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M. R. Hermann and P. W. Langhoff
Department of Chemistry, Indiana Uniuersity, Bloomington, Indiana 47405

and Max Planck Institut fiir Astrophysik, Karl Scht-oarzschild Stra-sse I, D 804-6 Garching bei Munchen,
Federal Republic of Germany
(Received 16 December 1982)

Explicit Hilbert-space techniques are reported for construction of the discrete and continuum
Schrodinger states required in atomic and molecular photoexcitation and/or photoionization stud-
ies. These developments extend and clarify previously described moment-theory methods for deter-
minations of photoabsorption cross sections from discrete basis-set calculations to include explicit
construction of underlying wave functions. The appropriate Stieltjes-Tchebycheff excitation and
ionization functions of nth order are defined as Radau-type eigenstates of an appropriate operator
in an n-term Cauchy-Lanczos basis. The energies of these states are the Radau quadrature points of
the photoabsorption cross section, and their (reciprocal) norms provide the corresponding quadra-
ture weights. Although finite-order Stieltjes-Tchebycheff functions are L integrable, and do not
have asymptotic spatial tails in the continuous spectrum, the Radau quadrature weights neverthe-
less provide information for normalization in the conventional Dirae 6-function sense. Since one
Radau point can be placed anywhere in the spectrum, appropriately normalized convergent approxi-
mations to any of the discrete or continuum Schrodinger states are obtained from the development.
Connections with matrix partitioning methods are established, demonstrating that nth-order
Stieltjes-Tchebycheff functions are optical-potential solutions of the matrix Schrodinger equation in
the full Cauchy-Lanczos basis. The energies at which the nth-order optical potential vanishes iden-
tically correspond to generalized Czaussian quadrature points, in which case the associated Stieltjes
eigenfunctions provide an optimal I. representation of the Schrodinger spectrum of discrete and
continuum wave functions. The spectral contributions of individual Schrodinger states to nth-order
Stieltjes-Tchebycheff functions are obtained in closed form, indicating the latter are spectrally local-
ized in the neighborhoods of the Radau quadrature energies, and spatially localized in accordance
with the extent of the target eigenstate. Illustrative studies of the dipole spectra in atomic and
molecular hydrogen clarify the nature and eonvergenee of the method. Finally, procedures are indi-
cated for construction of photoemission anisotropies and for performing coupled-channel calcula-
tions employing Stieltjes-Tchebycheff functions, and descriptive intercomparisons are made of the
present development with more conventional computational procedures.

I. INTRODUCTION

Continuing refinements in experimental studies of
molecular vacuum uv photoionization cross sections and
of corresponding photoejection angular distributions em-
ploying line-source, ' synchrotron-radiation, and
equivalent-photon (e, 2e) electron coincidence techniques
have been reported in the recent literature. Correspond-
ingly, computational approximations to the associated
theoretical expressions for partial cross sections and aniso-
tropy factors have provided useful clarification of the
measured results in many instances. One of the computa-
tional methods currently employed, the so-called Stieltjes-
Tchebycheff moment-theory approach, makes use of the
familiar discrete-basis-set methodology of bound-state
studies, and, consequently, is applicable in a convenient
manner to the noncentral and nonlocal potentials that
arise in molecular body-frame calculations. This ap-
proach has proved useful for computations of partial-
channel cross sections in the static-exchange approxima-
tion for a number of molecules, and furnishes a natural

setting for discussion of the shape resonances that arise in
short bond length molecules from cr* orbitals in photoion-
ization continua. Further refinement and clarification of
the approach seems desirable, however, in view of con-
tinuing interest in molecular ionization spectroscopy. Qf
particular value would be studies of the wave functions
underlying the method, ' and indication of their connec-
tion with the scattering functions of conventional single-
center approaches, which are generally written in angular
momentum representation. " Moreover, prescriptions for
calculations of molecular anisotropy factors from the con-
tinuum functions, ' and further elaboration of applica-
tions in coupled-channel situations would also be help-
ful. "

In this paper, the L, Stieltjes-Tchebycheff functions
that underlie the moment approach to molecular photoab-
sorption and ionization studies are indicated, ' some of
their properties are described, and computational applica-
tions are reported. Tchebycheff functions of nth order are
defined, in accordance with previously described (Tcheby-
cheff) approximations to spectral densities, ' as L eigen-
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functions of an appropriate operator in an n-term
Cauchy-moment basis set. ' Their energies are the Radau
quadrature points of the photoabsorption cross section,
and their norms are seen to provide the corresponding
quadrature weights. Although Tchebycheff functions
do Ilot have asylIlptotlc spatial palts lI1 flnlte OIdcIS, tl'1ey

nevertheless provide the information required for normali-
zation in the Dirac 6-function sense. Since one Radau
point can be placed anywhere in the spectrum, the Tche-
bycheff development provides appropriately normalized
L, approximations to discrete and continuum molecular
eigenfunctions at any energy. Connections are made with
matrix partitioning methods, which show that the Tche-
bycheff functions are optical-potential solutions of the full
Schr6dinger problem in the complete Cauchy-moment
basis. Stieltjes functions of nth order are seen to provide
a special set of I. eigenstates having energies at which the
optical potential vanishes identically. These energies are
the generalized Gaussian quadrature points of the density,
with the (reciprocal) norms of the Stieltjes functions pro-
viding t4e corresponding quadrature weights. Because
Gaussian quadrature points are sure to appear where the
defining density is large, the corresponding Stieltjes func-
tions provide an optimal L representation of the spec-
trum; i.e., they are the natural pseudostates of the sys-
tem. ' The Stieltjes- Tchebycheff functions can be regard-
ed as I. packets or spectral integrals over the correct
Schr6dinger states in the neighborhoods of the Radau or
Gaussian quadrature energies. It is shown that the spec-
tral contribution of an individual discrete or continuum
Schr6dinger state to a Stieltjes-Tchebycheff function can
be evaluated in closed form without explicit reference to
or construction of the correct Schrodinger wave functions.
In the limit of high order, the Stieltjes-Tchebycheff func-
tions are seen to converge to appropriately normalized
discrete and continuum Schr6dinger states, whereas ln
finite orders they provide accurate approximations
Schr6dinger states over predetermined finite spatial inter-
vals.

Detailed illustrative applications of the development are
provided in the cases of atomic and molecular hydrogen.
Stable recursive Lanczos methods are employed in con-
struction of invariant Cauchy subspaces of specific or-
der, and in determinations of corresponding recurrence
coefficients for orthogonal polynomials required in the
development. ' Since the energy dependence of the
Stieltjes- Tchebycheff functions appears only in recursively
defined orthogonal polynomia/s, their construction is par-
ticularly rapid and efficient once the Cauchy-Lanczos
basis has been determined. In atomic hydrogen, all quan-
tities necessary for construction of regular I-wave spectra
are obtained in closed form, and detailed computational
results in high order are reported for the dipole or (l = l)
p-wave spectrum. Calculations in molecular hydrogen are
reported in the static-exchange approximation for
lo.z —+ko.„and km„excitation and/or ionization sym-
metries in the body frame. Very large Cartesian Gaussian
basis sets and canonical orthogonalization procedures are
used in constructing the Cauchy-Lanczos basis functions
in these cases. The resulting Stieltjes-Tchebycheff func-
tions are presented in three-dimensional graphical forms

over an appropriate energy range. These are seen to pro-
vide useful diagnostics of the corresponding photoioniza-
tion continua, and, in particular, to clarify the nature of
the o.~o. transition in H2.

