D' rotor state of He,
owever, there is a significant change in character as

Z is increased. From Fig. 6 we see that the degree
of angular correlation in the 'D' state decreases
gradually with increasing nuclear charge until the
conditional probability density is almost symmetri-
cal about Hi2

——n./2 for Z=10, Ne +. The latter
orrn of electron distribution is characteristic of the

DESB (II,T=1,0) wave function for the 'D' state
(c . Fig. 12 of Ref. 12) which is just a suitabl t
cou led 2

a yvec or
coup e p configuration of hydrogenic orbitals.

We therefore conclude that there is a transition from
collective, rotorlike behavior in the 'D', N =2 doubl
excit state of He to single con-figuration or
independent par-ticle lik-e dynamics with increasing
nuclear charge. The dynamics are independent in
that correlations apart from those induced by spin
symmetry and vector coupling are virtually absent.
Put another way, the tendency to mix in higher ex-
cited angular configurations and so obtain favorable
angular correlation decreases with increasin Z f
the 'D' ste state, until a single-configuration wave func-
tion is obtained at high Z.

It must be stressed that the Sturinian basis used to
e ppen rx cs su-describe the states of Ne + (see the A d'

iciently flexible to represent the amount of angular
correlation observed in the rotor states of He. The
lack of angular correlation in the 'D' state of Ne +

therefore reflects an intrinsic property of the wave
unction rather than an inadequacy of the basis

Use

We can infer from these results on the rotor states
that a DESB description of intrashell doubly excited
states, limited to a basis of product functions of hy-
drogenic orbitals for the shell of interest, is exact in
the limit Z~ ao. This does not mean that a single
configuration provides an adequate description in
t is limit; the DESB mixings do persist there. This

IpI
0

Ib)

(Be2+
. 7. Conditional robabilitp

' '
y densities p(ri, 8i2

~

r2 ——a) for P' and 'P' state
e ), and 10 (Ne +). Radial coordinat h b'na es ave een scaled to facilitate

most probable value in each case.

an states. Nuclear charge %=2 (He) 3 (L'+) 4
' '

a e comparison of wave-function shapes; r2 has its
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trend can be understood by examining the Hamil-
tonian with radial variables scaled by Z ' so that as
Z~ 0o the intrashell configuration mixing persists
because of the orbital degeneracy, but intershell mix-
ing disappears as Z

We now turn to the densities for the 'P and P'
states, which are shown in Fig. 7 for He, Li+, Be +,
and Ne +, again at the most probable value of rz for
each state. Consider first the 'P'-3P' pair for He.
The P' state is constrained by symmetry to have ra-
dial nodes at 8iz ——0 and m., and the conditional
probability density rises to a maximum around
8iz ——m. /2. In the region ri -rz angular correlation
shifts the maximum to values of 8iz slightly greater
than m. /2 so that the cross section of the density at
ri r2-2. 9——bohr is very much like the bending
wave function of a rather nonrigid triatomic with 1

quantum of bend (cf. plots in Ref. 33) in qualitative
accord with the molecular model. Moreover, the
'P' density, which is not subject to the same symme-
try constraints as the P' state, is very similar to the
P' density. Although the 'P' function must have a

node at ri ——rz, 8i2 ——~, the actual density is nearly
zero for ri -r2, 8iz ——m and 0. The density associat-
ed with the exact wave function is expected to have
a Coulomb hole in the region ri -r2, 8&z-0 which
will reduce the density there even more. The point
is that, for He, densities associated with independent
3P' and 'P' functions, which need have no relation
to one another in a configurational, independent-
particle picture, are in fact remarkably similar. This
similarity is very strong evidence for the interpreta-
tion of the P'-'P pair as near-degenerate partner
states having 1 quantum of bending vibration.

As mentioned above, the energy ordering
E('P') & E( P') is opposite of that found for corre-

sponding 1 doubled states in linear polyatomics.
This reversal of the molecular ordering can be as-
cribed to the dominance of the greater short-range
Coulomb repulsion in the 'P' state, which is a
consequence of the finite electron density at ri r—2—,
8iz ——0, over the splitting induced by rotation-
vibration interactions.

