
PHYSICAL REVIE% A VOLUME 28, NUMBER 3 SEPTEMBER 1983

Effect of screening on exchange effects for an inhomogeneous
electron gas at finite temperatures

P. V. Panat and R. E. Amritkar
Department of Physics, Poona University, Pune 411 0-07, India

(Received 28 December 1981; revised manuscript received 8 September 1982)

Recently, Gupta and Rajagopal [Phys. Rev. A 21, 2064 (1980)] have calculated
thermodynamic-exchange energy and potential in an "exchange-only" approximation and later
calculated the correlation potential exactly within the random-phase approximation [Phys. Rev.
A 22, 2792 (1980)]. In this paper we estimate the effect of screening in an approximate way.
The formula obtained for the correlation potential is shown to be the product of two functions,
one being that of density and the other being that of dimensionless temperature. The calculated
values agree reasonably in the intermediate degeneracy region and are good at higher tempera-
tures and densities, It is shown that the specific heat for the system can also be expressed in

terms of the same parameters and the ( T/ln T)-type divergence disappears.

The density-functional approach of Hohenberg and
Kohn has extensive applications for the zero-
temperature ground-state properties of inhomogene-
ous electron gas systems. ' The finite temperature
generalization of the density-functional theory is due
to Mermin2 and it could have an interesting applica-
tion in laser fusion theory. For this, one needs a
form of exchange and correlation potential. Recent-
ly, Gupta and Rajagopal have calculated the ex-
change and correlation potentials as well as the ther-
modynamic potentials for an inhomogeneous electron
gas at finite temperatures. The same authors have
discussed in detail the effect of screening on an im-
purity embedded in hot electron gas in the intermedi-
ate degeneracy region. ' It is observed that in
"exchange-only" approximation' one has t = T/TF,
where T is the temperature and TF is the Fermi tem-
perature, as the convenient variable, whereas to cal-
culate the correlation potential one needs two out of
the three variables, namely, t, T, and n, where n is

the density.
The use of a Yukawa-type potential to study the

correlation effects has a long and honorable history. 6

%e have utilized a Yukawa-type potential' where the
screening constant, which is related to the proper part
of the polarization progagator, is evaluated for dif-
ferent temperatures and densities. To establish the
notation, we write the thermodynamic potential
Q(n, T) as

Il(n, T) = Ao(n, T) + II,„(n, T) + II,(n, T)

where Ao(n, T), A,„(n,T), and Q, (n, T) are the
contributions to the thermodynamic potential due to
kinetic energy, exchange, and correlation, respective-
ly. The exchange contribution is already evaluated in
Ref. 3 where it is shown that A,„(n, T)/A, „(n,0) is
purely a function of t and hence is universal. The
random-phase approximation (RPA) contribution to
correlation potential is given by7

I

dynamic potential per unit volume aswhere we have used the notation of Ref. 7. This
quantity has been evaluated numerically in Ref. 4.
However, in this exact numerical evaluation the
dependences of 0,( n, T) on density and temperature
are not transparent. Here we show that if one makes
the Yukawa-type screening approximation, one gets
an almost closed-form solution for A„(n, T). To this
end we retain only the zero-frequency term in
Iital(q, v„) and take q 0 limit. Equivalence of this
approximation to the Yukawa-type screening is dis-
cussed by Gupta and Rajagopal' in connection with
the plasma screening effects. Using this approxima-
tion, the angular integration in Eq. (2) is easily car-
ried out and we get the correlation part of thermo-

1

a k
ln 1+

q

akF-22 2

2 q dq
ATA, (n, T) =
4m

(3)

where

a2= —4sre211( (q ~0, v=0)/k+2

4 " dx
7TQpkF + p ex I& —+ g

(4)

and we have used the dimensionless variables
t = T/Tt: and a = p/ktt T. Here ao is the Bohr radius.

Q, (n, T)=, ~ d q X (In[1 —V(q)llt l(q, v„)]+V(q)II(ol(q, „))
2P 2m "n
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The integration in Eq. (2) is immediate and gives

Q„(n, T) =— a kF
k~T
12m

By using n and t as independent variables, the above
expression can be rewritten as

'1/6

ytI, r n
N n.

where

I)=
x /t —a+1

As has been sho~n in Ref. 3, n depends only upon t
through a normalization condition

2 3/2 Jxdx
3 g 0 ex —a+1

Thus we see that Q, (n, t)/Nis split up into the prod-
uct of two distinct parts, one involving only t and the
other involving only n.

Taking the functional derivative of Q„(n, t)/Nwith
respect to the density n, we get the form for correla-
tion potential V, (n, t) as

]/6 t r *

2

V, (n, t)= — tIPI2 n'/', (8)

Woo x /t —a2

I2= e dx
(ex /t —n+1) 2

This is expected because we are completely neglecting
the dynamical effects by retaining only one term in
the frequency sum.

