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The formalism of M@11er wave operators is shown to provide a stable basis for computation of
bound-free transition amplitudes for both short- and long-range potentials without the direct calcu-
lation of scattering wave functions. This method, which relies on the techniques of expansion in
finite I. bases and rotation of the coordinates into the complex plane, is applied to both an ex-
ponential potential and one that behaves asymptotically as —1/r . It is demonstrated that one ob-
tains not only accurate magnitudes of the matrix elements, but accurate phases (i.e., the scattering
phase shift) as well. Some relevant theoretical results with regard to the application of wave opera-
tors are also presented. Although couched in terms of potential scattering, the procedures are readi-

ly extendible to multichannel problems.

I. INTRODUCTION

In the theoretical pursuit of such experimentally impor-
tant quantities as partial cross sections and angular distri-
butions, it becomes clear that accurate systematic methods
for the direct computation of transition amplitudes would
prove very valuable. This paper represents a first step to-
wards the development of procedures for calculation of
bound-free (e.g., photoabsorption) amplitudes based on the
formalism of Manlier wave operators. ' Using complex
coordinate ' and I. discretization techniques, we show
that one-body matrix elements of this sort can be obtained
for either short- or long-range forces without directly cal-
culating the appropriate continuum wave functions. As
examples, both the exponential potential —exp( r) and a-
potential which behaves asymptotically as —a/r
(representing polarization forces) are investigated in detail.
These calculations also provide an opportunity to check
some new results, derived below, in the theory of wave
operators for central potentials.

Earlier applications of complex coordinates and discrete
basis set methods to photoabsorption ' have proven
capable of accurately determining the total cross section,
that is, the total probability of excitation and ionization
into all of the accessible channels. However, it has not
been found possible to obtain partial cross sections (or
widths) except with techniques requiring explicit enforce-
ment of multichannel boundary conditions. ' ' The
present calculations, in contrast, should be easily extendi-
ble to multichannel problems.

It is well known that complex coordinate tech-
niques cannot be used in a straightforward way to calcu-
late scattering amplitudes in the presence of long-range
potentials (i.e., potentials which are not exponentially
bounded). If tto(k, r) is the regular spherical Bessel func-

tion for some angular momentum, then the expression for
the partial weave T-matrix element,

&q. ~T~y. )i=&q. V~q. )

+ &4o ~
V(&+i@—H) 'V

~
4o) (1.1)

cannot survive the coordinate rotation rare' since the
factor V(r)go(k, r) then diverges as r~oo unless V(r) de-
creases exponentially.

However, our interests lie in calculating a bound-free
amplitude of the form

(1.2)

where @b,„„d is some square-integrable function. (In pho-
toabsorption contexts, it is the product of a bound eigen-
function of the Hamiltonian and the dipole moment
operator. ) It is an important point here that the full
scattering solutions are not needed in order to calculate
such bound-free amplitudes since the integration in the
transition matrix element is effectively and smoothly cut
off by the presence of the I. function. Thus @b,„„d pro-
vides the required exponential damping of the matrix ele-
ment and, as far as coordinate rotation is concerned, V(r)
may be either short or long range. It turns out that, in the
present paper, it is the Coulomb potential (with all its at-
tendant complexities) where the line must be drawn. We
require that the interaction potential decays faster than
I/r so that the standard theory of Moiler operators ' may
be used. This also leads us to require that V not be more
singular than 1 lr at the origin. Thus, in this first stage
of development, a technique is presented which is applic-
able to computation of channel by channel partial cross
sections and angular distributions for photodetachrnent of
negative ions (leaving a neutral atom in the final state).
The two-body Coulomb problem is the subject of an up-
coming paper.
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The fact that we need the continuum wave function
only over a finite region of space suggests finite I -basis
techniques. It is evident that, if the continuum wave
function is expanded in a complete square-integrable basis
which becomes increasingly diffuse in higher order, then
the contributions of the successive basis functions to a
damped matrix element as in Eq. (1.2) will drop off after
some point in the expansion. This stirs hope for the ex-
istence of a convergent variational procedure for the ma-
trix element. In fact, it has been amply demonstrated that
diagonalization of the Hainiltonian in this finite basis pro-
vides a dependable method for determining the relevant
expansion coefficients up to a common overall factor. An
eigenvector (unit-normalized) coming out of the matrix di-
agonalization can be interpreted as a legitimate continuum
function (delta-function-normalized) over this restricted
region, except for an implicit renormalization. There are
some one-body cases where the change in normalization
can be pinned down by use of the method of "equivalent
quadrature. " ' A more general and widely applied
technique is that of Stieltjes imaging. 29

The theory of Mailler wave operators, ' 0+—
, which

seems to have found mostly formal use in the past, pro-
vides another possible computational framework for
avoiding the problem of unknown normalization. (See,
however, Refs. 32 and 33, in which the wave operators are
used in the calculation of t-matrix elements. ) For the pur-
poses of this paper Q—+ are simply regarded as operators
which convert free-particle wave functions $0 into contin-
uum functions 1(

+— appropriate to a particular scattering
potential:

g +—(k, r) =0 +—go(k, r) .

Inserting this into Eq. (1.2) then yields

(1.3)

(1.4)

In this context Q +—may be couched in terms of the resol-
vent, for which matrix elements may be obtained to high
accuracy through finite-basis techniques, "' with only
a single diagonalization of a (complex) Hamiltonian being
required in order to cover a continuous range of the ener-

gy. Since the absolute normalization of Po is a known
quantity, that of g is built into the calculation. Also, the
correct asymptotic behavior of g —+ can then be controlled
by the choice of $0, a fact which suggests a simple tech-
nique for obtaining partial cross sections in a multichan-
nel extension of Eq. (1.4). Furthermore, the use of com-
plex coordinates allows the branch cut(s), implicit in the
usual time-independent integral representations of the
wave operators, to be rotated away from the real energy
axis, and thus the L, expansions can be employed directly,
yielding a convergent algorithm for evaluation of ampli-
tudes in the E+i'e limit without analytic continuation or
extrapolation in the energy or momenta.

Wave operators as such are normally applied to free-
particle wave functions go (spherical Bessel functions in
the present case) which are regular at the origin. If, how-
ever, the regular function is written as a linear combina-
tion of the irregular functions (Hankel functions or spher-
ical waves), it is clear that use of complex coordinates

This process is the subject of intense interest experimental-
ly and theoretically. ~ At present the behavior of the
partial photoionization cross section near the three-body
breakup threshold is still a matter of debate. Of course,
construction of the amplitude for this process is likely to
be very difficult, especially near threshold, but the prelim-
inary results here and in the two-body Coulomb problem
are at least encouraging.