The nodal constraints on the P' function mean
that the shape of the two-electron density cannot
change drastically with increasing Z, as seen from
Fig. 7. In fact, the only major change in the P'
density with increasing nuclear charge is a tendency
for the distribution to become more symmetric
around 8,z ——m/2. Such a symmetric distribution is
characteristic of the 2p (K,T=0, 1) DESB state (cf.
Fig. 13 of Ref. 12). By contrast, the shape of the
'P' density changes considerably with Z, passing
from an angularly correlated "U2 ——1 bending" state
for He to an "antirotor" state for Ne + in which
there is a maximum in the two-electron density at
ri r2 and 8i2————0 (not ~) so that the electrons have
a strong tendency to sit on top of one another. This
antirotor 'P' density is, in fact, the mirror reflection
of the P density in the 8i2 ——m/2 plane and is once
again identical with that found using a DESB basis
(cf. the caption of Fig. 11, Ref. 12). For high values
of the nuclear charge, then, the P' and 'P' densities
are no longer similar, and their molecular interpreta-
tion as partner vibrational states breaks down. Once
again we have a transformation from a collective
correlated state at low Z to a single-configuration
independent-particle ("2s 2p") state at high Z.

Figure 8 shows conditional probability densities
for the upper 'S' state of He, Li+, Bez+, and Ne8+
at the most probable values of rz. The density dis-
tribution for He shows marked angular correlation

N

3.2 0 I.O .

FIG. 8. Conditional probability densities p(r ~, 8~& I
r2 ——a) for the "2p " 'S' state. Nuclear charge Z=2 (He), 3 (Li+), 4

(Be +), and 10 (Ne +). Radial coordinates have been scaled to facilitate comparison of wave-function shapes; r2 has its
most probable value in each case.
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0.8—

0.6—

constants of the motion or of the shape of the wave
functions as Fig. 9 shows.

IV. INTERSHELL
DQUBLY EXCITED STATES: He

0
P

0
0 0.I O. P. 0.3 0.4 0.5

FIG. 9. Calculated %=2 intrashell energy levels vs
Z . Energies are scaled so that t4e 5'- 5' separation is
unity.

and the angular profile at ri r2 is in —f—act qualita-
tively similar to the u2 ——2, l=O bendmg-vibrational
wave function for a linear triatomic, having a max-
imum at eii=O and a second maximum at around
Oi2

——60' [cf. Fig. 3(b) of Ref. 33]. However, as the
nuclear charge increases there is a gradual transition
to an antirotor state in which electron density is
piled up at Oi2 ——0. The shape of the density distri-
bution for Ne + is identical with that for the
(K, T = —1,0) DESB 'S' wave function for He, '2

which is in turn very similar to the full hydrogenic
CI density (Sec. II). We note in passing that the ex-
cited 'S' state of Ne + with Oi2-0 can be con-
sidered a kind of "pairing state" or eigenfunction of
a 5-function interaction, ' ' and presumably has a
high interelectronic repulsion energy. Such antiro-
tor states should be contrasted, rather than identi-
fied, with so-called Wannier states, which have the
most probable region of Hiz-m and large autoioni-
zation widths (cf. Ref. 46).

To conclude this section we show in Fig. 9 doubly
excited %=2 intrashell energies versus Z ' scaled
so that the upper S' state has unit energy with
respect to the lower 'S' state. The notable feature of
this plot is that, despite the relatively large qualita-
tive changes we have seen in the wave functions for
some states as Z is varied, the scaled pattern of ener-

gy levels changes relatively little. As Z is increased,
the 'P' and P' levels move slightly further apart,
while the ratio

[E( 'D') —E ('P') ]/[& ('P') —E ('&') ]

In this section we examine probability densities
for the lowest S' and P' states (both singlet and trip-
let) of the n, =2, n2=3 intershell doubly excited
manifold of He, with a view to possible extension of
the molecular model to intershell states. The graphs
we present give the first detailed representation of
the nature of electron correlation in intershell states
and are therefore of considerable intrinsic interest.

Energy levels and eigenfunctions for the intershell
doubly excited states are calculated using the same
Sturmian basis as for the intrashell He states (cf.
Sec. II and the Appendix). This basis is particularly
well suited to describe long-range angular correla-
tion in the region ri-r2 and it is possible that the
extensive radial correlation likely to occur in inter-
shell states may not be as well represented with Stur-
mians. It may even be that, for the intershell states,
hydrogenic CI functions provide a more accurate
representation of the true wave function than do
Sturmians. Table III compares eigenvalues for hy-
drogenic CI functions with those obtained from
stabilized Sturmian CI calculations for the four
states of interest. For the 'P' state, it is necessary to
change the exponents in the intrashell Sturmian
basis to obtain agreement with the (lower-energy)
hydrogenic result; for the other states, agreement
with the hydrogenic results is quite reasonable using
the intrashell basis. Bearing in mind these reserva-
tions concerning the use of a Sturmian basis, we
present results here only for the lowest S and P
states of the intershell manifold. A more extensive
study using a hydrogenic CI basis is reserved for
later communications.

