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It is pointed out that the usual Heisenberg equations-of-motion or Liouvillian superoperator
perturbation-theory approaches to systems with arbitrary statistical ensembles can give spurious,
nonconvergent results when attempts are made to calculate the expectation value for certain opera-
tors which commute with the zeroth-order Hamiltonian. The non-Markovian, long-time tail of the
Weisskopf-Wigner spontaneous-emission decay of a two-level atom is presented as an example of
this failure. The general reason for such failures is elucidated and a new method applicable to arbi-
trary equilibrium or nonequilibrium statistical ensembles is formulated. The new method is applied
to the same example of spontaneous emission to derive the correct short- and long-time behavior.
The physical model of a two-level atom is discussed and some mathematical techniques of general
usefulness are presented. The present results are also briefly discussed in the context of previous
work on nonexponential decay. A fully quantum-mechanical definition of time-dependent spectral
line shape is given in terms of the response of a two-level —atom detector with variable frequency in-
teracting with electromagnetic radiation. The non-Lorentzian line shape recorded by such a detector
for the spontaneous emission of a source two-level atom is calculated as another example of a prob-
lem for which the usual methods give incorrect results. The extension of the present method to
Liouvillian or master-equation approaches is discussed.

I. INTRODUCTION

The calculation of time-dependent properties of non-
equilibrium many-body systems is of considerable current
interest. Lasers, plasmas, and chemical reactions are some
obvious examples of systems which can be far from equili-
brium for which one would like a reliable method for cal-
culating physical properties such as lifetimes of various
excitations, energy spectra, and response to external per-
turbations. Standard temperature-time Green's-function
perturbation techniques, ' being dependent on specific
properties of thermal equilibrium, are not applicab1e to
systems far from equilibrium, and different methods must
be employed. The most common lines of approach are
based upon the systematic application of the Heisenberg-
operator equations of motion or variations of this, ' such
as master equations, using the Liouvillian and Liouville
space. Laplace transform techniques figure prominently
in these methods since one calculates the dynamics of
propagation, to arbitrary times t & 0, of correlations which
are presumed known at t =0 and not restricted to equili-
brium.

A problem can arise when using these Heisenberg
equations-of-motion or Liouvillian approaches to calculate
higher-order perturbation corrections —the resu1ting per-
turbation expansion may not be convergent and can give
spurious, unphysical answers. This problem occurs, for
example, when calculating the non-Markovian, long-time
tail of a decaying two-level atom (Weisskopf-Wigner
spontaneous emission), in that the expectation value for
the number operator will become negative for certain
times. Since this expectation value must be between zero
and one, it is clear that the straightforward application of
these methods can give erroneous results. It is the purpose

of this paper to discuss this problem, to show why it
occurs, and to formulate an improved Heisenberg
equations-of-motion procedure applicable to pure state,
equilibrium, and, most importantly, nonequilibrium sys-
tems.

Since the author finds the familiar model of a two-level
atom interacting with electromagnetic radiation to be of
intrinsic interest, while also providing a fairly simple, yet
nontrivial, example of a many-body system which exhibits
the aforementioned problems, this paper presents calcula-
tions using the two-level-atom example. The usual
Heisenberg equations-of-motion approach is applied to the
two-level model in Sec. II and shown to give spurious re-
sults for the number operator at second order in a pertur-
bation expansion. The reason for this is elucidated and in
Sec. III an alternative, improved Heisenberg equations-of-
motion approach is formulated and then applied to the
same example. The nonexponential decay at both short
and long times for realistic quantum systems is a well-
known consequence of the Paley-Wiener theorem and we
briefly discuss how our results fit into the general context
of previous work in this area. In Sec. IV we discuss the
question of how to give an operational definition of spec-
tral line shape. We argue that a correct definition can be
given in terms of the response of a fully quantum-
mechanical two-level atom interacting with the radiation
emitted from a fully quantum-mechanical source. We cal-
culate the time-dependent spectral response of a two-level
atom with adjustable frequency response, to the spontane-
ous emission of a source two-level atom as an example of
the improved method of Sec. III. Section V is a summary
of the paper and also discusses the relationship of this
work to that of others. Two appendices present some
mathematical formulas and machinery needed in the text.
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II. HEISENBERG EQUATIONS-OF-MOTION
APPROACH FOR TWO-LEVEL ATOM

In this section we derive the standard results for a two-
level atom interacting with electromagnetic radiation and
discuss the problem which arises in higher orders in a per-
turbation expansion. The Hamiltonian H of the model is
taken to be (dipole approximation and dropping the A
term)

H=HO+H',

HO=Ka a++A, b I„bl, ,

H '=i+MI„(b I„+bl,)(a a)—.

Here ~ is ihe energy difference between the unperturbed
atomic levels, in units with A= 1, a is a Fermi annihilation
operator lowering the atom from its upper to its lower
state, and a is the corresponding creation (raising) opera-
tor. The eigenvalue 0 for the Fermi occupation-number
operator X=a ~a then implies that the atom is in its lower
state; whereas, the eigenvalue 1 implies that it is in its

Af
upper state. The b~ and b~ are Bose annihilation and
creation operators for photons of wave vector k, polariza-
tion index 1 or 2, and energy A. =uk =

~

k
~

(in units with
c =1). We use a condensed notation where A, , y, g, etc.,
represent both wave vectors and polarization indices, while
summations are understood to include sums (or integrals)
over wave vectors and polarization sums. The commuta-
tion and anticommutation relations are

a =(a t) =0, [a,a t)+ ——1,

1/2

K d'eg,

where d is the transition dipole matrix element (assumed
real for simplicity) and el are the unit transverse polariza-
tion vectors which satisfy

k. e =0, e .e-,=5~~ .
kA. ' kk kA, ' (4)

The Hamiltonian (1) differs from the usual two-level
model *' only in that Fermi operators, instead of Pauli
spin matrices, are used to describe the two-level atom—
only a trivial change of notation (IJ+ ——a, o =a,
0 3 —2a a —1 ) and shift of ~/2 in the energy origin. The
two-level model is also closely related to the well-known
Lee" and Friedrichs' models.