The order of the paper is as follows. In Sec. II, a brief
review is given of the important functions in the theory of
single-channel scattering by a central potential. This is
followed by the theoretical results of applying the wave
operators, not to the physical wave function, but to the ir-
regular ones; proofs are left for the Appendix. Section III
is devoted to a description of the numerical calculations,
including the use of Pade approximants and different
forms of the wave operator. The short-range potential is
treated in Sec. IV, followed in Sec. V by the long-range
potential. Detailed comparisons are made for the pur-
poses of determining the most accurate routes of calcula-
tion. A discussion is then given in Sec. VI.

II. SCATTERING PRELIMINARIES

A. Partial waves and associated functions

For a spherically symmetric potential V(r), the par-
tial wave Hamiltonian H is taken to be

II=&0+ V(r),

where

(2.1)

causes one of the irregular functions to increase exponen-
tially at infinity and the other to decrease exponentially.
[This is, again, the essential reason why the method can-
not be used for long-range scattering amplitude calcula-
tions as in Eq. (1.1).] For this reason, we have investigat-
ed both theoretically and computationally exactly what
happens when the wave operator is applied to one irregu-
lar solution at a time. The theoretical results are simple
and involve the Jost irregular solutions to the full
Schrodinger equation. The computational results focus on
the relative numerical stabilities obtained in using the de-
creasing and increasing exponentials.

Two formally identical, but computationally distinct,
forms of the wave operator are investigated. Further,
Fade approximants are introduced at a certain stage to
be described later. For one form of the wave operator,
this is not absolutely necessary, but it does accelerate the
convergence for the long-range example. For the other
form, the approximants appear to be indispensable. In ad-
dition to demonstrating that converged bound-free ampli-
tudes may be obtained using L, discretization and com-
plex coordinates, the methods also give well-converged
values of the elastic scattering phase shift for the single-
channel problems considered here.

Finally, we note that the motivation for developing the
present formalism is the hope that it may be extended to
the partial cross section for double-electron photoioniza-
tion of H
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1 1 l (l + 1)
dr 2 2 2 (2.2)

J+(k)~1,
~( &,2)

f+(k, r)~fp+(k, r) =i +'—+ "hl

(2.12)

(2.13)
and V(r) is a "reasonable" potential. (Specifically, we
are excluding the Coulomb potential. ) The irregular solu-
tions to the Schrodinger equation, g(k, r)~gp(k, r) =j((kr), (2.14)

(H ——,
' k )f+(k, r) =0 (2.3)

(k in general complex), are required to satisfy the asymp-
totic conditions

lim f~e (2.4)

The functions f+(k, r) are sometimes called the Jost irreg-
ular solutions. From f+ one can obtain the Jost function
in the limit r =0,

F (k) .
(21 +1)!!

(2.6)

F+(k) = lim(2l+1)r'f+(k, r) .
r~o

In the limit that
~

k
~

~ oo, this approaches
(2l+ 1)!!exp(—ilier/2). For some purposes it is also con-
venient to define a Jost function which approaches unity
at large

~

k ~,

where spherical Ricatti-Bessel functions have been intro-
duced:

j I(x) =(nx/2)'/ J(+)/2(x),

q((x) =(nx/2)'/ Xl+(/2(x),

(2.15)

(2.16)

hl
'

(x) =(~x/2)1/2HI(+1)/2(x)

=j~(x)+iq~(x) . (2.17)

y= nyp= »mieG (K)yp
a~0

= lim [1+G(K) V]gp .

Here G is the resolvent, or Green's operator,

(2.18a)

(2.18b)

The full and free physical wave functions are related by
the partial wave Mailer operator 0, whose action on P
may be put into the alternative forms

This latter function is also known as the Fredholm deter-
minant; for real k, arg(J+) is the negative of the poten-
tial scattering phase shift.

The regular solution of the Schrodinger equation,
P(k, r), which obeys the boundary condition

G(K) =( , K H)——
and K is related to k (which is hereafter real) by

—,K = —,k + ie, In]LK & Q .

(2.19)

(2.20)

limr 'P(k, r) = 1,
r~O

is a linear combination of the two irregular solutions:

(2.7) In obtaining Eq. (2.18b), we have used the identity

0=(Hp ——,'k )fp ——(H —,'K +ie —V)gp . — (2.21)

P(k, r) = . [F (k)f+(k, r) F+(k)f (—k, r)] .1

2ik

The regular function is related to the physical wave func-
tion, g(k, r), by a simple proportionality factor,

Hereafter, we shall simply write ieG or 1+GV, and the
limit e~O is to be regarded as imp/icit.

There is one more function that will be important to
have at our disposal, the Green's function. This is the
kernel of the Green's operator, and satisfies the inhomo-
geneous differential equation,

q(k, r) =ki'P(k, r)/F (k)

,'i~+'[f (—k,r) —S(k)f+(k, r)] . (2.9)

(H —2K )G(K;r, r')= —5(r r') . —
The Green s function is explicitly given by

Here S(k) is the S-matrix element for angular momentum
I,

G(K;r, r')= — (g(K, r()f+(K, r) )
2

xi'

S(k)=F (k)/F+(k) . (2.10) [f (K,r() S(K)f+(K,r )]f+(K—, r ),1

Note that, for k real, Eqs. (2.6) and (2.9) allow f to be cast
into the form of a real function times the complex conju-
gate of the Jost function,

P =i 'F (f+ /F+ f /F—.)— (2.23)

the variables r & and r & representing, respectively, the
lesser and greater of r and r'.

=J —.(i 'f+ /J+ i 'f /J ), —
2l

(2.11)

and, thus, the argument of the physical wave function is
the phase shift (modulo vr)

For V=0, we have the limits

B. Wave operators and irregular solutions

One crucial point about the equality of Eqs. (2.18a) and
(2.18b) is that the physical wave function vanishes at the
origin. Later on we shall be interested in the effect of ap-
plying the wave operator to one or the other of the irregu-
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i«fo+ =(1+GV)fo+ —i f+ /J+ (2.24)

lar solutions instead of the regular one. It is proven in the
Appendix that

tions have proven to work extremely well in applications
of this sort.

From Eq. (2.18), the full and free physical wave func-
tions are related by

which is an inhomogeneous analog of the equation satis-
fied by Pp. The inhomogeneous terms, themselves solu-
tions of the full Schrodinger equation, arise because
fp+ ccr ' as r~O [see Eq. (2.13)]. Note from Eq. (2.14)
that the free physical wave function is simply

g=(1+GV)gp .

Equation (3.1) is projected onto the bra (A ~,

(A 14&=&A 14o)+&A IGVI@ )

(3.1)

(3.2)

—lfo= ,. (i 'f—o+—i'fo
2L

and thus the full physical wave function is

(2.2S)
where A (r) is square integrable and

(A
~

GV
~ italo) =I dr A(r)(z H) 'V—(r)gp(k, r),

(3.3)

[i '(ie—Gfp+ ) i '(i—eGfp )] .
2l

(2.26) z= —,'k +Is. (3.4)

(2.27)

Therefore, the inhomogeneous terms in Eq. (2.24) cancel,
correctly yielding Eq. (2.18b).