The theoretical development is given in Sec. II and
computational results are reported in Sec. III. In Sec. IV,
concluding and descriptive remarks of a general nature are
made. Advantages and limitations of the Stieltjes-
Tchebycheff approach to spectral studies, relative to more
conventional discrete and continuum wave-function calcu-
lations, are discussed, and aspects of applications of the
approach in single-channel approximations to larger mole-
cules are described. Procedures are also indicated for con-
struction of photoejection anisotropies and for performing
coupled-channel calculations employing the Stieltjes-
Tchebycheff formalism. Finally, explicit descriptive in-
tercomparisons are made of the nature and diagnostic
value of Stieltjes-Tchebycheff functions, which are con-
structed in body-frame point group symmetry in molecu-
lar cases, with more conventional scattering functions,
which are generally constructed in single-center I-wave or
eigenchannel representations.

II. THEORETICAL DEVELGPMENT

In this section, the Schrodinger problem of interest is
described, the Cauchy-Lanczos basis and orthonormal po-
lynomials used in constructing I. Stieltjes-Tchebycheff
approximations to the discrete and continuum states are
defined, and certain properties of these functions are indi-
cated.

The Schr6dinger equation for an individual atom or
molecule,

while the scattering states (e&0) satisfy improper or
Dirac normalization C'

(4,
~
%~) =5(e—e') (2b)

in the energy variable. The continuous spectrum is
furthermore highly degenerate in that all angular momen-
tuI11 waves gcIlclally contribute io tl1c wave fuIlctloI1 Rt a
given energy, and quantization in the direction of outgo-
ing or incoming electrons is also permissible. Moreover,
various energetically degenerate channels, corresponding
to production of different ionic states, can contribute to
the total wave functions at a given energy. In this case,
specific boundary conditions must be enforced in order to
extract the appropriate physical information. In the
present development, attention focuses on single-channel
body-frame calculations employing electronic wave func-
tions of good symmetry type. Questions relating to the
angular distributions of photoejected electrons, aspects of
molecular autoionization, dissociative recombination, and

(M —e)%,=0,
"o

where 0 is the appropriate many-electron Hamiltonian,
generally gives rise to a denumerably infinite set of bound
states as well as an essential spectrum of scattering or ion-
ization states. The bound-state solutions (e=e; &0) are
made to satisfy physical normalization
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the general coupled-channel scattering problem are treated
separately, ' although some relevant descriptive remarks
are made in Sec. IV below.

Variational approximations to the spectrum of Eq. (1),
constructed in finite-dimensional L, basis sets, are gen-
erally regarded as appropriate for the first few bound
states of the system. In the present development, it is
shown that approximations of uniform quality are ob-
tained to all the discrete and scattering states of Eq. (1)
from this familiar computational methodolgy when ap-
propriate procedures are employed. It is important to
recognize in this connection that the Schrodinger states of
Eq. (1) also satisfy the generalized equation

[A (H) —a (e)]4,=0,
where A (H) is an explicit operator function of the Hamil-
tonian H, and a(e)—:A(e) gives the corresponding eigen-
values. Equation (3) provides a somewhat more general
and flexible basis for introduction of computational ap-
proximations than does Eq. (1), as indicated further below.

A. Many-electron basis sets

The photoabsorption cross section of an atom or mole-
cule is proportional to the squared dipole matrix element

and (8) are known to converge to finite values, the Ok of
Eq. (5) are seen to form a Hilbert space, ' as indicated
above. As a consequence, the eigenvalues and correspond-
ing effective oscillator strengths obtained from the eigen-
functions of A (H) in the Cauchy basis set have certain
useful properties discussed previously in considerable de-
tail. In the present development, attention focuses on the
eigenfunctions themselves, and on some of their proper-
ties. Since A(H) and H have common eigenstates, ap-
proximations to the spectrum of the former are, of course,
also appropriate for the latter. It should be noted, howev-
er, that it is generally not possible to work directly with H
in place of A (H) in the development of Eqs. (5)—(8), since
positive-integer power moments of the dipole cross section
do not converge, and the associated 6k functions conse-
quently do not form a Hilbert space. '

Use of an n-term Cauchy basis and the corresponding
matrix elements of Eq. (8) results in an eigenvalue prob-
lem that becomes computationally unstable for large n
This difficulty is avoided by construction of an orthonor-
mal basis in the n-term Cauchy-Hilbert space that brings
the matrix representative of the operator A (H) to tridiag-
onal form. Such Lanczos functions are obtained without
explicit reference to the Cauchy basis from the recursive
equations

g«)= I
&q'. Is Iq'o& I'

where +0 is the target-state eigenfunction of interest, and
p is a particular polarization component of the dipole
operator. It is convenient to regard

(4b)

as a test function on the spectrum, in accordance with the
definition of Eq. (4a). A particularly useful many-electron
I. basis set is generated from N by the prescription'

pjvj+& ——[A (H) aj]u—~ pj—,uj &, j=1,2, . . .

where (uo ——0)

u) ——@/&4
I

0&&'~

aj =&u) IA(H)
I uJ &,

p~ = &uj+) I A
(H)

I vj &,

&u, I
vk&=8, k,

(9)

(10a)

( lob)

(10c)

(10d)

Ok=[A(H)] N, k =0, 1,2, . . .

where A (H) is chosen for present purposes to be of the
form

A (H):(H —eo)—
with eo the target-state energy. The metric of this so-
called Cauchy-moment basis'

&ek
I

eg & =
& e

I
[A (H)]'"+"

I
e&

= f [a (e)]'" g+(e)de

f (~ ~ )
—(k+1)g (~)d~ (7)

is seen to correspond to reciprocal power moments of the
cross section g(e), which is conveniently regarded as a
spectral density having both discrete and continuum parts.
Moreover, the operator A (H) in this basis

and N is the test function of Eqs. (4). Equations (9) and
(10) provide a complete recursive definition of the Lanc-
zos functions UJ, and of the corresponding matrix elements
aJ and pj, once the test function @ is specified. Methods
for solution of the Lanczos equations employing A (H) are
described in detail in Sec. III.

B. Schrodinger states

Schrodinger eigenstates in the Lanczos basis are written
in the convenient form

'4~ = g qj ( E)vj
j=1

where the qj(e) are elements of the vector representative
q, of the wave function satisfying the Schrodinger prob-
lem for A (H) [Eq. (3)],

& ~k I
A (H)

I ~( &
= & ~'

I
[A (H) ]

= f [a(e)]'"+'+"g(E)de

is evidently also determined by the (reciprocal) spectral
power moments. Since the moment integrals of Fqs. (7)

[A a(e)I]q, =0 . —
Here,

(A)J J =aj,

(A», J+~=(A»+~,J=pj

(12)
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is the infinite-order tridiagonal matrix representative of
A(H) in the Lanczos basis. Because of the definition of
Eqs. (9) and (10), the A matrix is of Jacobi form, and the
qj(e) are found to satisfy the recurrence relation [cf. Eq.
(9)]

the conditions of Eqs. (2). Consequently, the distribution
I (e), which has both continuous and discontinuous parts,
is seen to provide the measure according to which the N,
are normalized.

pjqj+i(e)=[a(E) af—]qj(e) pj—)qj )(e) (14)
C. Stieltjes- Tchebycheff functions

with qo ——0 and qi ——1. The qj(e) are orthonormal polyno-
mials satisfying'

J qJ(e)qi, (e)dI (e)=5&k, (15)

where it is convenient to define

dI'(E)=(
[
((I(,

~

e& ['/(4
~

e&)dE

=[g(e)/((I)
~

(I)&]de .