We work in the Heisenberg picture where the operators
are time dependent while the state vectors remain fixed.
The Heisenberg-operator equations of motion are given by

(O(t) )—:Tr[pO(&)],

where p is the initial (t =0) statistical ensemble density
operator. Standard perturbation-theory methods for solv-

ing for 0(t) are basically similar in spirit to what fol-
lows. The Hamiltonian (1) and Eq. (5) give

i N(t) = ——i+M&(bx+b x)(a+a )at
A

i O(r) =—[O(l),H] =LO(r—),at

which also defines I., the Liouvillian superoperator. We
wish to compute (N(t) ) = (a (t)a(t) ) and

[bl. by) =[bI, by—&

[bI, b y] =4y=@y4,k,

[a,bx] =[a,b I.] =0 .

(2)

to which we apply the Laplace transform'

W[O(t) I =[0]~=I dt e ~'O(t),

'[[O]~ J =O(t)= f dpel"[O]~

The photon wave vectors k are quantized in the usual

way, i.e., a discrete k-space lattice with lattice constant
2w/0'~ where Q is the macroscopic system volume
which will be taken to be infinite (this will replace

g~(2') 0 g f d k

obtaining

p [N]~ =N(0) —QMl ([bxa]p+ [bl a]~

+[bla )I, +[bla ]Z) . (9)

polarization

(see Ref. g). The interaction matrix element is
We next solve for the various [bl„a]z in (9), again applying
the equations of motion (5). This gives

bI„(0)a(0) MI„
[bl a]I, = + ([N]q —[1]q)+g (2[bybIN]p —[bybI )p+2[by bI N]p [by bl ]~),

P +1 X+K) P +l (A+K P +E(k +K)

b, (0)a '(0)
[bl& )I = .(~ + . [N)I, +g . (2[by bIN)~ —[bybl, ]~+2[bybIN] —fb bl„] ),

P +l(A, —K) P +l(A, —K) P +l(A, —K)
y

(10)

where [1]~ is the Laplace transform of the unit operator 1. The corresponding results for [bla ]z and [bl„a]~ can be ob-
tained via Hermitian conjugation of (10) with p' replaced by p. %'e next insert the transforms (10) into (9) and take the
expectation value (6) which gives
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(bl (0)a(0) ) (b q(0)ct(0) ) (bq(0)a (0) ) (b ~(0)a (0) )
p [N]~ ) = (N(0) ) — MI,

P +t( I,{+K) P i—(A,K—) P+l(A, —K) P l(—A, + K)

—gM,' &[N], & P+l(A+K) P —I(I(, +IC) P+l(A —K) P —l(I(, —IC)

—&[1],) . -+
p + I (A, +K) p —1 (A. +K)

gMq—M 2([b b N] ) —([b bx] )+2([b+bxN] )

—
& [b,'b, ], &

1 1+
P + i(A+K), P + i(A, —K)

+ 2([b,'b,'N], ) ([b,'b—,'], )+2&[b„'b,N], &

(12)

+
P —l(I{,+K) P —l(A, —IC)

It is clear that the term on the right-hand side of (11) which has ([N]& ) in it can be moved to the left-hand side. Our
strategy in calculating any operator expectation value is to derive a se1f-energy representation using the operator equa-
tions of motion and Laplace transform. In other words, we want to have'

([O] )
(O(0)) +

p +iE-+ X -(p)

where the ellipsis stands for higher-order terms in powers of
~

d
~

and

[O(t),HO] =LOO(t):E-O(t)— (13)

and X -(p) is the generalized self-energy which will give the line shift and decay of the operator expectation value (O(t) ).0
If p +iE-+X-(p) were to have one simple zero, this would be a pole for ([O]~ ) and by the inverse Laplace transform0 0
(g)

—E~t —I g~t

(O(t) ) = (O(0) )e (14)

where E'- and I - are the imaginary and real parts of the simple zero. All four terms in (11) of the form ([bbN]z ) can0 0
be considered as environmental contributions to ([N]~ ) which will contribute to both the decay and line shift (in Ref.
4 these are Lo degenerate with N); however, they cannot be moved from the right-hand side to the left-hand side of (11)
since they are not in the form of a product of Laplace transforms. In order to properIy take into account these environ-
mental effects we add to both sides of (11)

2+MxM„(br(0)bl, (0) ) ( [N]~ ) —. +
Ay P +I (A, +K) P +1(A,—K)

plus the three other similar terms to obtain

(b (0) (0)& &b (0)"(0)& &bl.(0)" (o)& &bg(0)"t(0)&
[N], =[p+X-(p)]—' N(0) — MI„

P +l(I(.+IC) P —l(I(,—IC) P +l(I(,—K) P —/(I(, —IC)

+ Mg([1]q ) . +-
@+i (X+sc) p —i(A, +x)

QMI, Mr [2([b—rbI„N]p) —2(br(0)bg(0))([N]~) —([brbx]p)+2([brbIN]p)
Ay

—2(br(0)bx(0) ) ([N]~ ) —([br bl„]~ ) I . ~
+—

+ [2( [b r b gN ]~ ) —2 (b r(0)b g+ (0) ) ( [N]q ) —( [b I b r ]~ )
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+2([blby&]p &
—2(b x(0)by(0) & ([X]p &

—([baby] &]

X . +1 1

P i—{i+,K) P i—(A,K—)

where the generalized self-energy X -(p) is given by
N

~„-(p)—=QMx . + . + . +2 1 1 1 1

P +l(A, +K) P +l(A, —IC) P —l(A, +K) P —l(A, —K)