It is also proven in the Appendix (the proof is for 1=0;
we conjecture the result for all 1) that

ieGf p+ ——0,

The first term on the right-hand side of Eq. (3.2) should
usually be easy to calculate. The other term is subjected
to a contour rotation, or rather, an application of the uni-
tary transformation Ug which scales r by exp(i8):

(A
i
GV

i @p) = (A
i

UgUgGVUgUg
i Qp)

ieGf p 2i——
With Eq. (2.24), these immediately imply that

(2.28) = (Ag
~

(z Hg) 'Vg
i

g—pg)

=f dr Ag(r)( z Hg)-'Vg(—r)gpg(k, r) .

(I+G V)fp+ f+ /7+, ——

(1+GV)f, =2i ' 'g+( —I)'+'f+/J+ .

(2.29)

(2.30) Here the rotated quantities are defined by

(3.S)

Thus, in using the ieG form of the wave operator, only
one Hankel function contributes. By way of contrast,
both Hankel functions contribute when 1+GV is used.
This distinction will be of interest when we come to the
computations, where both forms of the wave operators are
used for independent calculations of photoionization-type
amplitudes.

It is a remarkable fact that, although the potential has
specifically been assumed to be non-Coulombic, the proofs
in the Appendix for Eqs. (2.24), (2.27), and (2.29) in no
way depend on this assumption. Thus they all hold for
the Coulomb problem. [The corresponding physical, ir-
regular, Jost, and Green's functions are all given in, e.g.,
Ref. 2, the major difference consisting of the familiar log-
arithmic modification of the asymptotic conditions in Eq.
(2.4).] Equations (2.28) and (2.30) do not carry over.
There are analogous equations that hold in the Coulomb
case, but they entail an infinite phase factor in the limit
that e~O. This is connected to the fact that the wave
operators for the Coulomb problem are not the same as
considered in this paper.

A g(r) = UgA (r) =e' ~ A (re' ),
IIe = UeIIU~e =IIoe+ Ve=e -"~IIo+~e

Vg(r)=UgV(r)Ug=V(re' ),
gpg(k, r)=Uggp(k, r)=e' Pp(k, re' )

eig/2~ (kreig)

(3.7)

(3.8)

(3.9)

The utility of the rotation is that, within a finite region
of coordinate space, the rotated resolvent (with z real) can
be well approximated by

(3.10)

W —1

Xig(r)= g a;„(!9)+„(r), (3.1 1)

where the wave functions X;g(r) are complex linear com-
binations of real orthogonal basis functions. In the
present computations we have taken these to be Laguerre
functions of order 21+2,

III. COMPLEX COORDINATES AND RESOLVENT
APPROXIMATIONS

A. 1+GV

@„(r)=
' 1/2

(g )I+112l+2(g )
A.r/2—tl 9

(n +21+2)!

(3.12)

It is clear from the discussion of wave operators in Sec.
II that their use in computations will entail constructing
matrix elements of the resolvent (damped by the presence
of some I. function, of course) for the argument z of the
resolvent close to the positive real axis. The combined
methods of complex coordinates and finite basis calcula-

The complex coefficients and energies used here are ob-
tained by numerical diagonalization of the rotated Hamil-
tonian H~. The continuum eigenvalues of the latter fall
roughly on the ray at angle exp( —2i8) from the origin of
the complex energy plane, and thus ensure that the poles
in Eq. (3.10) do not come close to the positive real axis.
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This allows the e~O limit to be taken directly by simply
setting z=E=k /2.

Using Eqs. (3.10), (3.11), and the resolution of the iden-
tity

g @„(r)@„(r')=5(r —r'),
n=0

(3.13)

in the appropriate places in Eq. (3.5), the matrix element
involving the resolvent becomes

&~
I
GI'I 0o&= g &~e

I
& e&(z —E e) '&& e I

I'e
I Woe&

i=1
N Ã —1%—1

= 2 2 2 &~e
I
~.&&@. I&;e&(z —&;e) '&& el @'&&~"

I
I'e

I foe&
i =1 n =0 n'=0

= g &we
I
e„&a,„(z—z,e)-'a, „.&e„

I
v,

I 1toe& .
Il, n, n

(3.14)

As long as the left- and right-hand matrix elements can be
computed easily, this provides a convenient approximation
procedure for the total matrix element which converges
with increasing basis size X.

Although these procedures (and those in Sec. III 8) have
been phrased in terms of 1to, it was expected that the ma-
trix element with fo+ would show better convergence be-
cause of the exponential damping. Therefore, guided by
the theoretical results of Sec. IIB, the amplitudes involv-
ing fo+ were also computed for comparison.

Eq. (2.18) may also be written as

q=(z —H)-'(z —ao)4o . (3.16)

Projecting onto &A I
and performing the contour rotation

again,

&~ l@&=&~ l(z —a)-'(z —a, ) lqo&

= &A
I

UeUe(z H) '(z —Ho)UeUe —
I Qo&

=&de
I

(z He) (z Hoe—)
I Joe& . —(3.17)

The new operator z —Hog can be approximated within
the same N-term basis by

&.
I
(.—H., )

I
'}-=+x,".'(.)(.—~,'.")x,'-",'('), (3.18)

where the wave functions are, in analogy to Eq. (3.11),

The operator ieG, with its implicit singular limit, pro-
vides an unattractive basis for numerical experiments.
There is another form of the wave operator, however,
which gives rise to a nonsingular approximation scheme
similar to that in the last section. Using the identity

ieyo=(z —Ho)yo

t
X —1

X
i, i'=1 n, n', n"=0

)& a; „(z E; e )a;—„"& 4&„~
I foe & ] .(o) (0) (o)

(3.20)

To our knowledge, numerical implementation of an ex-
pansion of the type in Eq. (3.20) has not been previously
carried out. However, we shall show in Secs. IV and V
that, at least with the aid of Pade approximants, it does
indeed succeed. Previous work has shown the efficiency
of coordinate rotation and discrete basis sums as in Eq.
(3.10) in calculating matrix elements of the resolvent
(z —H) . Contour distortion, or analytic continuation,
arguments suggest that if H is transformed to H~, Ho
ought to be simultaneously replaced by Ho&. There is a
related motivation in applying the unitary transformation
for coordinate rotation to both operators. It is evident
that we want to rotate H in (z —H) ' in order to push the
poles away from the positive real energy axis. The rota-
tion of Ho in z —Ho has the practical, and desirable, ef-
fect of rotating unwanted zeros in the total matrix element
[Eq. (3.20)] away from this axis.