The (nondecreasing) function I (e) is seen to be the distri-
bution corresponding to the (non-negative) spectral density
g(e) of Eq. (4a). Because the operators A (H) and H have
the same eigenstates, the solutions of Eqs. (11)—(16) differ
from the 4, of Eq. (1) only by the normalization conven-
tion employed. Specifically, using Eq. (15), the @,of Eq.
(11)are found to satisfy

f (C,
~
C, &dI (e) = I gq, (e)q, (e')dl (&)=1

j=1 (17)

for any two points e and e' in the spectrum, rather than

where A'"' is (n Xn) tridiagonal, P has only one nonzero
element (p„) in the lower left-hand corner, and R is an
infinite-order tridiagonal remainder matrix. The finite
vector q ',"' satisfies the optical-potential Schrodinger equa-
tion'

[A'"'+ V'"'(e) a(e)I—'"']q,'"'=0,
where V(")(e) is given by the formal expression

V (")(e)=P[Ia (e+ i 0)—R ] 'P

(19)

(20)

As a consequence of the definition of the Lanczos basis, it
is found that the optical potential of Eq. (20) has only one
nonzero element (n, n) given by

Although the solutions of Eqs. (11) are formally
correct, ' interest centers here on n-term approximations
to the spectrum. To clarify the natures of such approxi-
mations, Eq. (12) is rewritten in the partitioned form'6'

[V(
2p. +i

2p. +2
a (e') —a„+q-

a(E) —A„+3—

(21a)

and that the infinite-order continued fraction of Eq. (2 la),
when employed in Eq. (19), can be summed to the rational
function

[V("'(e)]=P„q„+i(e')/q, (e')

for any energy e in the Schrodinger spectrum of Eq.
(lg). )"

The first n Lanczos functions of Eqs. (9) and (10) are
evidently sufficient to determine the optical-potential ma-
trix element of Eqs. (21), in spite of the fact that it corre-
sponds to a closed-form evaluation of the inverse of an
infinite-order remainder matrix [Eq. (20)]. Consequently,
the n-term wave function corresponding to Eq. (19),

q (n) y ( )
j=1

which is seen to be comprised of the first n terms of the
correct solutions of Eq. (11), provides an exact optical-
potential approximation to the Schrodinger state at energy

The nth-order Stieltjes-Tchebycheff functions of Eq.
(22) provide the central computational tool of the present
development, and will be seen to furnish accurate approxi-
mations to the local portions (in the sense of 4&) of
Schrodinger states.

D. Properties of Stieltjes-Tchebycheff functions

Some of the properties of the Stieltjes- Tchebycheff
functions of Eq. (22) are of interest in the present develop-
rnent. These functions are easily constructed once the
first n Lanczos functions and related matrix elements o.j
and pj are determined from Eqs. (9) and (10), since the
corresponding orthogonal polynomials qj(e) of Eq. (22)
are obtained for any energy e by recursion using Eq. (14).
These polynomials are seen to provide projections of the
Lanczos functions

q (E)=&UJ
l

+ &

=(U, ie,(")& (23)

q„,(e)=( —1)"det ~A'"' —a(e)I(")
~ +p;

i=1
(24)

of the A-matrix Schrodinger equation in the Lanczos basis
[Eq. (12)]. Since the optical potential of Eqs. (21) vanishes
at the roots of Eq. (24), Eq. (19) reduces to the nth-order

on both the correct Schrodinger states of Eq. (11) and on
the nth-order Stieltjes-Tchebycheff functions of Eq. (22).
Moreover, they are found to be characteristic polynomials
of the nth-order truncation
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truncation of Eq. (12) for these characteristic eigenvalues.
The corresponding eigensolutions in this special case are
designated Stieltjes eigenfunctions, which provide an op-
timal n-term set of I. pseudostates for representation of
the spect;rum, ' as indicated further below. At the roots
of q„(E), the optical potential of Eqs. (21) evidently
diverges, in which case the n solutions of Eq. (19) include
one state having an infinite eigenvalue.

All the solutions of Eq. (19) are included in the simple
expression of Eq. (22) as e is varied over the infinite ener-
gy interval ( —oo, + ao ). Although nth-order Stieltjes-
Tchebycheff functions for two arbitrary energies e and e'
are not necessarily orthogonal, for any preselected value e
and corresponding function [Eq. (22)] there will be n —1

other orthogonal solutions of Eq. (19). The eigenvalues of
these orthogonal Tchebycheff eigenfunctions are the roots
of the so-called quasiorthogonal polynomials'

n

q. (~', ~) =(—1)"det
~

~ '"'+ I""'(~) ~(~')L'—"'
) /P;

i=1

)P'"'=[I '"'(e)]' gq (e)U~, e &0 (28a)

where

I'")(~)= g [q, (~)]'

0","'=[g'")(e)/(N
~

4)]'~ gqJ(e)uJ, e) 0 .

Here,

is the Christoffel number or Radau ~eight at energy
a&0.' Energy normalized approximations to scattering
states are correspondingly obtained from the expression
[cf. Eq. (27f)]

q„+)(e)
=q„+)(&')— q„(e'),

q„(e)
g'")(e) = —,I'"'(~)++1,'"'(~), e,'"'(~) «

dE
(29b)

where an expansion in minors has been employed. As in-
dicated above, when e is set equal to any one of the roots
of q„+)(e) [Eq. (24)], the optical-potential matrix V'")(e)
vanishes, and the n orthogonal Tchebycheff eigenfunc-
tions become nth-order Stieltjes eigenfunctions.

The overlap of an arbitrary pair of Stieltjes- Tchebycheff
functions is, from Eq. (22),

(@(s)
~

@(n) )

—=K'")(e e')

where K'"'(e, e') is termed the polynomial kernel of order
n. This kernel has the properties

is the previously described nth-order Stieltjes-Tchebycheff
approximation to the density g (e) of Eq. (4a), obtained as
indicated from the derivative of the nth-order Radau
quadrature approximation [e,'"'(e), I';"'(e)] to the distribu-
tion I (e).' As discussed earlier, ' in many cases it is
preferable to smooth the distribution in Eq. (29b) prior to
evaluating the derivative.

The states of Eqs. (28) are clearly unity normalized in
each order for any energy e & 0. Moreover, in the limit of
high order.

I'")(e)~g(
(

()II;
~

@) )
'/(4

~

@))5(e—e;),
i=1

e &0 (30)
K'" ()e,e')~ & ao, e'=e=e;

~ ca,

~0, E+E'
(27a)

(27b)

(27c)

so that convergence to the correct discrete spectrum is ob-
tained. Correspondingly, in the essential spectrum it is
found from Eqs. (11), (27), and (29) that

for discrete states (e' and e & 0), and

K' )(e,e')~oo, e'=e'&0

~0, e&e' & 0

(27d)

(27e)

in the essential portion (e' and e&0) of the spectrum.
Moreover, it is seen from Eq. (26) that

f (e,'"'
~
@,'"')d I (e)

(27f)

as in Eq. (17) for the converged states (n~ao). These
properties are in accord with the norms of bound and con-
tinuum Schrodinger states [Eqs. (1)]. Consequently, phys-
ically normalized approximations to Schrodinger states
appropriate for the discrete spectral interval are obtained
froin the Stieltjes-Tchebycheff functions [Eq. (22)] in the

( N»
~

4&',"')= g q~ (e')qJ (e) .
j=1

(32)

Similar expressions for the physically normalized states

in accordance with convergence to Dirac 5-function nor-
malized scattering states [Eq. (2b)].

In finite orders the functions of Eqs. (28) and (29) pro-
vide appropriately normalized approximations to the local
portions of discrete and continuum Schrodinger states, as
a consequence of the definition and nature of the
Cauchy-Lanczos basis. Such localized states can be re-
garded as spectral averages over the correct Schrodinger
functions in the neighborhoods of the chosen energies. It
is important to recognize in this connection that the pro-
jection of the correct Schrodinger states of Eq. (11) on the
Stieltjes-Tchebycheff function of Eq. (22) is obtained in
the simple form [cf. Eq. (26)]
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[Eqs. (28) and (29)] are obtained by multiplication of Eq.
(32) with the appropriate weight or density factors. The
spectral content of Eq. (32) as a function of e' can be ex-
pected to peak in the neighborhood of e, and with increas-
ing n to converge to a 6-function-like structure, in accor-
dance with the convergence of the corresponding
Stieltjes- Tchebycheff functions to the correct Schrodinger
states.