Figure 10 shows single-particle radial distribution
functions calculated for the following states
of He: "2s 3s" 'S', "2s 3s" S', "2s 3p/2p 3s"3P,
"253p/2p3s" 1P'. The peak corresponding to the
%=2 shell is clearly visible at r -2.5—3.0 bohr, as is

TABLE III. Energy levels for n~ ——2 and n2 ——3 inter-
shell doubly excited states of He: E(Ry). —

departs more and more from the rigid-rotor value
2:1, but there are no crossings of levels. This brings
out the point that, despite the fact that an empirical
analysis of energy-level patterns suggested the
molecular interpretation of doubly excited states in
the first place, the qualitative form of the level pat-
tern is not necessarily a conclusive indicator of the

'5'("2s 3s") 1.173 61
'S'("2s 3s") 1.201 84
'P'("2s 3p /2p 3s") 1.194OO'

'P'("2s 3p/2p 3s") 1.163 63

'Different exponents in Sturrnian basis.

Hydrogenic CI

1.17628
1.20420
1.193 13
1.16671
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0 2.0 4.0 6.0
& (bohr)

FIG. 10. Single-particle radial density distribution
function r S(r) for n~ ——2 and n2 3He i——ntershell states:
'S', S' 'P' and P'.

8.0 10.0

the N= 3 peak at r -7.5—8.0 bohr.
The molecular model for intrashell doubly excited

states can be extended to intershell states by associ-
ating radial excitation of one electron to a higher
shell with stretching vibrations of the "bonds" in the

XYz molecule (Fig. 1). In this very simple scheme,
the lowest 'S' and S' states of the n, =2, nz ——3
intershell manifold correspond to the first excited
states of the symmetric and antisymmetric stretch-
ing modes, respectively. The lowest P and P3 0 0

states are then the associated respective rotor states
based on the vibrationally excited S states.

Figure 11 displays probability densities for the
'S', P, S', and 'P' intershell states of He at four
values of rz.. rz=0. 1, 2.5, 5.0, and 7.5 bohr. The
most probable configurations are those for which rz
corresponds to a shell radius, i.e., rz ——2.5 or 7.5
bohr.

It is immediately clear from Fig. 11 that, while all
states show considerable angular correlation, the
one-particle shell structure determines the pattern of
radial correlation. Comparison of the plots for the
'S' and S' states reveals the role of the exclusion
principle in shaping the wave function. For exam-
ple, when rz ——2.5 bohr, there is an appreciable prob-
ability of finding both electmns at the same distance
from the nucleus ("in the same shell" ) for the 'S'
state, while for the S' state the Pauli principle

5pO Ipo

~ w ~ ~ LLL&iL

(c)

0

Se 3Se PFIG. 11. Conditional probability densities p(r &, O~z
~

rz ——a) «r He n
&
=2, nz =»nter»el»tates:

(a) a =0.1 bohr; (b) a =2.5 bohr; (c) a =5.0 bohr, (d) a =7.5 bohr.



forces the other electron out to a distance of -7.5
bohr ("into a different shell" ). When r2 ——7.5 bohr,
both densities look very much the same, from which
we can infer that there is little admixture of the
"3s "configuration into the S'state. The S' state
is constrained to have a node at r i r2 ——for all values
of Oi2, so that the resulting electron density inevit-
ably resembles that for an antisymmetric-stretch
type of radial excitation. There is no such con-
straint on the S' state.

Comparison of the S-state densities with those for
the corresponding I' states shows the extent to which
collective rotation occurs in the intrashell states.
While the plots of Fig. 11 indicate that there is a
significant amount of angular correlation in both the
S' and I" states, the P' density corresponds only

very approximately to collective rotation of the 'S'
electron distribution. On the other hand, the S'
and 'P' densities are very similar for all values of rz
so that in this case it appears that the I" state does
represent a genuine rotor state based upon the "an-
tisymmetric stretch" ( S'). In this connection it is
very interesting to note that extension of the super-
multiplet classification scheme to intershell states
has shown that the rotor-vibrator pattern is much
better defined for states corresponding to collective
excitations based on the "antisymmetric stretch"
( S') than those based on the "symmetric stretch"
('S'). The full elucidation of these findings will re-
quire further systematic studies of the two-electmn
densities associated with intershell states.