One further point deserves mention. Comparison of
Eqs. (3.14) and (3.20) shows that the G(z —Ho) method
involves an additional resolution of the identity than does
the 1+GV method. This suggests that the latter should
be the more accurate.

C. Fade approximajnts

In an effort to extract as much information as possible
from the data for a given basis size, we have also intro-
duced the use of Pade approximants. To see where these
come in, note that we may rewrite Eq. (3.14) as

X —1

X;'e'(r) = g a „'@„(r),
n=0

(3.19)
&~

I «I @o&=—g b. &C'.
I

I'e
I Woe&,

n'=0
(3.21)

and where the coefficients and eigenvalues come from di-
agonalization of Hoe. [Note that this is equivalent to di-
agonalizing Ho since it differs from Ho~ only by a multi-
plicative factor of exp( —2i8).] The quantity that is final-
ly computed is then

b„=g&~e
I
e„&a,„(z—E,,)-'a,„. (3.22)

A sequence of partial sums may be formed by successively
taking the sum in Eq. (3.21) up to j=0,1, . . . , X —1.
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Xa' (z —E'e )a(0) (0) (0) (3.24)

The sequence of partial sums is now obtained from the
sum in Eq. (3.23). It may be noted that there are other
places in these equations where Pade approximants might
be formed from intermediate sums, but the procedures just
described seem to give the best results.

IV. APPLICATION: SHORT-RANCrE POTENTIAL

From these partial sums, one may then employ the epsilon
algorithm to form the Pade tables. In the case of the
operator G(z —Mo), we write Eq. (3.20) as

N —1

(~ Iy)-=g ..-(~.-Iy.,&, (3.23)
n"=0

where

c„-= g (/I e I
N„)a;„(z E;e—) 'a;„

~ e Il, l, n, n

f+(k, r)=x
j=0

j
p2+ 2

4
j!(1+v)J

stration, which is only of passing interest, is not presented
here.

Qf more practical importance is the presence of an in-
dependent means of calculating the overlap of some I,
function and the irregular or regular wave functions. For
concreteness, we have taken the function A (r) in Sec. III
to be simply the n =0 Laguerre function in Eq. (3.12), but
with a scale factor p that may in general differ from the
factor A, belonging to the basis used for diagonalization of
the Hamiltonian. This I. function is typical of that
which would be encountered in calculating a hydrogenic
photoionization amplitude, requires only overlaps which
are simple to evaluate, and provides (through the free pa-
rameter p) some extra freedom in checking results. Using
this choice of A and expanding the Bessel function in Eq.
(4.2),

A. Matrix elements

The first example treated is the exponential poten-
tial, '" we get

( —2a Voee+&kr

j!(1+2iak)J (4.8)

V(r) = —Voe (4.1)

This was chosen since the I =0 problem may be solved ex-
actly. The two Jost solutions are

( —2a Vo)j
& ~.

I f.) =a'(i"/2)'" g
j!(+2iak ) +iak+ jJ

2

p=2a(2Vo)'/

v =2iak,

(4.3)

(4.4)

f+(k, r)=(p/2) +—I (I+v)J+„(px)~e+—'"" as r —m oo, (42)

where

(4.9)

This series converges quite quickly, as does the series for
the Jost function. Here (c)J =I (c+j)/I (c) is the Poch-
hammer symbol. With these two quantities, we can then
compute

and
—r/2a (4.5)

«'0
I
(1+GV)

I fo+ &= &@0If+ &/~+ (4.10)

&~'0
I
(1+GV) Ifo—&= &@01f+&/+ ——2i&c'0

I @&

(4.11)
The physical solution is therefore

@(k,r) = — [f S(k)f+]——1

-k~——[e '""—S (k)e'""] as r~ oo,
2l

where the S-matrix element has been defined in Eq. (2.10)
in terms of the Jost functions,

&~0I(1+« I @0)=(~0I q)

2i I +

&~'01f- &

(4.12)

F+(k) =f+(k, 0)=(p/2) +—"I (1+v)J+,(p) . (4.7)

In the Appendix a fairly general proof was given of
Eqs. (2.27)—(2.30), the results of applying 1+GV and ieG
to the Jost solutions instead of the physical wave function.
The current example has given us an opportunity to verify
these equations analytically in a special case. The demon-

This gives us a standard by which to judge the complex
coordinate calculations.

There are several matrix elements which are needed for
the numerical work, all of them including the complex
quantity exp(i8). The first is the overlap between the
Laguerre functions of order 2 and scale factor A. and the
first Ricatti-Hankel functions:

n!A,(+
I hog ) = n+2!

nt
A.(n +2)!

1/2
eie/2 dr (gr )L 2(gr)e kr/2eikre'—

0 n

1/2

e" [1 (n +2)( —q)" +'+(n +1)(—q)" +'],— (4.13)



BRUCE R. JOHNSON AND WILLIAM P. REINHARDT 28

(4.14)

(=2ke' /1, . (4.15)
~(2)

The integral for hue is obtained from Eq. (4.13) by the substitution k —+ —k. We mention here that the corresponding
integral for the Ricatti-Bessel function joe(kr) involves either Gegenbauer or Jacobi polynomials of complex argument.
By far the most stable means of computing the latter integrals is to take linear combinations of the results for the Hank-
el functions. The second integral, used for the 1+GV wave operator, merely has an extra factor of the potential thrown
in:

(@„
i

Ve ih oe') = —Vp e "e~'[I (n—+2)( &)"—+'+(n +1)(—r)"+'], (4.16)

where

1 —5+if
1+5 ig —'

5=2e "/aX .

(4.17)

(4.18)

The two remaining matrix elements come from the Harniltonian and are very simple. The kinetic energy operator Hp&
is, for general I,

n!(m+21 +2}!
m!(n +2l +2)!(C„~a„~e )=X'e-"'X

4n +2I +3
8(21+3) ™n

2m+2I +3
2(21 +3) (4.19)

and the potential is

(n +m +2)! 5"+
(4&„~ Ve

~

@ ) = —Vo ', 2F, ( n, —m; n——m——2;1—I/5 ) .
[n!(n +2)!m!(m +2)!]'~ (1+5)"+ + (4.20)

Hypergeometric transformations can be used to convert
the Cxauss function into other forms as convenience dic-
tates. With this, we turn to a discussion of the numerical
flindings.

B. Numerical results

The results of the computations are very encouraging,
even though the short-range potential does not provide as

TABLE I. Comparison of calculated versus exact amplitudes (4p
~

Q
~

Z) for the short-range potential V= —Vpe '~'. Here
4&o=(p/2)'~2 pre "'~, 0=1 +GVor G(z —Hp), and Z=fp+ or tto, the free-particle functions. The parameters chosen were p= 1,
A, =2, 0=20', Vo ——1, a=1, and k=1.