= J [a(e)] [g(e)/(4
~

4&)]de

= J (~—~0) dI (~) (33)

of the density g (e) [Eqs. (4)]. In previous develop-
ments, ' a sequence of 2n —1 of the moments [(L(,k,'

k =0, 1, . . . , 2n —2] are employed in construction of
nth-order Radau quadrature points and ~eights in accor-
dance with the moment equations'

n —1

P(n)( e)[g(g)]k+ y P(n)( )[ (II)( )]k
i=~

k=0, 1, . . . , 2n —2 . (34)

Here, e is an arbitrary spectral energy, as in Eq. (22), and
I'"'(e) is the Radau weight at that point. The latter is ob-
tained from the reciprocal norm of the associated
Stieltjes-Tchebycheff function in the form [cf. Eqs. (26)
and (28)]

I (n)( ) (@(n)
~

g, (n) )
—) (35)

Similarly, the n —1 other Radau points aJ'"'(e) are ob-
tained from the eigenvalues of Eq. (25), and the n —1 oth-
er weights I J~"'(e) are obtained from Eq. (35) with e re-
placed by the ej"'(e). When e is set equal to one of the
roots of Eq. (24), the Radau quadratures of Eq. (34) be-
come generalized Gaussian quadratures that reproduce an
additional moment p2„&.' These correspond to the
Stieltjes eigenvalues and eigenfunctions of Eq. (19) with
vanishing optical potential.

It is seen that the Stieltjes-Tchebycheff functions of Eq.
(22) provide all of the information of the previously
described moment-theory developments. '" In particular,
they furnish the quadrature weights for appropriate renor-
malization [Eqs. (28) and (29)], without reference to the
spatially asymptotic portions of scattering functions.
Moreover, the intimate connection between orthogonal
Tchebycheff eigenfunctions and Radau quadratures, on
the one hand, and between orthogonal Stieltjes eigenfunc-
tions and generalized Gaussian quadratures on the other,
is emphasized. Since the generalized Gaussian quadrature
points are sure to appear where the density is large, the
corresponding nth-order orthogonal Stieltjes eigenfunc-

E. Connections with moment theory

It is of some interest to make explicit connection be-
tween the Stieltjes-Tchebycheff functions of Eq. (22) and
previously described moment-theory approximations to
spectral densities and distributions. ' This is accom-
plished most directly by recalling that the test function N
[Eqs. (4)] provides power moments

tions provide an optimal L, representation of the spec-
trum; i.e., they are the natural pseudostates of the sys-
tem. ' Similarly, the nth-order orthogonal Tchebycheff
eigenfunctions provide an optimal L spectral representa-
tion subject to the proviso that one eigenstate appear at a
preselected energy. Although Eqs. (22), (28), and (29) in-
clude all the Stieltjes-Tchebycheff functions of order n as
e is varied over the full spectral interva1, it is useful to
recognize the special natures and properties of the orthog-
onal Stieltjes and Tchebycheff eigenfunctions.

III. COMPUTATIONAL APPLICATIONS

In this section, the Stieltjes-Tchebycheff development is
applied to construction of the discrete and continuum (di-
pole) Schrodinger states of hydrogen atoms and molecules.
In the former case, the Lanczos functions and polynomial
recurrence coefficients required to construct 1s~np/kp
spectra are obtained in closed form. Detailed comparisons
are made of the resulting Stieltjes-Tchebycheff functions
with the correct regular Coulomb p waves. The static-
exchange approximation is employed for body-frame cal-
culations in molecular hydrogen to illustrate the computa-
tional requirements that arise in molecular applications.
Large Gaussian basis sets and canonical orthogonalization
methods are used in this case to construct the necessary
Lanczos functions. The resulting Stieltjes- Tchebycheff
orbitals are presented in three-dimensional graphical
forms to clarify the natures of the continuum ko.„and
k~„states, and the electronic dipole matrix elements are
combined with appropriate Franck-Condon factors in con-
struction of photoelectron spectra and vibrationally
resolved and summed photoionization cross sections.

~, =(j+1)/j,
[(j+3)/(j + 1)"

(36a)

(36b)

These coefficients are seen to approach finite values in the
limit j~ ao, in accordance with the existence of an infin-
ite set of convergent (reciprocal) power moments [Eqs. (7)
and (33)] in this case. By contrast, the positive-integer
power moments of the density g(e) of Eq. (3) are known
to diverge for k &3. Consequently, use of the Hamil-
tonian M in Eqs. (9) and (10), rather than A (H), results in
an invalid I.anczos problem, related to the divergence of
the norms of the Cauchy functions of Eq. (7) and the con-
sequent failure of Hilbert-space techniques. Such develop-
ments, although they can always be implemented numeri-
cally in finite basis sets, will generally not converge to the
correct Schrodinger states.

In Figs. 1(a) and 1(b) are shown the first 20 Lanczos
functions re(r) of Eqs. (9) and (10) for the p-wave spec-

A. Atomic hydrogen

For the regular p-wave spectrum in atomic hydrogen,
Eqs. (9) and (10) can be solved in closed form using the
complete discrete set of Laguerre functions of order
n +1+1/21 +2 with constant exponent. The matrix
elements or polynomial recurrence coefficients aj and PJ.
of Eqs. (9), (10), (13), and (14) take the simple analytical
forms
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interval. Although the first 20 corresponding Cauchy
functions (not shown) of Eq. (5) are linearly independent,
they do not exhibit the nodal structures of the Lanczos
functions of Figs. 1(a) and 1(b), since they are not an
orthonormal set. As a consequence, the higher-order Cau-
chy functions include information already provided by the
lower-order functions, and the associated higher-order
spectral moments provide new information regarding the
spectrum only in very high significant figures. This cir-
cumstance results in a numerically unstable eigenvalue

problem when the Cauchy functions are employed directly
as a basis set, and in a correspondingly unstable power
moment problem [Eq. (34)].' These instabilities are
avoided entirely through use of the Lanczos basis, corre-
sponding recurrence coefficients aj and PJ, and recursive
solution of the moment problem.

The Lanczos functions of Figs. 1(a) and 1(b) and related
recurrence coefficients [Eqs. (36)] are used to construct
20th-order Stieltjes functions in atomic hydrogen. These
are the Stieltjes-Tchebycheff functions of 20th order [Eq.
(22)] having energies at which the corresponding optical
potential of Eqs. (19) to (21) vanishes identically. Conse-
quently, their energies are the 20th-order generalized
gaussian quadrature points of the photoabsorption densi-

ty, and their norms provide the corresponding quadrature
weights [Eq. (35)]. In Fig. 2 are shown the first ten of the
20th-order Stieltjes functions that appear in the continu-
ous spectrum. This figure indicates the correctly normal-
ized 20th-order Stieltjes functions [Eqs. (29)] are con-
verged to the correct corresponding regular Coulomb p
waves, also shown in the figure, over the spatial interval

.:Lt v &

Radial Coordinate r (a.u. }

'III g n. .

:It) Q' 'v'' 'M ' '~:It('Q' v"

)hP n r.~.
:

ii g g ' V ~ ' M ' ' ':
Q'(i lJ "V" E(5, 20) =0. 0062 E(6, 20) = 0. 0367

Ih R. 6, .A. . m . ~. . . . : ) R A. R. .W. .