1 1

P i (A—+K), P —i(A, —K)
+[(b x(0)b (0) &+(b I„(0)b (0) &]

+2+MxMy [(by(0)bx(0) &+(b y{0)bl(0) &] +
Ay P +l(A, +IC) P +l(A, —K)

I

(16)

In order to take the inverse Laplace transfo~ of {15)we need to have explicit expressions for the Laplace transforms

([b b ~] &, ([b„b ] &, etc. It is here that perturhation theory is used. In the general case the Hamiltonian for a given

problem will consist of a zeroth-order term Ho, plus a term H, which can be considered small 1n that 1t 1s proportional
to some small number. ' gn the case of the two-level atom this small number is the norm of the dipole-matrix element

i
d

i
which occurs in the M~. X-(p) has been given to 0(

~

d
~

). To have the numerator of the right-hand side of (15)
Ã

correct to O(
i

d
~

2) we need only the zeroth-order expressions for the Laplace transform terms therein. These are readily
computed via the same Procedure as was used to arrive at (15), and will give expressions of the form (12) It is clear that
the higher-order terms in the perturbation expansion can then be derived iteratively and we will only pursue the calcula-

tions to 0(
~

d
~

). Equation (15) reduces to

&[X],&"'=[p+r (p)]-' ($(0)& —gM, (bl. (0)a(o) & (b x(0)u(0) &+ +c.c. (p*~p)
P +l(A, +IC) P —l(i{,—K)

1 1+ . +
P +i(A+K) P, i (A+K—).

2(by{0)bx(0)g(0) &

M,My p+i(~+y)+& -(p)
2& by(0)bx(0) & (&(0)&

p+&-(p)

(by(0)bI, (0}& 2(b y(0)bx(0)IV(0) &

+p+I(&+y) p+i(& —y)+&-(p)

2(b y(0)bx(0) & (IV(0) &

p +& -(p)
(b ',(0)b, (0) &

p +i(A y)—
1 1+ +c.c.(p*~p }

P +l(A, +K) P +l(A, —K)
(17)

where c.c. means that the complex conjugate of the preceding terms in parentheses is to be taken and then p* replaced by
p. Note that we have replaced ([N]p & on the right-hand side of (15) with its lowest-order value [p+X-(p)] '(N(0) &.

N
Since it is the purpose of this paper to discuss the failure of the above procedure for the calculation of the higher-order

perturbation corrections, we need only consider the pure state initial condition characteristic of spontaneous emission.
The initial-state vector is assumed to be of the Weisskopf-Wigner form

i

+ww&=—
~

1&e
~

vac&=
~

1;vac&,

which gives

(o(r) & =(e""
~

o(r)
i

e""
& .
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Here
~
1}indicates that the atom is in its unperturbed upper state while

~

vac} is the free-photon vacuum. In this case
all of the ( [bbN]z }and ( [bb]~ }terms are zero to lowest order, as are the (b(0)a(0) }terms, and (17) reduces to

([N] } =[P+X- (P)] ' 1++M2— (19)
12 P +l(A, +K) P —t(A, +K)

where WW refers to the Weisskopf-Wigner initial condition (18) and the explicit expression for X- (p) is found upon
N

taking the infinite-volume limit to be

X- (p)=pJ dA, A.

P +l(A. + K) P —I( I(+K) P +I(I{.—K) P —l(A —K)

=iP 2Kln . +2' lnp —tx . p +K
p +lK p2+ g2

We have carried out the angular integrations and defined

2J d (2K'

3' (21)

The high-energy cutoff A(=m, c ) is included to avoid
divergences due to the two-level and dipole approxima-
tions (see discussion of this point in the next section). It is

readilg ascertained, by writing p =ps +ipt and separating

p +X - (p) into its real and imaginary parts, that

p +X - (p) has simple zeros for
N

give exponential decay. To 0(
~

d
~

) we would just get
1 —2I t, i.e., the first terms in the expansion of e "'. The
primary reason for using the Laplace transform technique
was to derive a generalized self-energy X-(p) in order that0
the inversion would give ihe exponential. Perturbation
theory is then applied as a correction to the exponentially
dominant result. This all seems rather obvious, yet it has
important implications for calculating the correct answers.
Since the long-time behavior of an inverse Laplace
transform is dominated by the contributions near the

p = —2I = 2KPn— (22)

and for p =+i(A+5), 5 &&A. We ignore these latter two
poles in what follows (see discussion in the next section).
There is, in addition, a branch cut from p = —i A to p =i A

along the imaginary axis. We must therefore perform the
inverse Laplace transform according to the contour of Fig.
1. We will not give the details of the calculation here, as
an analogous calculation is performed in the next section,
but we will just state the result, valid for times t »K

(N(t) }ww 2It2—~ 'cosKt +g(t —3) (23)
eve t

The first term is the standard Weisskopf-Winger natural-
lifetime exponential decay, while the second term is the
non-Markovian, long-time tail which comes from the
branch cut in Fig. 1 and which is expected on general
principles as discussed below. We also note that the very-
short-time, t «~ ', behavior is highly nonexponential.
As alluded to in the Introduction, it is clear that (23) can-
not be a correct description of the decay for times
t »(2I ) ', since the dominant long-time behavior
—cos~t jt, will, for certain values of t, give a negative

number for (N(t)}. This is impossible because (N(t)}
must be a positive, real number between zero and one.
This problem has been pointed out previously in a master
equation approach to the same model. It is important
that the result (23) also occurs when the "rotating-wave
approximation" is made and therefore has nothing to do
with "persistent perturbation effects. "' lt is also not an
artifact of the high-frequency cutoff since the troublesome
term comes from the branch cut and branch cuts of this
form will be present in any dissipative system.