(@o
~
(1+GV)

~ fo )'

(@o((1+GV)
( fo )'

(&o
~

(1+GV)
)
@o)'

(@o
i
G(z FIp)

i fp+)—
(@o)G(z —Hp) ] fp )

& +o
(
G (z —Ho )

[ @o)"

X =10
—0.516 86
+ 0.079 81i
—0.431 50
—0.006 45i

0.043 13
+ 0.042 65i
—0.5167
+ 0.079 7i
—0.431 3
—0.006 8i

0.042 98
+ 0.042 68i

X =20

0.516 836 619
+ 0.079 767 137i
—0.431 559 519
—0.006 413 19Si

0.043 690 166
+ 0.042 638 660E
—0.516 836 576
+ 0.079 767 266i
—0.431 5S8 3
—0.006 413 6i

0.043 090 6
+ 0.042 638 9i

X =30
—0.516 836 642 19
+ 0.079 767 11002i
—0.431 5S9433 60
—0.006 413 17647i

0.043 090 14025
+ 0.042 638 604 29i
—0.516 836 641 3

+ 0.079 767 107 7i
—0.431 559 433
—6.006 413 174i

0.643 090 141
+ 0.042 638 605i

—0.516 836 642 21
+ 0.079 767 11060i
—0.431 559 433 63
—0.006 413 17044i

0.043 090 140 222
+ 0.042 638 604 292i

'Computed directly.
Computed with aid of Pade approximants.
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TABLE II. First three columns of the Pade tables for each of the short-range 6 (z —Hp) amplitudes in Table I. The approximants
are denoted by [L/M], where L is the degree of the numerator and M is that of the denominator. The first column (M =0) of each
table contains the partial sums SL from Eq. (4.22). Note the convergence of the M = 1,2 columns in contrast to M =0 in the ampli-
tudes for fo and gp. The columns of the go table are illustrated graphically in Fig. l.

(Np i
G(z —Ho) i fp~ ) (0'o

(
G(z —Ho) I f0 )— (@pi G(z —Hp)

i @0)

—0.1002
+ 0.3900i
—0.5768
+ 0.2 153i
—0.5386
+ 0.0691i
—0.5252
+ 0.0727i
—0.5 156
+ 0.0728i
—0.5 154
+ 0.0803i
—0.5 169
+ 0.0798i
—0.5 166
+ 0.0799i
—0.5 166
+ 0.0798i
—0.5 168
+ 0.0798i

—0.4989
+ 0.0885i
—0.5257
+ 0.0739i
—0.5027
+ 0.0612i
—0.5 193
+ 0.0776i
—0.5 167
+ 0.0796i
—0.5 167
+ 0.0799i
—0.5 167
+ 0.0798i
—0.5 168
+ 0.0798i

—0.5 182
+ 0.0752i
—0.5 190
+ 0.0786i
—0.5 178
+ 0.0802i
—0.5 167
+ 0.0799i
—0.5 167
+ 0.0798i
—0.5 168
+ 0.0798i

0.2045
—0.7955i
—1.2926
+ 0.2406i
—0.0729
+ 0.3269i
—0.2649
—0.2552i
—0.6937
—0.0397i
—0.3497
+ 0.1072i
—0.3724
—0.0459i
—0.4964
—0.03 1 1i
—0.4168
+ 0.0164i
—0.4133
—0.0053i

—0.5343
+ 0.088 1i
—0.3784
+ 0.043 1i
—0.4337
+ 0.0554i
—0.4624
—0.0336i
—0.4006
—0.0039i
—0.4405
+ 0.0253i
—0.442 1

—0.0167i
—0.4176
—0.0034i

—0.4324
+ 0.0100i
—0.4350
—0.0094i
—0.4330
—0.0101i
—0.43 10
—0.0055i
—0.4309
—0.007 1i
—0.43 12
—0.0066i

0.5928
+ 0.1523i
—0.0127
—0.3579i
—0.1289
+ 0.2328i

0.1649
+ 0.1302i

0.0563
—0.0890i
—0.0135
+ 0.0828i

0.0629
+ 0.0722i

0.0555

+ 0.0101i
0.03 17

+ 0.0500i
0.0425

+ 0.05 17i

0.0883
+ 0.0247i

0.052 1

+ 0.0876i
0.0040

+ 0.0440i
0.0533

+ 0.0262i
0.0422

+ 0.0575i
0.0274

+ 0.0383i
0.0483

+ 0.0373i
0.04 16

+ 0.0496i

0.0502
+ 0.0477i

0.0447
+ 0.0461i

0.0428
+ 0.0424i

0.042 1

+ 0.0428i
0.0433

+ 0.0428i
0.0432

+ 0.0428i

stringent a test of the methods as the long-range example
of the next section. In Table I, the amplitudes obtained
for basis sizes N =10, 20, and 30 are compared with the
exact values. It is evident that both forms of the wave
operator, acting on any of the three particle wave func-
tions, fp+ or @p, yield excellently convergent results.

There is a distinction, however, in the means used to ex-
tract these numbers for the two different operators. For
1+GV, when Pade approximants were formed along the
lines of Eqs. (3.21) and (3.22) from the partial sums

J
SJ ——g b„(@„~Ve

~
Ze ), j =0, 1, . . . , N —1

n'=0

(4.21)

with Ze(k, r) a rotated version of any of fp+ and fp, it
was found that the approxirnants were neither necessary
nor of any help in obtaining satisfactory convergence.
Consequently, the numbers for 1 +G V in Table I represent
just the results of direct calculations.

The operator G (z —Hp), on the other hand, unquestion-
ably benefits by introduction of the approximants, which
are formed as a sequence of extrapolants from the partial
sums [cf. Eqs. (3.23) and (3.24)t

J
SJ ——g c„(N„-~ZO), j=0, 1, . . . , N —1 . (4.22)

n"=O

For N = 10, the first three columns of the Padh tables cor-
responding to fp+ and fp are shown in Table II. The S.
«rm the elements of the first column of each table.

The results for 6(z Hp)fp+ are fairly straigh—tfor-

ward. The sequence of SJ 's always seems to converge by
itself to the same amplitude as (1+GV)fp+. For parame-
ters other than those of Tables I and II, however, conver-
gence is sometimes accelerated by the Pade procedure.

The amplitudes for 6(z —Hp)fp, and G(z —Hp)gp
behave in a much more striking manner. The SJ 's in the
first columns of Table II appear not to converge very well
at all. It is apparent, however, that things settle down
fairly well even by the second column (M=1) in both
cases, and improve as one moves further to the right. In
fact, the sequences of partial sums are slowly spiraling
into the right answers. This is demonstrated for fp by the
solid line in Fig. 1(a). The convergence of the second and
third column is demonstrated by the successive magnifica-
tions in Figs. 1(b) and l(c).