:(iQ V V ~' ~ ' ~':(ll V O' V' E(7, 20) = 0. 0776 E(8.20) = 0. 1312

E(9 ~ 20) =0.2011 E (10,20: =0. 2930

Radial Coordinate r (a.u. }
E ( 12, 20 ) = 0. 5811E [11,20) = 0. 4153

FIG. 1. (a) Lanczos functions rUJ. (r) of Eqs. (9) and (10) for
dipole excitation of ground-state atomic hydrogen (j = 1 —10),
constructed as discussed in the text. Abscissa spans 24ao, the
ordinate 0.07 a.u. (b) As in (a) for j = 11—20. ga E ( 13,ZO ) = 0. 8 122

C3
CL

E(14,ZG) = 1. 1461

trum in atomic hydrogen. Starting with the defining test
function vi(r)-re ", these are seen to span increasingly
larger portions of the spatial interval shown (0—24a&&).

Moreover, since their nodes continue to change position
with increasing j, in contrast to the behaviors of the fa-
miliar hydrogenic discrete states, they remain linearly
independent with increasing order, and can achieve corn-
pleteness in finite orders over local portions of the spatial

Radial Coordinate r (a.u.}

FIG. 2. Regular p waves in atomic hydrogen, rR,I(r) (I =1);
———,20th-order Stieltjes eigenfunctions of Eqs. (29), con-
structed as discussed in the text;, correct values at the in-

dicated [E(i,201 a.u.] Stieltjes energies, constructed in accor-
dance with Ref. 20. Ordinate spans 1 a.u. , the abscissa 10ao.
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indicated. Of course, for sufficiently large r the Stieltjes
functions decay, and do not reproduce the Coulomb p
waves. That is, the 20th-order Stieltjes functions are not
eigenstates of A (H) and H, but are spectrally broad.

The spectral content [Eq. (32)] of each of the ten func-
tions of Fig. 2 is shown in Pig. 3. The Stieltjes energies,
also shown in the figure, are seen to span the lower por-
tion of the ionization spectrum in a sensible manner, in
accordance with their Gaussian quadrature nature. That
is, they appear in the spectrum where the density of Eq.
(4), a monotonically decreasing function

—in
g exp[ —4e '"tan '(e'")]
3 (e+ —, ) [1—exp( 2rre —'~ )]

e(a. u. ) )0 (37)

also shown in the figure, is largest. Evidently, the lower-
lying Stieltjes functions are spectrally narrower than are
the higher-lying ones, in general accord with the observa-
tion that higher frequencies are required to reproduce
correctly the high-energy Coulomb p waves. The spectral
interval shown is seen to be spanned fully by the ten
Stieltjes functions of Fig. 2, with the spectral distribution
of each state in Fig. 3 having a zero at the energies of the
nine other states, in accordance with their orthogonality.
Moreover, the (four) lower-lying 20th-order Stieltjes func-
tions (not shown) are found to reproduce the 2p, 3p, and
4p states accurately, and to provide a fourth bound state
corresponding to a spectral sum of all the other higher-
lying discrete np hydrogenic states. Pinally, the remaining
(six) 20th-order Stieltjes functions appear at higher ener-
gies in the continuous portion of the spectrum (not
shown). Of these, the first four provide excellent approxi-
mations to the local portions of the corresponding regular

p waves, in spite of the fact that they are spectrally broad.
Stieltjes- Tchebycheff functions of various orders

(10—100) and energies (e(5 a.u. ) are evaluated for the @-
wave spectrum of atomic hydrogen. An overview of the

results obtained appears in Pig. 4, where the weight func-
tion I (")(e) or reciprocal norms of Eqs. (28) and (35) are
shown for n =10—100. These evidently converge mono-
tonically from above with increasing n [Eq. (30)] to a
spectrum that includes discrete features (f numbers) at the
appropriate Coulomb eigenvalues. Above threshold in
the essential spectrum (e&0) the weights evidently de-
crease slowly but without limit, in accordance with the
improper (infinite) normalization of the associated scatter-
ing states [Eq. (31)]. The points at which adjacent (n and
n + 1) weight distributions touch give the nth-order
Stieltjes energies. These points of coincidence are seen to
form apparent rays with increasing n that converge from
above to .the discrete Coulomb eigenvalues, in accordance
with the Hylleraas-Undheim theorem. The n Stieltjes en-
ergies of nth order provide n + 1 intervals in which there
appear one and only one of the n +1 Tchebycheff eigen-
values of (n+1)th order [Eq. (19)].' Consequently, as
the energy variable e is scanned over one of the Stieltjes
intervals, the n other Tchebycheff energies will corre-
spondingly traverse the n other Stieltjes intervals. In
this way a dense set of Stieltjes-Tchebycheff orbitals can
be selected from the interval ( —oo, + ac). Alternatively,
the entire interval can be spanned using a fine mesh, and
Eq. (22) employed directly. The results of Fig. 4 are ob-
tained by simply spacing 2000 points over the indicated
energy interval.

In Fig. 5 are shown the weights I (")(e) for n =20—100
employing a scale that presents more detail in the thresh-
old region. It is seen that even the highest-order result
(n =100) indicates the presence of only —10 discrete
states, as a consequence of the relatively weak contribu-
tions the higher 1s~np Rydberg transitions in the hydro-
gen spectrum make to the discrete portion of the spectral
density. In this region of the spectrum, the Stieltjes-
Tchebycheff weights correspond to an average over the in-
finite number of transition strengths that accumulate im-
mediately below threshold, as well as to a portion of the

0.4 0,14--—

A

V

36-
StIeltjes Orbital Energies

0.0062
0.0367
0.0776
0. 1 311
0.2011
0.2930
0.41 53 0.2 .

CO

C5

C3

0.1

0.0 7-

0 -0.0
0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1,50

Energy ( (a.u. }

-0.08 —0.04 0.00 0.04 O.OB 0.12 0.16 0.20 0.24 0.2B

Energy ( (a.u}

FIG. 3. Spectral content of Eq. (32) squared for the Stieltjes
functions of Fig. 2, including the appropriate continuum nor-
rnalization factors [Eq. (29)]; ———,density function g(e) of
Eq. (37). 20th-order Stieltjes energies (a.u. ) shown give the ap-
proximate line-shape centers.

FIG. 4. Spectral weights I'")(e) or reciprocal norms of Tche-
bycheff orbitals [Eqs. (28) and (35)] for n = 10—100 for the @-
wave spectrum in atomic hydrogen, constructed as discussed in
the text. Note that the 1s~2p resonance at lower energy is not
shown in the figure. All values in Hartree atomic units.
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CL
E(30) = 5.0

E(20) = 5.0

E(40) = 5.0

can be determined, if required. Moreover, a second 1inear-
ly independent solution can be constructed at any energy
from the Stieltjes-Tchebycheff development by simply em-
ploying a Lanczos basis with "irregular" behavior at the
origin, cutoff with a suitable function to ensure integral
convergence. Alternatively, the regular Lanczos basis can
be employed with the qj. (e) replaced by (numerator) poly-
nomials of the second kind pj(e) satisfying Eq. (14),

E(50) = 5.0 E(60) = 5. 0 ~ipJ+ I(~)= [a (~) re ]pj «) Pg
—P~ 1(&), (38)

but with the initial conditions p, —0 p 1/p, 24

corresponding Stieltjes- Tchebycheff functions

E(70) = 5.0 E(80) = 5.0

Radial Coordinate r (a.u. )

FICi. 8. As in Pig. 6, for e= 5 a.u.