The origin of this difficulty can be understood by not-
ing that the procedure used to derive Eq. (19) is not
straightforward textbook, perturbation theory —in fact, it
is obvious that a naive perturbation calculation will never

FIG. 1. Contour for inverse Laplace transform for calcula-

tion of {g(t)) using Eq. (19).
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imaginary axis (i.e., the branch cut—any terms in the
left-hand plane give exponential decay} we see from (19)
that for p =0 the denominator [p+X„(p}] is of
0(

~
d

~
). Therefore, the attempted perturbation expan-

sion is certain not to converge near the origin. This is not
too surprising —we know from the theory of Laplace
transforms that the inversion of convergent series is often
not convergent. ' This problem of convergence does not
occur for operators such as a for which [0(t) Hp] &0.
Near p =0 the denominator will look like [iE-+X-(0)],0 0
which is 0(

~

d
~

), and therefore the perturbation expan-
sion will be reliable. Another way of gaining some insight
into this problem is that for E-=0 there is no natural en-0
ergy scale with which to compare p. Such a situation
often signals the breakdown of a perturbation expansion.

We can conclude that the standard method described in
this section will fail to give correct higher-order terms
whenever the operator, of which one is calculating the ex-
pectation value, is such that

LpO(t)=[O(t), Hp] =0 .

This criteria applies to Liouvillian Greens-function ap-
proaches and for master equations it implies that the diag-
onal elements of p for decaying states will be incorrect.
Since this problem only occurs for long times, very short
times, and/or higher-order terms, previous calculations re-
stricted to intermediate times and lowest order are correct.

The nonexponential decay at both short and long times
found above is a well-known consequence of the Paley-
Wiener theorem for Fourier transforms and is not just an
artifact of our two-level model. Nonexponential decay is,
in fact, a general feature of any quantum system. ' ' To
prove this we need only require a complete orthonormal
basis set and that the Hamiltonian have a spectrum which
is bounded from below. Nonexponential decay is of obvi-
ous relevance to the theory of nuclear decay and the
asymptotic time development for partial-wave scattering
as well as resonance decay in simplified models has been
studied. These calculations use a pure-state Schrodinger
approach which, as discussed in the next section, does not
have the problem of nonconvergence of the perturbation
expansion. Nonexponential decay is also known to be a
feature of nonequilibrium statistical mechanics. '

There are, at present, many differing views on how to
formulate the theory of decaying systems and, in particu-
lar, the meaning of nonexponential decay. It is known
that the asymptotic behavior of a decaying system expli-
citly depends upon the initial conditions whereas the ex-
ponential term is a characteristic of the particular decay
which, however, can depend upon environmental contribu-
tions when one has a mixed-state density matrix. For ex-
ample, the lifetime and level shift of the two-level atom in
a radiation bath at nonzero temperature depends explicitly
on the temperature. This has led several investigators to
try and formulate a theory of decaying states in which a
physical state decays only exponentially. In order to do
this, the consequences of the Paley-Wigner theorem must
be circumvented. Two interesting methods are the rigged
Hilbert-space approach to quantum mechanics and the
physical particle picture of Prigogine and the Brussels
School. The rigged Hilbert-space formulation avoids
nonexponential decay by using a different Hilbert space

than the usual one (but the nonexponential terms will, in
general, show up as background contributions which de-
pend upon the state preparation). The physical particle
picture involves a nonunitary ("star unitary") transforma-
tion which explicitly breaks time-reversal invariance to re-
late the usual observables to the new "physical" observ-
ables. The reader is referred to the literature for more in-
formation on these and related ideas. ' ' Here we shall
only point out that the aforementioned problem of having
a nonconvergent perturbation expansion is a general
feature of any method which uses a Heisenberg
equations-of-motion approach or any variation of this and
the solution described in the next section is of general ap-
plicability.

III. IMPROVED HEISENBERG
EQUATIONS-OF-MOTION APPROACH

The solution to the problem we found in the previous
section is contained in the observation made there that the
Heisenberg equations-of-motion method (and variations)
will give a convergent result for operators which do not
satisfy (24). In this section we formulate a new method,
applicable to arbitrary ensembles, which is based upon this
observation and apply the new method to the second-order
calculation of (N(t)) . The validity of the mathemati-
cal model of the two-level atom which we have been using
and some interesting calculation techniques are also dis-
cussed.

Instead of calculating

(N(t) )WW ( qgww
i
N(t)

i

qIWW)

as in Sec. II, what we propose to do is first calculate
a(t)

~
4 ) using the Heisenberg equations-of-motion ap-

proach and then multiply this by its Hermitian conjugate
(4

~

a (t) in order to get a convergent answer. Since
we are multiplying a state vector of modulus less than or
equal to one by its Hermitian conjugate, it is clear that the
resulting answer will be a real, positive number between
zero and one, thereby circumventing the problem of Sec.
II. To extend this procedure to arbitrary operators and
arbitrary density operators we proceed as follows. In gen-
eral, for an operator 0 which fulfills Eq. (24), we will be
able to write it as a product of two operators A and 8,
0=AB, such that neither A nor B fulfills (24). If this is
not possible, an alternative, but more difficult, method
would be to repartition the original Hamiltonian H into
H p+H ' where [0(t),Hp] &0. However, perturbation
theory would then probably not be easily applicable. As-
suming that such a product can be found, we wish to corn-
pute

(O(t)) =Tr[pO(t)]=Tr[pA(t)B(t)] .