For further contrast, Fig. 2 shows the behavior of the
amplitude for 6(z —Hp)gp for another choice of the pa-
rameters. Here the partial sums SJ spiral ou trna rd as is
also the case (not shown) for 6 (z —Hp )fp . It was not
necessary to investigate these different circumstances in
detail since the approximants converge in any case. %"e
mention though, that the choice of parameters used in
Fig. 2 did cause the 6 (z —Hp)fp+ amplitudes to slip a bit
in accuracy compared to that for 6 (z Hp)@p. — '

Thus, as opposed to the numbers in Table I for 1 +G V,
those for 6(z —Hp) have been gleaned from the Pade
tables using a criterion of relative agreement between
neighboring approximants. (The last figure given is al-
ways uncertain. ) It is clear that overall uniform reliability
and ease favor the use of 1+GV, but it is an interesting
piece of information that two such disparate methods are
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Re &Cp/ G(z-Hp)/ +p& Re &Cip/G(z-Hp)/'Pp & Re &Cp/G(z-Hp&) Op&

FIG. 1. Sequence of tenfold magnifications from (a) to (c)
demonstrating the behavior of the columns of the %= 10 Pade
table in Table II for (@0

~
Giz Hp) —

~
i(0) with the short-range

exponential potential of Eq. (4.1). Each line connects the series
of [L/M] approximants for a fixed M (M =0, solid curve;
M =1, short-dash curve; M =2, long-dash curve). Although the
partial sums (solid line) are spiraling in to the correct answer
[dot in (c)], the approximants accelerate the convergence. Pa-
rameters used are p = 1, A, =2, 0=20, Vo ——1, a =1, and k =1.

both aiming at the same answers. For the amplitudes em-
ploying Po, both methods even seem to be of comparable
quality.

Qne final point should not be overlooked. The pro-
cedures here are quite insensitive to variations in k and L9

over wide ranges. Thus it was not necessary to do any
careful optimizations for these in the calculations.

For the long-range example it was desired to model a po-
larization potential with r behavior near infinity. To fit
within our purview, it is necessary that this behavior be
softened somewhat near the origin, and so the potential

V(r)= Vo(e r"—1) /r

4—Vp/r as r~go
—Vpy /r as r~o3

(5.1)

FIG. 2. Same as Fig. 1 except that the parameters are now

p=2, A, =1.5, t9=25', Vo ——2, a=0.5, and k=0.5. For this

choice of parameters, the partial sums are spiraling outwards,
but the approximants converge to the correct answer [the dot in

(c)] anyway.

V. APPLICATION: LONG-RANCE POTENTIAL

A. Matrix elements

As mentioned earlier, the methods employed here are
applicable to long-range as well as short-range potentials.

was chosen. We shall thus be investigating a potential
which is not only long range, but also has a Coulombic
singularity at the origin. In this case we have worked
strictly with I = 1.

The matrix elements for the overlap of the Laguerre
functions of order 4 and the I = 1 Hankel function are

"(~)
&@n l~ ie&=

1/2

e' ~ [2ig[2(n +1)+2(n +4)q+(n +3)(n +4)( —q)" +
4ig

—2(n+1)(n+4)( —q)" + +(n+1)(n+2)( —q)" + ]

—(1—ig) [(n + 1)(n +2)+2(n + 1 )(n +4)q

+(n +3)(n +4)q —2(n +4)( —q)" + +2(n + 1)(—q)" + ]I,
(5.2)

where g and q have been defined in Eqs. (4.14) and (4.15). When the potential is sandwiched in between, things become
considerably more difficult. The final result is

1/2
nti,

&@. I Ve lh'ie'&= n+4! V,.-'e"+ ' —'" "+'. Zji "—J J igj=p
(5.3)

where the quantities Kj are defined by

—2 —2 3

Kz —— . g ( —1) k (I+k5 ig) Jln(1+k5—ig), 0(j(—2
(2—j)i k 0 .k. (5.4)
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The parameter 6 is given by

j)3. (5.5)

'n +4 rn +4 ( —1)"
( 1+Jgy2)k+1

1
~2E, —n, k+1;5;' ' 1+j6/2

(5.8)

(e„~ v,
~

e ) = v,x'e -"' n!m ~

(n +4)!(m +4)!

where

3 ~'

xg( —IV+', v.'. ,
j=0

5=2ye "/X .

The relevant potential elements are

(5.6)

1/2

(5.7)

Since this problem is not exactly solvable, other means
of checking the results are needed. It is evident from Eq.
(2.11) that, for a real I function, the argument of the to-
tal matrix element is simply the phase shift, and this can
be obtained independently by numerical integration. This
provides one criterion for judging the quality of the ampli-
tude calculation.

A second test on the consistency of the results essential-
ly employs the method used by Rescigno and McKoy for
computing photoionization cross sections. If we take the
"elastic" matrix element of the Green's function in Eq.
(2.23) between functions A (r) and A (r'),

2
(A

~

G
~

A ) = — S(k) f dr A(r)f+(k, r)
sk

r oo oof dr f dr'A(r)f+(k, r)A(r')f (k, r')+ f dr f dr'A(r)f (k, r)A(r')f+(k, r'),
ik T

(5.9)

then it is evident that, for k and 2 real, the imaginary part of this matrix element is simply proportional to the square of
the overlap of A and the physical wave function g:

I" + 2
(A

~

ImG
~

A ) = f dr A(r)f+(k, r) + — f dr A (r)f (k, r)
+

2f d—r A (r)f+(k, r) f dr'A(r')f (k, r')

=[2kS(k)] ' f dr A (r)[f (k, r) S(k)f+(k, r)]—

=(—1) +' f dr A (r)g(k, r) (5.10)

Thus, taking A to be +o, we can compute the ratio

1&@a l
&

I Po& I'
k

/
(eo

/
ImG

/
eo)

/

Thus the phase shift may be had from this sort of calcula-
tion as well. Values computed from the Fredholm method

(5.11) are included in the next section for comparison.

where both the numerator and denominator are obtained
from the same finite basis calculation, and the numerator
can be based on either the 1+GV or G(z —Ho) methods.
The smaller the quantity P—1, the better is the consisten-
cy.