V

C:
QP

O

O
+-
(D
CL

V)

I
I
I

I

t
I

I
I

~ ~

t ~

~ i a0
0.0 0.4 0.8

w~A
I I

1.2 1.6

Energy e

I

2.4
(a. U. )

I I

2.8 3.2 3.6 4.0

FIG. 9. Spectral content of Eq. (32} squared for the Stieltjes-
Tchebycheff functions of Fig. 7 {@=2a.u. ), including the ap-
propriate normalization factors [Eq. (29)];, n = 10;
———,n =50;, n =80. Hartree atomic units are em-
ployed.

In addition to the regular p-wave results presented here,
I-wave spectra in atomic hydrogen for I &15 have also
been evaluated employing the Stieltjes- Tchebycheff
development with appropriate test functions
[@-rPr(cos8)+o]. Pointwise convergence to the ap-
propriate discrete and regular scattering states similar to
the p waves results presented here is also obtained in these
cases. It should be noted that no particular difficulties are
encountered in the present development from the
Coulomb potential treated. Indeed, incorporation of the
appropriate boundary conditions at the origin in the Lanc-
zos basis is sufficient to ensure that the Stieltjes-
Tchebycheff functions have the correct asymptotic
behavior at large r, from which the Coulomb phase shifts

Xq = gpj(E)UJ. (39)
j=l

are linearly independent of the @,"' of Eq. (22). In the
limit of large n, they correspond to solutions of an inho-
mogeneous Schrodinger equation with the test function N
providing the inhomogeneity. Although the 7,'"' do not
behave asymptotically as the irregular Coulomb functions,
a linear combination of these and the @,'"' can always be
constructed orthogonal to the @,'"' that does have the
correct irregular asymptotic (r~ ac ) behavior. Since
these are not required in the present development, they are
not reported here.

B. Molecular hydrogen

In order to illustrate the computational requirements
that arise in applications of the Stieltjes-Tchebycheff
development to molecules, results are presented here for
molecular hydrogen. To keep the development simple,
computations are made in the Born-Oppenheimer,
vertical-electronic, static-exchange approximation. In this
approximation the photoabsorption cross section is ob-
tained from body-fixed los~no„/ko„and no „/krr„ex-
citations, and appropriate Franck-Condon and London-
Honl factors. The ko„and km„scattering functions ob-
tained from the Stieltjes- Tchebycheff development are
presented in three-dimensional graphical forms. Although
there have been numerous theoretical studies of photoioni-
zation in H2, ' the appropriate scattering functions
have apparently not been reported explicitly in the litera-
ture. Those presented here are seen to provide useful di-
agnostics of the scattering continua, and, in particular, to
clarify the nature of the u —+o.* transition in H2.

Large Cartesian Gaussian basis sets I P;; i = 1 to
N=150I are employed to construct the ground-state Icrg
orbital at R„and to solve the Lanczos equations in o.„
and m „symmetry in the static-exchange or single-
excitation configuration-mixing approximation. In Table
I are shown the supplemental functions employed, in addi-
tion to a standard (4s, 3p)/[3s, lp] valence basis, in the
calculations in H2. These functions are chosen in accor-
dance with the frequencies of' the bound and scattering
states expected, and on the basis of information derived
from a previously reported preliminary study of the H2
ionization spectrum. To avoid the numerical diffi'culties
that can arise from near linear dependence in such large
basis sets, the overlap matrix

(40)
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TABLE I. Supplemental Gaussian basis functions employed,
in addition to the (4s, 3p)/[3s, lpj valence basis, in molecular hy-
drogen calculations.

Location [R; (a.u. )]'

0.0 (c.m. )

+0.70(R, /2)

+1.3 and k2. 8

+4.3

Type

px ~pz

px ~pz

~~px ~pz

»px ~pz

px ~pz

Exponents

0.200
0.100
0.050
0.025
0.0125
0.006 25
0.003 125
0.0010
0.0005
0.0002
0.015 69
0.006 63
0.002 76
0.001 00
0.0933
0.0280
0.0140
0.0070
2.0
1.0
0.5
0.2
1.0
0.5
0.2
0.1

2.00
0.05
0.02
0.01
0.005
0.002

'All functions are located at centers on the internuclear line at
the indicated positions.

is constructed and diagonalized. Those linear combina-
tions of basis functions that correspond to very small di-
agonal elements ( & 10 ) are discarded, and the remaining
M-term (M &N) canonical basis set used to construct the
ground-state Pock matrix. This matrix is first brought to
self-consistency in the (4s, 3p)/[3s, lp] valence basis and
then constructed and diagonalized in the full basis, pro-
viding a 1o.

g Pock orbital with energy of —16.1286 eV, as
compared with an experimental vertical ionization poten-
tial of —16.0 eV. Next, the static-exchange Hamiltoni-
an matrices are constructed in the o„and m„subspaces of
the M-term canonical basis set, and these are diagonalized.
The resulting orthonormal static-exchange pseudospectra
are then used in solving the Lanczos equations in each
case. Since the static-exchange Hamiltonian is diagonal in
these basis sets, there is no difficulty in constructing the
matrix /1(H) of Eqs. (6) and (9). It should be noted, con-
sequently, that the Lanczos basis is not being used to diag-
onalize a matrix in the present development, since the
static-exchange matrix is already diagonal. Rather, an n-
term Lanczos basis, constructed in a larger M-term canon-
ical static-exchange pseudostate basis is employed in con-

TABLE II. Dipole recurrence coefficients for 1og —+ko.„and
km„spectra in H2 in the static-exchange approximation. Values,
in Hartree atomic units, are obtained from the Lanczos develop-
ment of Eqs. (9) and (10) in the static-exchange approximation.

1ET' ~k o g spectrum
a„ P„

1o.
g
—+k m „spectrum

a„ P„
1 1.6866 0.46S3 1.3979
2 1.3433 0.4994 1.2332
3 1.0615 0.5471 1.1259
4 0.9498 0.5038 1.0356
5 1.0226 0.4494 1.0094
6 1.0289 0.4S54 0.9765
7 0.9593 0.4781 0.9445
8 0.8785 0.4612 0.9330
9 1.0S24 0.4026 0.9194

10 0.8133 0.4958 1.1094
11 1.1038 0.3482 0.9073
12 0.8466 0.4700 0.976S
13 0.8790 0.4804 0.7730
14 1.0595 0.3520 1.0802
15 0.9230 0.3712 0.9013
oo

' 0.8436 0.4218 0.8436

'Asymptotic values obtained from the expressions (Ref. 23}
a =1/12m, ), P =1/14m, ), where e, =O.S927 a.u. is the Koop-
mans ionization potential.

0.5434
0.5150
0.5022
0.4879
0.4729
0.4732
0.4798
0.4348
0.4893
0.2404
0.6634
0.2358
0.4891
0.4725
0.3613
0.4218

structing accurate approximations to the Stieltjes-
Tchebycheff functions of Sec. II, in this case in the
static-exchange approximation. In the present develop-
ment, in which -40 term pseudospectra are obtained, it is
found that converged wave functions are obtained for
n & 10. These observations are discussed in further detail
below.

In Table II are shown the calculated values of the re-
currence coefficients for both o„and m.„symmetry in H2
obtained in the static-exchange approximation. These
coefficients are seen to approach the correct asymptotic
values also shown in the table with increasing n up to
=—10. The small oscillations in the coefficients in this in-
terval (1 &n &10) are a consequence of the presence of
both discrete and continuum states in the spectrum. For
n ) 10 some of the coefficients are more irregular, ex-
hibiting larger oscillations about the asymptotic values.
These observations suggest the discrete pseudospectrum
employed in the solution of the Lanczos equations begins
to show through above 10th order, suggesting that valid
results can be obtained in the basis sets employed for
n & 10. This estimate is further verified in the immediate-
ly following discussion.