From the defining properties of density operators (assum-
ing the usual mathematical apparatus of complete sets,
etc.) and in particular since p is non-negative, we have
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p=g I
q„)p„(+„

I

Z =+&a(1+—,'e-"~) . (31)

g I

q', )P.' '&p.
I

/2w ]/2 t~ ]/2 it ~ J/2
p p ) &p j p (26)

Equation (25) can now be rewritten as

Tr[pA(t)8(t)]=+(4;
I
pA(t)B{t)

I
+;)

= g(q, I p '"~(t)
I
q, )

x (q „ I
s(t)p '"

I
q', ),

which is applicable to any initial-condition density opera-
tor p. A simple example is that of equilibrium at tempera-
ture T where

which is obviously the same as calculating
('k

I
a (t)a(t)

I
4 ) as proposed earlier. Using the

equations-of-motion twice and taking the Laplace
transform gives

[ ], I
q"'"&=[p+ +~."-"{p)l-'

2M'
x I

0'vac&+g .~ I
1;~&+O(

I
d

I

'),
P —l

where
I

1;A, ) =a t
I
0)@b q I

vac) and

X- (p) =2Pp f dA,
p 2+p 2

=pP[ln(p+iA)+ln(p —iA) —21np] . (29)

The 0( I d
I ) term is orthogonal to (0;vac

I
and does not

contribute at second order. It is easily verified that
p+iA'+X; (p) has three branch cuts, p =+i A —x and

p = —x for x =Oooo, and three poles: one which gives
decay

—H /2k~ T, —H /ka T
~ ) /2

p =e /(Tre

The matrix elements in (27) can be computed using an ob-
vious variation of the Heisenberg equations-of-motion ap-
proach of Sec. II, and then the resulting sums (integrals)
over the intermediate states computed. The method embo-
died in Eq. (27) is new, as far as the author is aware, and
should be of general applicability to many-body systems.

For O(t) =N{t) we have

(A (t)) =g
I &e, I

a(t)P '"
I
e„ I

'
j,k

and for the Weisskopf-Wigner state (18) this reduces to

(g(t))ww y I
(qg

I
(t)

I

qgww)
I

2

I m p

I

I

I

I

I

/ I

/
~~, i{a S)I

I

IA A A A A A A A A A h A A A A h A A A A A A A A A A A A 4 a/VVVVVVYVVVVVVVYVVVVVVVYVVVYV '
g Ill

Ir I

/ I

I I

I I

II,
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The inversion integral is given by the contour of Fig. 2.
5, as has been previously noted, is an improved version of
the Lamb shift which is only logarithmically divergent. '

If we had not included the "counter-rotating-wave" terms
b a and b a in the Hamiltonian (1), b, would have been
linearly divergent and a second decaying pole proportional
to A could have arisen for certain values of the parame-
ters. The two imaginary poles p+ give rise to a nonde-
caying, nonergodic contribution to the decay ' which is
an artifact of the dipole approximation and use of a high-
frequency cutoff A. In a more realistic model of a decay-
ing system (the hydrogen atom, for example), the interac-
tion matrix element Mx in (3) is replaced by a Yukawa-
type form factor which provides the necessary high-
frequency convergence and there are no poles on the ima-
ginary axis. The two-level model is sometimes criticized
as being unphysical due to the occurrence of the p+ poles.
A simple computation of the residue at these poles gives
R+ -e' 'e ' /2P. Using reasonable values for lifetimes
and frequencies appropriate to excited atomic states gives

—1O'P=10 and R+ =e ' =0 which shows that these pole
contributions are completely negligible. The branch cuts,
on the other hand, arise in any model of a decaying system
and are not an artifact of our approximations. They in-
fluence not only the long-time behavior, but also, as will
be shown belo~, the very-short-time behavior.

Instead of actually computing the inverse Laplace
transform via the contour of Fig. 2, it is simpler to rewrite
(28) using

A
pD= i(a6) —I, .—b, —:2—APln —,I =APn.

K

and two on the imaginary axis

(30)
FIG. 2. Contour for inverse Laplace transform for calcula-

tion of [a]~ I P ), Eq. (28).
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[p+i'+r."-"(p)]-'=[p+i(~—a)+ r+ [r."-"(p)+is—r] I-'

1 X; (p)+ib, I—
+p+i&+r (p+ix'+I )

(32)

where K —=K —A. This is justified since we have shown that the poles p+ are ignorable —the expansion (32) only picks out
the pole pa and the three branch cuts. The necessary inverse Laplace transforms can now be computed exactly to the or-
der desired.

For the term in(28) with ~0;vac} we need

+ 2P PD —(P —PD)

It is easily verified that this gives

(P —PD}'

(p)

(P —PD}'
(33)

e +(1 iA)te — (te )e—W '[X; (p)],
where

'[X; (p}]= (cosAt+At sinAt —1)
2

(34)

(3&)

and e in (34) means to take the Laplace convolution. Evaluating the necessary integrals as in Appendix A and some tedi-
ous algebra gives for the convolution term in (34)

—2p 1 tpDe E~(p—Dt) cosAt+ e— [(pD—+iA)E, ((pD+i A)t }+(pD—iA)E~((pD i A)t }]—
2

2 2i A pat PDt p, PD+ A
te [E,((pD+iA)t) E'((pD —iA)t)]+— e ln z

—e E'(pDt)
2 PD

pat
A

PDt p2+A2
+ [E,((p +DiA)t)+E~((pD —iA)t)]+ z 2 (AcosAt+pDsinAt) —

z z +e ln z2 A +pg) A +pD PD
(36)

where E~(z) is the exponential integral given in Appendix A. Remember that (36) will be added to the other terms in (34)
and then multiplied by the complex conjugate. For t=0, (36) is zero, while for times t «A, (36) is highly oscillatory
with every term being important. For A '« t «K ' the terms with A in them either cancel or go as powers of
(At) '«1 and can be dropped. Once t »~ ' we can use the asymptotic expansion for E'(z), (A3), to express (36) as

2 PDt. P tDIte +—ihteat
iF 5 pate D

K K
(37)

Returning to the second term in (28) we have

Mg iA, t PDt~-' 2+ ~
I;X) =2+~, . + .

~
I;'}.