It should be pointed out that there is already known one
context in which complex coordinates may be applied to
long-range potentials. Rescigno and Reinhardt have
shown that the Fredholrn determinant, which is the same
quantity as the Jost function J+ in Eq. (2.6), can be ob-
tained approximately through the numerical eigenvalues
of He and Ho~ in an X-term basis

' z —Hg & z —EgJ:det: + (0) (5.12)
z —H„, , z

9. Numerical results

Some typical data from a convergence study for the
long-range potential are shown in Table III. As for the
case of the short-range potential, the Pade approximants
are necessary for the success of the G(z —Hp) method.
%'hat is new here, however, is that the convergence for
1+GV without the approximants is slower than with
them, and so al/ of the amplitudes in the table have been
extracted from the Pade tables. For purposes of compar-
ison, we have also included the computed values of the ra-
tio P in Eq. (5.11), and of the sine of the phase shift 5&

[see Eq. (2.11)]. The exact value given for sin5~ was ob-
tained by numerical integration. The values given for
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VI. DISCUSSION

The wave operator formalism has been shown to yield,
with the aid of coordinate rotation, finite basis expansions,
and Pade techniques, a method for computing overlaps be-
tween I. and continuum wave functions. This should be
regarded as a first step toward the ultimate goal of calcu-

1.970
(c)

K

'-35 —1.5 -2.10 -1.90 -1.995

Re &Apl 1+ GV
l fp+& Re &Cpl1+GVI fp+

—1.975

Re &4 pl I+GVl fo+ &

FIG. 3. Series of tenfold magnifications demonstrating the
first three columns of the X= 10 Pade; table for
(0&p

~

(1+GV)
~
fp ) with the long-range potential of Eq. (S.l).

The Pade columns (M =0, solid curve; M = 1, short-dash curve;
M =2, long-dash curve) are all converging, although the partial
sums (solid line) spiral inward rather slowly. Parameters used
are p=3, A, =3, 0=25, Vo ——1, y=1, and 0= 1.

sin5~F were obtained by the determinantal Fredholm
method in Eq. (5.12), and clearly do not compete with the
present calculations.

As was to be expected, the results in general are not as
well converged as in the short-range case, with the possi-
ble exception of 1+GV operating on fo+. That the opera-
tor 1+GV should be the best behaved is in accord with
the point made earlier that this involves less intermediate
sums, and was already demonstrated for the exponential
potential. The fact that the amplitude for (1+GV)fp+
has more significant figures than (1+GV)@p at N =30 is
evidence that, at least for the stability of the approxi-
mants, use of only the decreasing exponential can become
a significant factor when the potential is long range. With
smaller basis sizes (which do not reach as far out into the
region where fos+ -=0), we have noticed that (1+GV)gp
can be more stable than (1+GV)fp+. For instance, Figs.
3—5 show the convergence of the N =10 approximants
for fp+ fo and fo respectively. Interestingly enough,
the partial sums for fp+ are spiraling inwards 180' out of
phase, and the series in Figs. 3 and 4 are almost exact ro-
tations of each other. When the two functions are com-
bined to yield tt/p, the resulting partial sums converge more
quickly.

Note that 6(z Hp)fo+ also—fares somewhat better at
higher X than 6(z Hp)fp, e—ven though these ampli-
tudes are both much worse than their 1+GV analogs.
What is perhaps most curious is that, acting on the physi-
cal free-particle function, tt/p, both forms of the wave
operator remain competitive in terms of overall accuracy.
The Pade tables for 6(z —Hp)1(p are much better behaved
than those for 6(z Hp)fp+. W—e can draw a tentative
inference from this that G(z —Hp) is much more sensitive
to the Coulombic singularity of the potential at the origin.
Very poor results are obtained with either of the functions
which behave as 1/r at the origin, but the physical func-
tion fp (with its r behavior) yields excellent results.

-1.21-
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e
E
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-0,25 -0.335

Re &4'pl1+GVl fo- &
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FICx. 4. Analog of Fig. 3 for the amplitude
(@p

~

( 1 +GV)
~ fp+ ). These two sequences are almost 180' ro-

tations of each other.
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I+ G V
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01730
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/

1.157 1. 1548
0.1725

1.155

Re &4'pl1+GVl Vp &

FIG. 5. Analog of Figs. 3 and 4 for the amplitudes
( Np

~
( 1+GV)

~
li/p). Convergence is seen to be much more raPid

for this size of basis (N = 10) than for either of the amplitudes
involving fp+.

lating (total and partial) photoionization amplitudes in
atomic and molecular systems. For the latter problem,
however, one in general needs to tackle the full complexi-
ties of Coulomb scattering, and the next logical step is to
attempt the computation of the hydrogenic photoeffect
amplitude via Coulomb wave operators.

The integrals considered here extend only over finite re-
gions of space, a fact which allo~s us to consider long-
range as well as short-range potentials. It should be noted,
though, that familiar scattering information is calculated
in the form of the phase shift. Furthermore, the methods
were shown to be capable of much greater accuracy than
the direct evaluation of the Fredholm determinant, the
only other application to date of complex coordinates to
problems involving long-range potentials.

For the scattering potentials considered above, ap-
proaches based on two different forms of the wave opera-
tor, 1+GV and G(z —Hp), were shown to yield the same
results. The 1+GV form seems to be preferable, however,
since it involves fewer computational steps and appears to
give greater accuracy.

Application of the wave operators to the individual
Ricatti-Hankel functions has also been investigated, both
theoretically and numerically. Theoretically, it was found
that j. +GV operating on either Hankel function produces
simple results in terms of the Jost solutions to the full
Schrodinger equation, and these results were confirmed in
the computations. One potentially useful point comes
from the consistently good stability of calculations with
fp+, the Jost solution which damps when r is scaled by
exp(i8). Equations (2.11) and (2.29) show that the physi-
cal wave function can be expressed in terms of
(1+GV)fo+.
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TABLE III. Convergence study of amplitudes (@p
~

0
~
Z) for the long-range potential V= —Vp(e r"—1) /r . Here

4p={p/24}' {pr) e "",Q=l+GVor G(z —Hp), and Z=fp+ or Pp. The parameters chosen were p=3, X=3, 9=25', Vp ——I,
y= 1, and k =1. All matrix elements were extracted from Pade tables, with the exception of the quickly convergent (Cp

~
G

~
4p),

which is used in calculating the ratio P of Eq. {5.11). The quantity of the amplitudes can be judged by rates of convergence, the close-
ness of p to its theoretical value of 1, and agreement of the phase shift obtained from the 1(p amplitudes with the exact value obtained
from numerical integration. For illustration, the phase shifts 5&F obtained via the Fredholm method [Eq. {5.12)) are included.