In Figs. 10(a) and 10(b) are shown the weight functions
or reciprocal norms for n = 5 —10 of Eqs. (28) and (35) for
10.g~ka„and km-„spectra in H2. Not shown are the
vertical-electronic, static-exchange approximations to the
X 'Xs —&(2po.„)B'X+ and (2pm. „)C 'll„resonance transi-
tions in each (z and x or y) polarization, which both ap-
pear at energies well below the ionization threshold.
Since the f numbers for these transitions are relatively
large (-0.3), they dominate the discrete spectral region,
and the 10th-order weight distributions are converged to
sharp peaks at these energies. The second Rydberg transi-
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of Fig. 11 can be clarified by examining the spatial
characteristics of the kyar„and km„scattering orbitals, for
which purpose the Stieltjes-Tchebycheff development is
highly suitable. It should be noted that the q =0 results
of Figs. 11(a) and 11(b) are in good accord with previously
reported static-exchange calculations employing conven-
tional single-center computational methods.

In Figs. 12(a) and 12(b) are shown three-dimensional
graphical representations of the 1o.

~ orbital and 10th-
order ko.„and k~„Stieltjes-Tchebycheff functions of Eq.
(29) in planes containing the internuclear line at energies
in 2-eV intervals starting near the ionization threshold.
The internuclear line runs from left to right in Fig. 12(a),
which is the polarization direction (z) for log ~kyar„ ioni-
zation, whereas the x axis runs from left to right in Fig.
12(b), corresponding to the polarization direction in this
case. When viewed from this perspective, the ko.„and
km„scattering functions at equal energies are seen to be
highly similar, although there is a noticeable difference in
each case. Specifically, the k o.„Stieltjes- Tchebycheff
functions of Fig. 12(a) include cusplike features at the nu-
clei that are absent from the k ~„ functions. These
features arise from compact 1o.„ls or o.* contributions to
the ko„spectrum that are largely responsible for the
differences between the 1o.

g
~ko.„and k~„cross sections

of Fig. 11. Since the exponential factor in Eq. (41) sam-
ples the inner spatial regions of the scattering orbitals
with increasing q, in which region the two sets of orbitals
are seen to differ, differences in the two cross sections of
Fig. 11 become more apparent at higher q values. Al-
though the effect is noticeable, it is comparatively small
due to the limited spatial extent of the 1o.„ls orbital in H2.
For similar reasons, the total electron scattering cross sec-

tiori in H2 does not reveal the presence of a resonance due
to the o.* orbital, although rotationally and vibrationally
inelastic cross sections are affected. By contrast, o. or-
bitals arising from 2s-2p shells in other molecules are
found to affect photoionization and electron scattering
cross sections more significantly.

An alternative clarification of the presence of o.* contri-
butions to the ko.„spectrum in H2 is obtained from Fig.
13, which shows ground-state potential curves for Hz and
H2+, and curves for the (2po.„)8 'X„+ and (2pm„)C'II„
states in H2. Also shown in the figure is the diabatic
curve associated with the configurational-state function
(o.o') 'X„+, constructed using frozen log ls and lo„ ls or-
bitals for R &2.0 A, and made to approach smoothly the
H+ H ground state in the R~oo limit. ' The latter
configurational state is seen to cross the ground-state H2
Franck-Condon zone at -20—30 eV, clarifying the larger
maxima in the lcrs~kcr„cross sections of Fig. 11(a) in
this interval than in the corresponding 1o.

g
—+km. „result,

and substantiating the presence of 0.* contributions to the
kyar„ functions of Fig. 12(a). Of course, this configuration-
al state will blend into the continuum in the static-
exchange calculation, accounting for the presence of o.*

contributions to the kcr„orbitals of Fig. 12(a) over a wide
energy range. It is also interesting to note that the non-
Rydberg behavior of the (2po.„)B'X„+ state at large R can
be attributed to the o.o' configuration„which contributes
to this state for R ) 1.2 A, as is evident from the figure.
By contrast, this state is almost purely Rydberg at R„as
is the (2pm„)C '11„state, which follows closely the H2+
ground-state potential for all R. The Rydberg natures of
the discrete states in the H2 static-exchange spectrum at
R, are further verified by quantum-defect analysis, which

'I y.

FIG. 12. {a) Occupied 1o.
g and 10th-order Stieltjes-Tchebycheff ko.„orbitals in H&, the latter presented at 2-eV intervals beginning

at 16 eV. Internuclear line runs from left to right in a rectangular box —16ao long and 6ao wide. (b) As in (a), for km„orbitals, with
the internuclear line rotated in the figure plane by 90'.
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FIG. 13. Potential-energy curves in H2 and H2+. X 'Xg+,

8 'X„+, O'H„, and X Xg+ curves are adopted from Ref. 50,
whereas the V diabatic or o.cr configurational-state curve is
constructed from frozen compact orbitals as discussed in the
text.

indicates the calculated vertical excitation energies follow
closely the Rydberg formula with zero defects.

The electronic dipole cross sections (q =0) of Fig. 11
are combined in the present development with appropriate
Franck-Condon factors in construction of vibrationally
resolved photoelectron spectra (PES) and photoionization
cross sections. In Fig. 14 are shown calculated values in

comparison with a recent high-resolution PES at 584 A
(=21.2 eV), which evidently exhibits excitation of all the
vibrational states in H2+. The theoretical values are con-
structed by regarding the cross sections of Fig. 11 as func-
tions of kinetic energy, referring them to the experimental
vibrational thresholds, " and multiplying by the appropri-
ate Franck-Condon factors. Moreover, experimental
linewidths (-0.0124 eV) and Gaussian line shapes are
employed in constructing the theoretical results to facili-
tate comparison with experiment. In Table III are shown
numerical values of the individual vibrational cross sec-
tions, corresponding to areas under the curves of Fig. 14.
The experimental results shown in the table have been
corrected for anisotropy and analyzer transmission effects,
although the PES of Fig. 14 has not. Consequently, the
latter should be regarded as a qualitative comparison, al-
though the corrections are relatively small. Also shown in
the table are the results of more elaborate calculations,
obtained employing vibrational averaging, correlated elec-
tronic wave functions, and previously described Stieltjes
methods for constructing distributions and densities.
Evidently, the present results are in satisfactory accord
with the measured values, and with the more elaborate
theoretical results.

Because of the high degree of vibrational excitation
achieved in the ionization of H2, comparisons of vertical-
electronic results with measured cross sections are general-
ly invalid, particularly in the threshold region. In Fig. 15

J~~C&dWLf & I . I

I I

35 4.0 4.5 5.0 5.5 6.0

are shown experimental values for the H2 photoionization
cross section, in comparison with the present results
constructed from a sum over the individual vibrationally
resolved cross sections. Evidently, the static-exchange
Franck-Condon results of the present development are in
generally good agreement with the measured values in H2,
although there is room for improvement. The previously
reported calculations, including vibrational averaging and
electronic correlation, also shown in the figure, are evi-

dently in very good quantitative accord with the measured
values. It is satisfying that these results are also obtained
employing previously described Stieltjes procedures for
constructing distributions and densities, suggesting the
Stieltjes-Tchebycheff development can be expected to pro-
vide results equivalent or superior to conventional scatter-
ing calculations in a variety of computational approxima-
tions.

Computational methods are reported for construction
of discrete and continuum Schrodinger states in atoms

Ki 0 etic E ri 8 f 9f {eV)

FICx. 14. Theoretical (a) and experimental (b) PES in H2 at
21.2 eV (584 A) incident photon energy. Theoretical values, in
the static-exchange, Franck-Condon approximation, are con-
structed as discussed in the text. Experimental values (Ref. 54)
shown are not corrected for anisotropy and analyzer transmis-
sion effects. Corresponding quantitative cross-sectional values
are shown in Table III.
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0
TABLE III. Vibrationally resolved photoionization cross sections in H& for 584-A incident photons.