P t P PD g l —PD PD l

The second-order contribution to (N(t) } resulting from (38) is

(38)

T

A Q,t ~ pat
P dAA,

0 g+ lpD g+ AD

le
~ —ik, t

A, —lpD

patle

k —AD

=(1+e "')pin —+ IpDe '[E&(pDt) —E&(it( —ipD+A))]+pDe "'[E&(pDt) —E'( it(ipD+A))]-2F

+PD[E'( PDt) E~( tt( t—PD+A—}}]+—PD[E~( PD—t) E~(it(tPD+—A))] I—, (39)

which is zero for t=0, while for t »K ' gives

2r, )~1
A 2pe 'cos~'t

t'(~'+I ')
Combimng (34), (37), and (40) we have for t »K

(40)

(N(t)} = +e ' ' 1—
2K 2K

2I e 'cosK't 4I
t K~ + K't' (41)
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+o(l d l') (42)

and (N&=b, /2a. in this state. It is doubtful that the
correction terms to the purely exponential decay of (41)
are measurable in that they do not become important for
excited atomic states until times on the order of 50 life-
times. It is possible that such correction terms are ob-
servable for other many-body systems and it is important
that the present method gives convergent results. Also,
the calculation in the next section is an example of a prob-
lem where the incorrect result using the method of Sec. II
is apparent in the lowest relevant order.

IV. SPECTRAL LINE SHAPE DEFINED
BY TWO-LEVEL —ATOM DETECTOR

Standard definitions' of spectral lineshape are usu-
ally given in terms of current-current correlation functions

( J(r, t) J(r ', t')
& or dipole autocorrelation functions

(d(t)d(t') & and derived using assumptions which are, in
general, of questionable validity. Perturbation theory in
the form of "Fermi's Golden Rule" is used and the cou-
pling between radiation sources and the electromagnetic
field ignored. ' These definitions are, at best, semiclas-
sical, and it is important to investigate their applicabili-
ty. Any correct derivation of a general definition for
line shape must certainly include a fully quantum-
mechanical and qualitatively reasonable model for the pro-
cess of detection.

A particularly useful and fairly simple model for a
detector is that of a two-level atom which interacts with
radiation as in the Hamiltonian (1). ' We measure the
degree of resonant excitation of the detector by allowing it
to have an adjustable frequency v. For a completely
quantum-mechanical calculation, the source of radiation
must also be explicitly included in the total Hamiltonian.
In this section we calculate the line shape defined by the

The last term in (41) is 0(
l

d
l ), and since we have not

included other contributions to this order, it does not
represent the true 0 (

l
d

l
) contribution.

It is interesting that the improved answer (41) has the
same cos(at)/t2 dependence as did (23) except modified by
e '. The result (23) also did not include the line shift 6
in cosat; whereas (41) has cos(a.—b, )t. We can conjecture
that the method in Sec. II picked out just the first term in
the expansions of e ~' and cos~'t, and that higher-order
terms in the perturbation theory of Sec. II would give the
higher-order terms in the expansions of e ' and cos~'t.
It is important to notice that as taboo, (N(t)& does
not go to zero, but rather it approaches 6/2~. The reason
for this (not usually mentioned in the literature because
the rotating-wave approximation is made) is easily ascer-
tained. N(t) does not have expectation value zero because
the interacting ground state for the Hamiltonian (1) is not
the product of the two free-field ground states:

l
0&

l
vac &. The excited state (18) will decay away to the

true ground state which, using standard perturbation tech-
niques, ' is

Mg
l
ground state) =

l
0;vac &+i g l

I;k &
A, +v

time-dependent spectral response of a variable-frequency,
two-level atom detector to the spontaneous emission of a
two-level source atom. The sort of experimental situation
we have in mind is that of photon-counting or microwave
detection by a variable-g cavity. One could easily general-
ize the following to include a reservoir of two-level atom
detectors with the corresponding increase in difficulty of
calculation.

The Hamiltonian for our model is

H =Ho+H ',
Ho vd d——++a ta+ g yb yby,

y

H ' =i Q My(by +b y)(a a t—)
y

(43)

Dy —— 2"
vd e~

yQ ky'

where d is the detector transition dipole-matrix element
(assumed real). In order to simplify the calculation we
shall assume, as described in Appendix 8, that the detec-
tor is along the z axis, in the radiation zone, and that the
dipole-matrix elements of both the source and detector
atoms have components only in the x direction. We define
the spectral line shape to be (ND(t) &

= (d (t)d(t) & which
is the probability that the detector atom is in its excited
state at time t. We shall choose the initial condition such
that the detector is in its ground state at i=0.

Since [ND(t), HO] =0 we have the case discussed in the
previous two sections and if one calculates (ND(t) & by the
incorrect method of Sec. II, the resulting answer has the
same problem discussed there of becoming negative for
certain large times. We therefore proceed as in Sec. III to
calculate d(t)

l f & where
l P & is now defined to be

(45)

I
4" &=—I0D, Is,vac&—=

I
oD&

I
ls&

I
vac& (46)

where the subscripts D and S refer to the detector and
source atoms, respectively. It is clear that since we are
describing the detector fully quantum mechanically, the
detector atom will have a natural lifetime and will there-
fore decay. This decay must be assumed to be much
slower than that of the source atom in order to properly
describe the detection process. We therefore assume that

l
d '

l « l
d

l

and keep only the lowest relevant order in

powers of
l

d '
l

in the subsequent calculation.
Applying the Heisenberg operator equations of motion

(5) twice, using the Hamiltonian (43), and taking the La-
place transform (8) gives

+i g Dy(bye y +b ye
y )(d d)—

y

where d and d are the Fermi lowering and raising opera-
tors for the detector which satisfy

[d,d ]+——1, d =(dt) =0,
(44)[d &]—=l.d ~]—=[d» 1—

=[d,b y] =0,
v is the variable frequency of the detector which is as-
sumed located at ro with the source atom at the origin,
and