We have made the detailed comparison with the
exact numerical calculations in RPA of Gupta and
Rajagopal and our results are shown in Table I. As
expected, the correlation potential is overestimated in
the present approximation. It is seen that for 1arge I;

and high n the agreement is very good. The low t
values are as much as 1000/0 off from the correct
values. However, at low temperatures, exchange
predominates over correlations and hence the effect
of correlation is expected to be small. This is clearly
seen from the total value of the exchange and corre-
lation potentials denoted by the suffix xc [e.g. ,
Q„,(n, t) = Q,„(t)+ Q, (n, t)] and given in Table I.
The contribution of the exchange part to Q„,(n, t)
and V„,(n, t) depends only on t and is taken directly
from Ref. 3. Figures 1 and 2 show the behavior of
Q„,(n, t)/Nand V„,(n, t) for different values of T. It
is seen that in the intermediate degeneracy region the
total value of the exchange-correlation part does not
differ from its exact counterpart by more than about
5 to 10'/0.

We employ the same approximation to calculate
the specific heat of the inhomogeneous system. As
shown by Garrison, the effect of screening on
specific heat is rather drastic. We therefore decided
to see the behavior of specific heat at different tem-
peratures. To evaluate the specific heat we use the
expression, due to Bardeen, as

Cxc h kp'

Cp m(Be„/Bk) „

t'/2I. , —
dI;

where

2 y/t —a2

"0
( y/t —n+1)2

(10)

where C„, is a specific heat of interacting electron gas
and Co is a corresponding specific heat for a nonin-
teracting system.

Here ~k is a single-particle excitation spectrum. If
V, (k) is the screened Coulomb potential, given by

V(k) 4%e
k —4 e2 ''(k, 0)

Since I2 and I depend only on t, we see from Eq.
(8) that V, (n, t), like Q, (n, t)/N splits into the prod-
uct of two distinct functions of t and n, respectively.

It is easily verified that the equations for
Q, (n, t)/Nand V(n, t) reduce to the correct high-
temperature limit. 4 8 For the low-temperature case,
our results do not reproduce the correct behavior.

we write'

f2k2 —X V(lk —k'l)f(e )
2m k

k

where f'(ek) is a Fermi function. By using Eq. (3),
Eq. (11) can be transformed into the "t"variable as

t

1+~iy
C„4~apkF "0 e +1 (1+/@) +a

1 —~gy
(1 —Jty )'+a'

dy
1

(I+~ty)'+a'
e n+I (1 —Jy) +a

(13)

As shown by Garrison et al. , the Yukawa-type screening approximation that is used here gives reasonably good
values of Cp/C„, at T=O. We therefore expect that, for specific-heat calculation, Eq. (13) may not be a bad
approximation over the entire temperature range.



28 COMMENTS 1861

TABLE I. Values of the exchange-correlation potential V„,(n, t) and the thermodynamic potential Q„,(n, t) as a function of t
for different electron densities. The correlation contributions are also tabulated. The starred values are from Ref. 4. (All ener-
gy units in rydberg. ) Subsections (a), (b), and (c) denote different values of n

fi, /—N —0, /N ft »
—/N Q„—J'N 0„—J'N —V, —V, —V» —V„~

(a) n = 102s cm 3 ( TF ——9.1 x 10s K)

0.1
0.3
0.6
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

10.0

0.308
0.807
1.134
1.201
1.130
1.050
0.976
0.911
0.857
0.808
0.769
0.735
0.531

0.350
0.704
0.976
1.054
1.022
0.963
0.905
0.853
0.807
0.767
0.732
0.701
0.530

3.479
2.812
1.988
1.386
0.987
0.762
0.620
0.541
0.464
0.403
0.358
0.323
0.161

3.787
3.619
3.122
2.587
2.117
1.812
1.596
1.452
1.321
1.211
1.127
1.058
0.692

3.829
3.516
2.964
2.440
2.009
1.725
1.525
1.394
1.271
1.170
1.090
1.024
0.691

0.160 0.281 4.794 4.954
0.565 0.532 4.475 5.040
1.122 0.959 3.488 4.610
1.431 1.229 2.574 4.005
1.494 1.308 1.843 3.227
1.441 1.291 1.480 2.921
1.368 1.246 1.214 2.582
1.300 1.194 1.084 2.384
1.233 1.144 0.924 2.157
1.175 1.097 0.806 1.981
1.122 1.054 0.717 1.839
1.076 1.014 0.645 1.721
0.790 0.792 0.323 1.113

