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Surface polaritons in nonlinear media
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It is shown that the general dispersion relation of electromagnetic surface waves propagating
at the interface of certain types of nonlinear media can be obtained exactly without first solving
for the field profiles across the boundary.

Surface wave propagation is of interest in many
branches of physics. Recently, there have been many
attempts to consider nonlinear effects of surface
waves on solid'~ as well as plasma boundaries.
Because of the complexity of the problem, usually
drastic simplifying assumptions have to be made.

Agranovich et al. ' have derived the dispersion re-
lation for nonlinear surface wave propagation at the
interface of an isotropic linear medium and a non-
linear medium having a diagonal dielectric tensor
with the components e = e~ = &p(to) + o.'I Evil,
e = e(to), where E~~ is the wave electric field parallel
to the surface, and co is the wave frequency. As was
pointed out in the paper, the results have restricted
applications even for uniaxial solids, since the form
of e„" is rather idealized.

In this paper, we generalize the problem considered
in Ref. 1 to the case in which both media are non-
linear, having dielectric tensors of the more general
form «„"=51e;,(to, lE~~l2). That is, the component e
is also nonlinear. A novel method is presented with
which the nonlinear dispersion relation for the elec-
tromagnetic surface waves (polaritons) can be ob-
tained directly from the boundary conditions without
first having to solve for the field profiles. Examples
for which complete analytical solutions can be ob-
tained are given.

We consider surface wave propagation on the inter-
face z =0 between two nonlinear dielectric media. If
both media are isotropic in the (x,y) plane, without
loss of generality, we can write, for the surface
waves,

E„,= 8„,,(z) exp( —i tot +ikx) +c.c.

By ——y(z) exp( —itot +ikx) +c.c. ,

Ey =B„=B,=O

The relevant Maxwell's equations are

The boundary conditions are

(4)

where

A($„') =e /(k' —to'e /c')

Equation (6) has to be applied separately in the
two adjoining media. It can be integrated once if the
factor A ($„2)dS„/dz is multiplied. The result, after
some manipulation, is

~g 2

e~(g)A($) dg+C (7)

where the constant C is to be determined by the con-
dition

8„=1$„/dz =0 for l z l oo

Equation (7) is in the form of a quadrature and
can therefore, in principle, be integrated for any
given e and ~ . However, in the following, we
show that the dispersion relation can be obtained
without solving (7).

Using Eqs. (1)—(3), one can write the magnetic
field in the form

where the square brackets denote a jump in the value
of the argument across the boundary. The com-
ponents e and e of the dielectric tensor are func-
tions of 8„.

Eliminating 8, and (B», we obtain the differential
equation

Comparing (7) and (8), we note that the boundary
condition (5) can be applied without solving explicitly
for 8„. Thus one gets

x z y
—ikg =i (3)

i $„2(0)
C+ e~($)A ($) dg =0
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~here the square-bracket notation has been used.
Denoting the two media by the superscripts I

(z & 0) and II (z & 0), and using (4), we obtain

p$„2(o)c'+ ~' (g)w'(g)dg

l S
CII ."(g}~"(g) dg, (10)

where we have again used the square-bracket nota-
tion.

where 8„(0)=8„'(0)= 8„"(0)is the value of the
electric field S„at the boundary, and is a measure of
the nonlinearity.

Equation (10) is the general nonlinear dispersion
relation of the surface polaritons. It relates the elec-
tric field amplitude at the surface to the frequency co

and the wave vector k.
As an example, let us consider the problem investi-

gated in Ref. 1. Here, medium I is linear, so that
=constant. Medium II is given by

e" = eo+n8„and e"= e =constant. Application of
(10) leads immediately to the dispersion relation

e' /K' = e [ ea + —,
' u8„'(0) l/K'

-2 2where 2 = k —t0 e'/c and K = k —oP e/c . Equa-
tion (11) is equivalent to the dispersion relation in
Ref. 1.

We now consider the case in which both media are
nonlinear, given by dielectric tensor components of
the form e = et +n8„, e = e2+P8„. That is, both
media are nonlinear with respect to every axis. In or-
der to obtain analytical results, we shall consider the
small amplitude limit. Thus the function A (8„2) can
be approximated by a + b8„, where a = e2/(k
—cu e2/c ) and b =P(k —to e2/c )'. Application of
(10) leads to the dispersion relation

[a et] + —,
' [bei + na ]8'(0) =0

The profile for 8„ for this problem can be obtained
by integrating (7). We obtain for each medium

—26&a

o.a —3e) b

~ g/2
' 11/2

sech
a

(z —zo) . (13)

Thus it is necessary that e~/tz ) 0 and (na —3etb)( 0 for localized solutions to exist. These conditions
can also be obtained directly from (7) by requiring its
right-hand side to be positive definite.

For fixed surface value h„=8„(0),the constants
of integration z o and z 0' are to be determined by the
boundary condition (4). Thus

zJ0

' 1/2

—2eJ)a'
(14)
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where j =I, II.
One can also verify by applying (8) to (13) that the

boundary condition (5) yields a dispersion relation
identical to (12).

To conclude, we have derived the general disper-
sion relation of nonlinear surface polaritons for
media whose dielectric tensor is diagonal and in-
dependent of the electric field component perpendic-
ular to the surface. Thus our results are particularly
applicable to surface plasma waves, which usually
satisfy E„&&E„especially near the cutoff frequen-
cies.

We have not included in our investigation a possi-
ble nonlinear modulation of the field in the direction
of propagation. Such a modulation might result in
the localization of the waves also parallel to the sur-
face. This problem is still under investigation.
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