28 IMPROVED HEISENBERG EQUATIONS-OF-MOTION APPROACH. . . 195

p+iv+ AD& + [d]~
1 1

P +~X P —~7

—lk ro

=d(0)+ AD& . [2hz(0)ND(0) —bz(0)]+H. c.(p*~p)
P +lg
—lk T'p

+ gDzMz (2[aND]z —2[a ND]~+[a ]~—[a]~)+H.c.(p ~p} (47)
P +Lg

It is clear from (47) that we need self-energy representations (12) for [aND]~, [a ND]z, [a ]z, and [a]z', however,

[aND]~ ~ @ & and [a ND]z ~ P & are 0(
~

d
~

) and can be dropped. [a jz ~ P & and [a]~ ~ @ & are given by [see
(28)]

~
OD, Os', vac & IOD ls'~&

[a] ~P = ' + M
p+iir+X; (p) x (p —iA, )[p+ia+X; (p)]

[ ] ~@ww&WW ~

OD', ls, A, &

(p —l A )[p +LK+ X y (p)]

where

&;& (p)=[&; (p)]*
~

+ ——&; (p)

by (29). Equations (47) and (48) give

[p+&&+&; (p)][dj, l 0

—IkyT0 e "
~
OD;Os, vac&= —XDr . IOD ls'y&+ QDrM,

p —iy z (p —iy)[p+is+X; (p)]

e "
~
OD;Os, vac &

(p+'y)[p+' +&; (p)]

(48)

e
—lkgPp

1 1™~r . ww ww I
OD ~ Islay &

Ay (p+«)(p —~y) p —«+&- (p) p+i~+x; (p)

lkgP0
1 1+ ww ww I OD&&s&y&

(p lk)(p ly) p +lK+ X (p) p —LK+ X (p)
(49)

~e shall make a further simplification in that we will only calculate the lowest-order contributions to (N (t) &ww and
basically ignore the highly oscillatory, short-time behavior. This allows us to replace [p+iv+p- (p)]
[p +ia'+&; (p)] ' by their first term in the expansion (32), and (49) reduces to

D S k~ro

[d], I
0""&= —g, .„„.' '„,+ gD&M&

P —E P+lv+ D p —lk,

A, "0
I
oD Os vac&

p + i) (p +~~+rs )(p +iv+ rD )

DgMgMr 1+ p+iv+r (p+i&)(p iy} p i—a+I s —p+ix+rs

k 0
1+

(p iA, )(p iy)—p+—i~+ I s p is+I s—OD, islay& ~ (50)

where ~ and v now represent the line-shifted frequencies ~—hq and v —ha, respectively. The first term on the right
hand side of (50) represents the self-energy of the detector. This term times its Hermitian conjugate gives a contribution

(ND(t) & =pD (1+e )ln ——2e [ci(At) ci(vt) cosvt+—vtsi(At) ——vtsi(vt)]. (51)

where the sine and cosine integrals, si and ci, are given in Appendix A and where

2
I

d '
I

'2
3m.

(52)
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For t=o, (51) is zero; however, for I D '» t»v '»A ' its value is (ND(t))t„~t =AD/v or twice its interacting
ground-state value. For t » I D ', the detector returns to its ground-state value of AD/2v. Since we are only concerned
with times t « I D, AD/v sets a lower limit on the observability of the spontaneous emission.

The important contribution to (ND(t) ) comes from the second term in (50), which, using the results of Appendix
B, can be rewritten asI 2ig

I
OD;Os;vac)

dg singro
ro (p'+rt')(p+t~+I s)(p+iv+I D)

i pere
"

I
OD'Os, vac &

ro (p+t&+I's)(p+tv+I'D) ' (53)

where P—:(PDPs)' and where we have extended the integration from A to oo, which has the effect of suppressing tran-
sients which occur for times on the order of A '. Taking the inverse Laplace transform of (53) and multiplying by the
Hermitian conjugate gives

wW PSPDB(t ) s —2~a~ —{I&+pa]gWW cos(K —v)t ],o[(.—v)'+(I., I- ) ]
(54)

where t=t —ro and e(t) is the {theta) step function:
B(t)=1 for t&0 and B(t)=0 for t&0. Before discussing
(54) let us turn to the other terms in (50) which could con-

tribute to (ND(t) ) to 0(
I

d
I I

d '
I

). The third set
of terms in (50), when multiplied by the Hermitian conju-
gate of the first term in (50), looks like

o(
I

d
I

'
I
d '

I

').(oD; I„y
I
oD; I,;~)

and will contribute when y=A, . It can easily be shown
after doing the necessary (tedious} integrations that the re-
sulting contributions are unimportant. They are either
proportional to [(lr+ v) +I s ]—a nonresonant
denominator —or sre proportional to higher powers of ro "
for n & 2, which we ignore since we are in radiation zone,
or have terms which can be shown to be very small in the
limit v~x (and also very small otherwise).

Equation (54) therefore gives the time-dependent spec-
tral line shape for the spontaneous emission of a two-level
atom. Since we are interested in the case I D « I z, we
can rewrite this, valid for tI D « 1, as

B(t )PsPD

ro[(a —v) +I s]

X [1+e —2e s cos(s.—v)t ] .

(55)
We have the characteristic inverse square law intensity
and the B(t) maintains causality —the detector does not
turn on until the radiation has reached it at t =ro. It is
important to note that the line shape is not the usual
Lorentzian which is given in the standard semiclassical
derivations. (ND(t)) does give the usual I.orentzian
for times such that I q

' « t « I D',. however, its behavior
for shorter times is much more interesting. There are os-
cillations in the wings which come from the cos[(l~ —v)t]
term, where sc and v are the line-shifted frequencies. Ac-
curate time-dependent photon-counting experiments
should verify this phenomena, assuming, of course, that
ours is a reasonable model for photon detection. It is also
clear that for v-a, (55) is greater than (51) for the times
of experimental interest.