V. CQNCLUSIIONS

In the present work we have examined plots of
conditional probability densities for doubly excited
states of two-electron atoms calculated from Sturmi-
an CI wave functions in order to determine the ex-
tent to which a naive molecular picture of electron
correlation is valid. Our plots for He (Z =2) reveal
a remarkable degree of collective rotor-vibrator
behavior in the %=2 shell, showing that the molec-
ular interpretation of the doubly excited spectrum
due to Kellman and Herrick' is a useful qualitative
picture of the dynamics. We have deliberately
avoided any discussion of the interpretation of asso-
ciated molecular constants, such as the moment of
inertia or bending-vibration frequency, since a quan-
titative treatment is not necessarily useful at this
stage. It should only be noted that moments of iner-
tia derived from fits of doubly excited spectra to
molecular term formulas are anomalously large
compared with rigid-rotor values calculated for two
electrons at -2.8 bohr from the nucleus; the inter-
pretation of this result remains problematic.

Upon increasing the nuclear charge some states

TABLE IV. Exponents defining the Slater orbital basis
used for calculation of doubly excited CI wave functions.

Single-particle angular momentum l
Nuclear charge 0 1 2 3 4 5

Z
2
3

10

0.7 1.0
1.2 1.5
1.6 2.0
4.0 5.0

1.0
1.5

2.0
5.0

1.0
1.5
2.0
5.0

1.0
1.5
2.0
5.0

('D', 'P') are seen to show a steady transition from a
correlated, collective type of wave function to a
single-configuration or independent particle wave
function in which there is very little mixing in of ex-
cited high angular momentum states, while others
(the rotor states "2s " 'S' and P') remain essential-
ly unchanged. The upper "2p " 'S' state evolves
from an angularly correlated bending state to an an-
tirotor pairing state in which the electrons have a
strong tendency to remain on the same side of the
nucleus. The I" state provides an example where
symmetry constraints determine the shape of the
wave function to a large degree. Our results enable
us to infer the exactness of the DESB description of
doubly excited states in the limit Z~ oo.

In the more general context of the nature of quan-
tum states in few-body systems, the above findings
should be compared with our previous studies of
model problems such as particles on spheres (either
the same or concentric ). For example, in the case
of particles on concentric spheres (POCS), we have
observed a smooth transition from collective to
independent-particle wave functions as the radius-
ratio of the two spheres is increased for both
Coulomb and repulsive Gaussian interparticle in-
teractions. Similarly, there is a transition to
independent-particle behavior with increasing energy
for two particles on the same sphere interacting
through a repulsive Gaussian potential.

Finally, the discovery that few-electron atoms
may under some conditions exhibit collective mole-
culelike behavior suggests the possibility of finding
independent-particle motions of nuclei in highly ex-
cited vibrational states of small polyatomic mole-
cules. One conceivable way to induce such behavior
would involve progressive excitation of a local-
mode" (bond) vibration in, for example, H20, to the
point where there is hindered rotation of an OH
"core" in the field of the outer proton. In this case
the individual proton angular momenta begin to be-
come more nearly good constants of the motion.
Preliminary model calculations using the Murrell-
Sorbie potential surface for H2O indicate that this
type of intramolecular motion may occur after 7 or
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3p0 lac 1po 3p8

TABLE V. Number of function of each symmetry type
in the Sturmian CI basis.

North Atlantic Treaty Organization fellowship.
This work was supported in part by a grant from the
National Science Foundation.

Number 63 75 35 APPENDIX

8 quanta have been pumped into a single 0—H
bond. Further investigation of these intriguing com-
monalities of atoms and molecules ' continues.
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As discussed in Section II, the CI calculations re-
ported here use a Stui-iriian radial basis constructed
from Slater orbitals of the form (5). The basis we
use contains single-particle angular momenta up to
1,„=5with the following maximum orbital princi-
pal quantum numbers n: l=O, n=7; l=1, n=6;
l=2, n=6; l=3, n=6; l=4, n=6; l=5, n=6 A. ll
Slater functions with the same l value have the same
exponent g'. Table IV gives values of the exponents
used for each nuclear charge Z, while Table V shows
the number of functions of each symmetry type.
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