5.075
5.007
4.447
3.803
3.151
2.771
2.460
2.278
2.06S
1.903
1.771
1.659
1.115

(b) n =10 cm (Tt;=4.2x 10 K)

0.1

0.3
0.6
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10.0

0.143
0.374
0.527
0.557
0.524
0.487
0.453
0.423
0.398
0.375
0.357
0.341
0.247

0.177
0.288
0.390
0.429
0.426
0.408
0.388
0.369
0.352
0.337
0.323
0.311
0.240

0.750
0.606
0.428
0.299
0.213
0.164
0.134
0.117
0.100
0.087
0.077
0.070
0.035

0.893
0.980
0.955
0.856
0.737
0.651
0.587
0.540
0.498
0.462
0.434
0.411
0.282

0.927
0.894
0.818
0.728
0.639
0.572
0.522
0.486
0.452
0.424
0.400
0.381
0.275

0.074
0.262
0.521
0.664
0.693
0.669
0.635
0.603
0.572
0.545
0.521
0.499
0.367

0.169
0.236
0.382
0.488
0.531
0.534
0.523
0.507
0.490
0.473
0.461
0.443
0.365

1.033
0.964
0.751
0.555
0.397
0.319
0.262
0.234
0.199
0.174
0.154
0.139
0.070

1.107
1.226
1.272
1.219
1.090
0.988
0.897
0.837
0.771
0.719
0.675
0.638
0.437

1.202
1.200
1.133
1.043
0.928
0.853
0.7&5
0.741
0.689
0.647
0.615
0.582
0.435

(c) n = 1022 cm 3 (TF= 2.0 x 104 K)

0.1

0.3
0.6
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10.0

0.066
0.174
0.244
0.259
G.243
0.226
0.210
0.196
0.185
0.174
0.166
0.158
0.114

0.086
0.111
0.141
0.158
0.162
0.159
0.155
0.150
0.144
0.140
0.135
0.131
0.108

0.162
0.131
0.092
0.064
0.046
0.0305
0.029
0.025
0.022
0.019
0.017
0.015
0.008

0.228
0.305
0.336
0.323
0.289
0.261
0.239
0.221
0.207
0.193
0.183
0.173
0.122

0.248
0.242
0.233
0.222
0.208
0.194
0.184
0.175
0.166
0.159
0.152
0.146
0.116

0.034
0.122
0.242
0.308
0.322
0.310
0.295
0.280
0.266
0.253
0.242
0.232
0.170

0.093
0.105
0.141
0.175
0.194
0.1996
0.2001
0.198
0.194
0.190
0.186
0.181
0.161

0.223
0.208
0.162
0,120
0.086
0.069
0.056
0.050
0.043
0.037
0.033
0.030
0.015

0.257
0.330
0.404
0.428
0.408
0.379
0.351
0.330
0.309
0.290
0.275
0.262
0.185

0.316
0.313
0.303
0.295
0.280
0.269
0.256
0.248
0.237
0.227
0.219
0.211
0.176
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IG. l. Exchange-correlation thermodynamic potential
0„,{n, T) as a function of t for different electron densities.
The dashed curves are drawn using values from Ref. 4.

t

FIG. 3. Variation of C„/Co with tin exchange-only ap-
proximation for different temperatures.

For small t, by using the procedure given in Ref. 11,
C~=2ln ——4 C =din —+—,C =—

2 y 3 p2' 2
Cp =1+ 1 (2+a') 1

4~apk~ a
(14) and

4e m

mh 2k' T

1/2

1+e m

Cxc 4~ 2h AT
t

x (ctt' ' —t' 'lnt + C2t —C3t lnt), (14a)

0.0

The ratio Co/C„as calculated by Bardeen is quoted
by Wohlforth' and is supposed to be valid for low
temperatures in exchange-only approximation. It is

Cp 4~ 2e kp

C„apkp- vr kg T

This result gives a singularity of the type T/(ln T) in

1.00

0,98

—4.0

-5.0—

0,94— 1 T=10 K

2 T=10 K

3 T= 10'K

t

FIG. 2. Exchange-correlation potential V„,{n,T) as a
function of t for different electron densities. The dashed
curves are drawn using values from Ref. 4.

0.920

FIG. 4. Variation of C„,/Co with t in exchange-screening
approximation for different temperatures.
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specific heat at low temperature. This should be
compared with our small t result. It is easily seen
from Eq. (14a) that, upon substitution of the value
of A, ln T divergence disappears. Figure 3 shows the
variation of C„/Co in exchange-only approximation
with t, i.e., using formula (13) with a2=0. Figure 4
indicates the variation of C„,/Co in "exchange-
screening" approximation with t. For large tempera-
tures or small densities the ratio, as expected, ap-

proaches unity in both cases. However, the effect of
screening is substantial, as can be seen from Fig. 4.
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