(No~ 6 ~@o)

(@o
~

(1+GV) ~fo+)

(4o
~

{1+GV)
~ fp

(@o
(
(1+GV)

( @o)

Exact: 1

sin6~
Exact: 0.148 1329(6)

(@p
~

G(z —Ho}
~ fp+ )

(@o
~

G{z —Ho}
I fo )—

(No( G(z —Hp)
~ go)

sin5~

Sln5)F

1V =10
0.080 154

—2.729 0411
—1.984 3

+ 1.960 8i
—0.324 5
—2.305 9i

1.155 23
+ 0.172 90i

0.999 949

—1.90
+ 1.93i
—0.46
—2.26i

1.155 18
+ 0.172 64i

0.999798
0.147 81
0.117

1V =20

0.080 310817 67
—2.728 786 230 28i
—1.984 182 4
+ 1.959726 1i
—0.326 143
—2.305 763i

1.155 179
+ 0.173022i

0.999986 8

0.148 127

—1.956 1

+ 1.952 1i
—0.368
—2.282i

1.155 177
+ 0.173001i

0.999 978 1

0.148 110
0.124

X =30

0.080 310834 5
—2.728 786 304 8i
—1.984 182 789 7
+ 1.959 728 532i
—0.326 186
—2.305 785i

1.155 184 5

+ 0.173 029 0i
0.999 997 9

0.148 132 2

—1.970 86
+ 1.9544i
—0.352
—2.303E

1.155 184
+ 0.173026i

0.999996 3
0.148 130
0.127

g=J Im(i 'f+ /J+ )

=J Im[i '(I+GV)fp+] . (6.1)

Thus, providing that there is some independent means of
calculating the Jost function (Fredholm determinant) ac-
curately, overlaps involving the physical wave function
may be obtained working strictly with fp+.
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APPENDIX: 1+GVvs ieG

6(K;r, r —0)=6(K;r,r+0) . (A2)

Next, by virtue of Eqs. (2.20), (2.23), and the fact that
the point r'= r has been excluded from the integration, we
may write

g" '=P f dr'fp+(k, r')(H —,
' k )6(K;r, r') . (A3—)

The derivatives in Ho may be integrated by parts to bring
this operator over to fp+, which obey Eqs. (2.3). We have

The proofs given here of Eqs. (2.24), (2.27), and (2.28)
rest on the explicit form for the Crreen's function provided
in Eq. (2.23). We first rewrite the functions in Eq. (2.24)
as (e~O is implicit, and therefore so is K~k)

P" }(k,r)=i' dr'6(K;r, r')fp+(k, r'), (Al)
0

where the principal value sign P indicates that the point
r =r has been excluded. This is justified by using the
continuity of 6 at r'=r:

00 d 00 dGPf dr fp+ &G=Pf dr 6 2fp++ fp+dr

- r —0

0

dG+ d, fo+dr' r+0

- r —0
dfo+
dr ]p

dfo+
dr J„+p

(A4)
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The last two terms may be condensed by use of Eq.
(A2). The first two terms in large parentheses may be
condensed if we are careful to account for the discontinui-
tyof Gatr=r',

dG
t fo+

0

dfo+ dG= lim 6 — fo+r' 0 dr dr
—,6(K;r, r+0)—,6(K;r, r —0)=2 .

dr' dr'

Thus

ce d~G m d fog
PI dr', fo+ = J dr'6, , —2fo+(K, r)

(A5)

=2i + 'f+(K—,r)/J+(K) .

Plugging this back into Eq. (A6), we obtain

(A 1 1)

dfo+
dp

(A6)

, d 6 ~, dfo+
P d', = d'G, —2,

+2i + f+(K,r)—/J+(K), (A12)

fo+(k r )~(2/ —1)'!/(+'kr ) (A7)d, I
, fp~(k, r')~ ——,(2l —1)!!/(+ikr'), (AS)

6 (K;r,r')~ — f+(K,r)(r')'-+',
F+(K)

d, 2(l + 1)
dr' ' ' F+(K)

6 (K;r, r') ~— —f+ (K,r)(r')

leading to

where the P has been dropped from the integral on the
right-hand side since no derivatives of G are involved.
The surface terms can be further simplified by using the
fact from Eqs. (2.4), (2.20), and (2.23) that both 6 and
dG/dr' vanish at r'= ao, and so this limit in the large
parentheses contributes nothing. By virtue of Eqs. (2.7),
(2.9), (2.12), and (2.17), we have the following small-r'
limits:

which may be substituted in turn into Eq. (A 1) to yield

q"2'=i eGfp+

=(I+GV)fo+ i '—+ 'f+(k, r)/J-+(k) . (A13)

Thus the Hankel functions obey an inhomogeneous ver-
sion of Eq. (2.18); i eG and 1+6V do not yield equivalent
results when operating on them. The inhomogeneous
term arises solely because the Hankel functions behave as

at the origin, which is just sufficient to give the sur-
face term in Eq. (All) a finite value. Note that this term
is a solution of the full Schrodinger equation, and that it
too behaves in the same way as fp+ near the origin:

'f+ (k, r)/J—+ (k) ~(21 —1)!!/(+ikr)'

as r~0 . (A14)

Equation (A13) is not the end of the story. It is also
possible to show that P"' is identically zero, and so only
one of the Hankel functions contributes when the ieG
form of the wave operator is used. The proof of this is
briefly sketched here for the I =0 case. Higher I is obvi-
ously more complicated.

To start, the explicit form of 6 given in Eq. (2.23) is
used again in evaluating the functions g" ':

g" '(k, r) =—i e dr'6 (K;r, r')fo+ (k, r')
0

T

f+(K,r) I dr'P(K, r')e +'""+P(K,r) I dr'f+—(K,r')e~'"'
+

The integral from 0 to r is nonsingular in any event, and so only the second integral is of concern:

g(K, r) f dr'f+ (K,r')e +—'"' .

(A15)

The best way to evaluate this is to use the integral equation satisfied by the irregular function,

QO

f+(K,r') =e' ' — dr" i [Ksn(r' —r")—]V(r")f+ (K,r"), (A17)

where the first term on the right-hand side is called the Born term. VA'th this,

I dr'f+ (K,r')e+—'"" =—

(A18)
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In the limit that e goes to zero, these reduce to

2ikrf dr'f (K,r')e' ' ~— &ikr" e 2ikr —ikr"
dr" V(r")f+(k, r") e—'"" (r" r—')

~k + 2ik
(A19)

and

—ikr" ikr" —2ikr00 ikr I e ef dr'f+(K, r')e ' "~ kje— —f dr" V(r")f+(k, r") e ' " (r" ) —— (A20)

@('2)(k r) =0 (A21)

P' '(k, r) = —2ig(k, r) . (A22)

Thus, as long as the integrals in Eqs. (A17), (A19), and
(A20) converge, only the factor —k/e (stemming from
the Born term) on the right-hand side of Eq. (A20) sur-
vives, and therefore Eq. (A16) becomes

This result, which for some reason does not appear to
have found its way into the literature, is not completely
restricted to the reasonable potentials mentioned above.
For instance, Eq. (A21) is true for the Coulomb potential,
as well. The Coulomb analog of Eq. (A22), however, en-
tails a phase factor which is divergent as e~O.

Combining Eqs. (A13), (A21), and (A22), one obtains
the results of 1+GV acting on the irregular functions,
given above in Eqs. (2.29) and (2.30).
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