V. DISCUSSIGN ANI3 SUMMARY

We have shown in this paper that the standard Heisen-
berg equations-of-motion, Liouvillian Green s-function,

and master equation methods for computing expectation
values of physical observables can give incorrect results at
higher orders in the usual perturbation expansion for
operators which commute with the free or zeroth-order
Hamiltonian. The improved Heisenberg equations-of-
motion method, formulated in Sec. III, whereby the origi-
nal operator 0 is first rewritten as a product of operators
0 =3 B, and then the matrix elements of p

' 3 and
Bp

' are calculated, has been shown to give convergent
answers and to be applicable to pure-state, equilibrium,
and more importantly, nonequilibrium systems. Calcula-
tions using the model of a two-level atom interacting with
electromagnetic radiation were presented to give an expli-
cit example of the utility of the present approach.

The definition of time-dependent, spectral line shape in
terms of a two-level —atom detector was discussed in Sec.
IV. Some important variations of this calculation would
be to take the initial condition to include a coherent state
for the photon field, to add a classical source term to dis-
cuss the time-dependent resonant fluorescence and the
limits of using classical sources, and to investigate more
complicated ensembles such as finite temperature. In
some interesting papers, Eberly et al. ' have also inves-
tigated the question of giving a more physical definition of
spectral line shape. They employ a standard definition of
photon-counting rate, but they also argue that any mean-
ingful definition of spectrum must take into account the
physical process of filtering the incoming signal to the
photodetector. They include the filter phenomenologically
by convolving the filter response with the incoming radia-
tion field —this is analogous to the tunability and natural
lifetime of our two-level atom. Although the emphasis of
their work is quite different than that of this paper, it is
interesting to note that their semiclassical calculation of
the "physical spectrum" of spontaneous emission gives a
spectrum equivalent to (54), where instead of I D
representing the natural lifetime of the detector, they have
the full width of a Fabry-Perot interferometer. One can
conclude from this that in a real experiment, the actual
detector response will be a complicated convolution of
both the filter response and the detector response. This is
in many ways similar to analogous problems in electrical
engineering.

Finally, it is important to emphasize that even though
we did not apply our formalism to any nonequilibrium ex-
amples, the improved Heisenberg equations-of-motion
method has been formulated so as to apply to any arbi-
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trary statistical operator p. This is the major advantage of
our method in comparison to the simpler temperature-
time Green's-function techniques. The more elegant
Liouvillian Green's function and self-energy approach,
which is expressly designed to apply to nonequilibrium
systems, can now be suitably modified along the lines of
Sec. III so as to give correct results. This is particularly
important in that the environmental contributions which
we treated in a somewhat ad hoc manner in Sec. II are
dealt with in a very natural and consistent manner in this
approach.

31 5'I 7!
g (z)-—1 ——'+ —' ——'+

Z2 Z2 Z4 Z6
(Al 1}

The method used for calculating the convolution in-
tegral in (34) is to rewrite sine and cosine in terms of ex-
ponentials. This gives integrals of the form (A1), where,
for integrals with t " for n & 2, integration by parts is per-
formed. The integrals needed in Sec. IV either give loga-
rithms or can be written as the sine and cosine transforms:
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f dA, =f[( v+—iy)a]

=f [(v+t y)a]

+ +i (vViy)a (A12)

APPENDIX A: FORMULAS NEEDED
FOR CALCULATIONS

The following formulas are used in the text. They are
listed for convenience and taken from Ref. 41. The ex-
ponential integral is defined by

oo

E)(z)= f

f dA, . =g [( v+i y—}a]
0 A, —v+1 p

=g [(v+i y)a]

pi(vTiy)a (A13)

and has the series expansion

( 1)n n

E((z)= —y —lnz —g nn!

and the asymptotic expansion

(A2)

sinA, a
dk, = f(va)+m c—osva,

A, —v

cosA, a
dA, =g (va) —n sinva,

A, —v

(A14)

(A15)

—ZeE)(z)- 1 1~2 1X2~3
1 ——+ +

Z Z2 Z3 where v is real and Rey& 0.

(A3)

where y is Euler's constant, y=0.57721. . . .
The sine and cosine integrals are given by

~ ~sint
dt = —si(z) = —Si(z)+—,

z 2
'

f dt = —Ci(z)=ci(z), arg
~

z
~

&rr
z

with series expansion
oa

( 1}n 2n+1
Si(z) =

0 (2n + 1)(2n + I )!

ao
( 1 )nz2n

Ci(z)=y+lnz+ g
The auxiliary functions f (z) and g (z) are gi&e»y

f (z) =Ci(z)sinz —si(z)cosz,

g (z) = —Ci(z)cosz —si(z)sinz

and have the asymptotic expansion

(A4)

(A5)

(A6)

(A7)

(A9)

APPENDIX 8: GEOMETRY FOR TWO-LEVEL
DETECTOR (REF. 38)

g ex'd eg'd '=
~

d
~ ~

d '
~

(1—sin gcos P), (B1)

where r, 8, p are the usual spherical coordinates. ~e
choose the detector atom to be located at r0 ——r0z where
the source atom is at the origin. The resulting angular in-
tegrals are

f dg f dosing(1 —sin2gcos P)e
7r +ir yCOSHdg(2m. sing —m sin 8)e

0

For ease of computation we choose

d=
)

d /x and d'=
/

d'/x,
where d and d ' are the transition dipole-matrix elements
(assumed real) for the source and detector atom, respec-
tively. The polarization sum which arises in (50) in the in-
teraction terms simplifies to

1 2f 4! 6~f(z)-—
Z Z Z

(A10)
If we let u =cosg, (B2) reduces to

(82)
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1
22rr f du (1+u )cosroru

0

sinr0p cosl'0p sinr0y
=4m' (B3)

'or «or)' «or)'

where y is the relevant photon energy. The latter two
terms in (83) contribute only in the near zone. Since our
calculation is for the radiation zone these terms are
dropped.
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