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Static exchange'

0.6353
1.1450
1.3000
1.1610
0.9353
0.7032
0.5100
0.3616
0.2540
0.1804
0.1274
0.09090
0.064 89
0.046 40
0.033 04
0.022 99
0.01503
0.008 316

Correlated calculations

0.4533
0.8639
1.0036
0.9313
0.7656
0.5866
0.4315
0.3105
0.2211
0.1568
0.1113
0.079 27
0.056 59
0.040 38
0.028 56
0.01969
Q.012 73
0.006 933
0.002 162
0.000098

Experimental values'

0.477 +0.006
0.907 +0.008
1.048 +0.008
0.975 +0.007
0.793 +0.006
0.598 +0.005
0.446 +0.004
0.31S +0.004
0.223 +0.003
0.157 +0.003
0.1095+0.0007
0.0773+0.0005
0.0543 +0.0005
0.0377+0.0011
0.0264+0.0003
0.0179+0.0002
0.0111+0.0002
0.0068+0.0002

Total' 7.595 6.083 6.280

'Present values obtained in the vertical-electronic, Franck-Condon, static-exchange approximation.
Previous calculations including the effects of vibrational averaging and electronic correlation (Ref. 42),

constructed from previously described Stieltjes methods for distributions and densities (Ref. 10).
'Experimental values corrected for anisotropy and analyzer effects (Ref. 54).
"Refers to the sum of the indicated vibrationally resolved cross sections. Units are Mb.

and molecules employing explicit Hilbert-space pro-
cedures familiar from bound-state studies. An L Lanc-
zos basis and associated orthogonal polynomials are seen
to provide particularly simple and computationally con-
venient expressions for Schrodinger states at discrete or
continuum energies. The resulting nth-order Stieltjes-
Tchebycheff functions give accurate approximations to lo-
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FIG. 15. Photoionization cross sections in H2, , present
results constructed from static-exchange cross sections of Figs.
11 (q =0) and appropriate Franck-Condon factors (Ref. 53);

previous Stieltjes calculation including vibrational
averaging and electronic correlation (Ref. 42). Experimental
values: ~, Ref. S5; 4, Ref. 57; 4, Ref. 58.

cal portions of Schrodinger states, and are shown to pro-
vide exact optical-potential solutions of the full matrix
Schrodinger equation in the complete Lanczos basis. The
spectral compositions of these functions in finite orders
are evaluated in closed form without explicit reference to
or construction of the corresponding correct Schrodinger
states. Use of a Lanczos basis ensures that Stieltjes-
Tchebycheff functions correspond closely to previously
described moment-theory approximations to spectral den-
sities and distributions. Specifically, the energies at which
the nth-order optical potential vanishes identically are
seen to correspond to the generalized Gaussian quadrature
points of the spectral density. The norms of the associat-
ed orthogonal Stieltjes eigenstates give the corresponding
quadrature weights. Radau quadrature points are ob-
tained from orthogonal Tchebycheff eigenstates that diag-
onalize the nth-order optical-potential problem, the norms
of which give the corresponding Radau quadrature
weights. Consequently, ihe Stieltjes- Tchebycheff func-
tions provide information necessary for physical renor-
malization at any energy, in spite of the absence of a spa-
tially asymptotic tail. Although Stieltjes- Tchebycheff
functions at two arbitrary energies are not orthogonal,
they are so in the limit of high order, in which case con-
vergence to the coriect Schrodinger states is achieved.

The nature of the method and properties of Stieltjes-
Tchebycheff functions are illustrated with detailed com-
putational applications to hydrogen atoms and molecules.
Closed-form results are presented for the p-wave spectrum
in atomic hydrogen. The Stieltjes-Tchebycheff functions
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are seen to exhibit pointwise convergence to the correct
regular p waves in this case, and it is indicated how irregu-
lar solutions can also be constructed. Correspondingly, in
the case of molecular hydrogen Cxaussian basis sets and
canonical orthogonalization procedures are found to pro-
vide Lanczos and Stieltjes-Tchebycheff functions that give
useful representations of the continuum states. In this
way photoelectron spectra and related cross sections are
obtained which are in good accord with corresponding
measured values, and useful diagnostics are provided of
the scattering wave functions.

Certain distinct advantages are inherent in the Stieltjes-
Tchebycheff procedure for computational studies of
Schrodinger spectra relative to conventional methods for
separate construction of discrete and continuum wave
functions. First, in addition to providing approximations
of uniform quality to large portions of the spectrum from
a unified computational procedure, some of the difficul-
ties that have hampered conventional scattering calcula-
tions of molecular continuum states are avoided entirely
by use of an explicit I. or Hilbert-space approach.
Specifically, conventional single-center l-wave representa-
tions of scattering functions can be very slowly conver-
gent, whereas the Stieltjes- Tchebycheff development
makes full use of the multicenter nature of 1. basis-set
approaches. In order to take advantage of this opportuni-
ty, and to avoid the loss of spectral resolution a global ap-
proach might seem to entail, it is necessary to employ
well-chosen sufficiently large basis sets and canonica1
orthogonalization procedures, as in the present studies.
By contrast, some of the previously reported moment-
theory calculations of photoabsorption cross sections em-
ployed smaller basis sets that are found to provide only
low-order Stieltjes-Tchebycheff functions. Many of these
earlier calculations have now been repeated in much larger
basis sets, and higher-order Stieltjes-Tchebycheff func-
tions constructed. These studies are topics of separate re-
ports to be issued subsequently, which will clarify further
the use of large basis sets in mo1ecular spectral calcula-
tions.

Second, Stieltjes- Tchebycheff functions are easily
Fourier analyzed, providing momentum wave functions
for both bound and scattering states at all energies.
Scattering states in momentum space provide information
required for construction of the angular distributions of
photoejected electrons. Since the explicit expressions ob-
tained in this way, described in detail in separate reports,
are relatively simple and well suited for both body- and
laboratory-frame graphica1 representations, a significant

degree of insight is obtained thereby into the nature and
energy variation of molecular anisotropy factors. By con-
trast, I-wave representations of molecular anisotropy fac-
tors obtained from conventional scattering approaches are
not well suited for developing physical insights.

Third, because of the very compact representation pro-
vided for single-channel functions by the Stieltjes-
Tchebycheff development, it is possible to also perform
coupled-channel calculations following a standard
reaction-matrix formalism. Such calculations have been
performed in selected diatomic and polyatomic molecules,
studies that will be described in separate reports. By con-
trast, very few coupled-channel molecular photoionization
calculations have been performed employing single-center
/-wave representations due to the generally unmanageable
dimensions of such problems.

Fourth, Stieltjes- Tchebycheff functions can be con-
st~cted for continuous values of the ionization energy,
providing background scattering states suitable for au-
toionization, dissociative recombination, and related stud-
ies in which a quasidiscrete state merges with a continu-
um. Such topics are largely special cases of the general
coupled-channel problem indicated above, but deserve
separate mention in view of the general lack of a useful
computational approach to such problems on the basis of
conventional I-wave representation scattering theory.

Fifth, since Stieltjes- Tchebycheff functions are con-
structed in body-frame point group symmetry they pro-
vide a convenient diagnostic for the presence of compact
resonancelike contributions to ionization continua. By
contrast, K- or S-matrix normalized I-wave represented
scattering functions provide a less suitable diagnostic.
Moreover, body-frame eigenchannel functions, although
of appropriate symmetry, can change spatial characteris-
tics rapidly in the neighborhoods of resonances due to the
familiar noncrossing rule for phase shifts, and consequent-
ly do not isolate such features in a single channel.
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