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We show that, for the high electron currents used in present-day free-electron lasers, spontaneous radia-

tion is distributed according to thermal statistics.

In a previous publication! (henceforth to be referred to as
I), we developed a fully quantized many-particle theory of
the free-electron laser (FEL) suitable for the description of
the small signal, cold beam regime. The approach does not
contain space-charge effects. Yet many-particle effects, i.e.,
terms proportional to N,(N,—1), with N, the total number
of electrons, appeared because the radiation emitted by one
electron affects the behavior of a second electron. As a
general tendency we have found in I that in the regime of
stimulated emission, when the initial laser field (with N
photons, N >>1) is strong, the previously mentioned
many-particle contributions are negligible, i.e., leading terms
in gain and spread are proportional to NN,, as commonly
assumed. On the other hand, for spontaneous emission (no
photons initially present, N =0) many-particle effects
turned out to be very important if the electron current were
sufficiently strong. They significantly affect the spectrum of
spontaneous emission through amplified spontaneous emis-
sion and completely dominate the laser field fluctuations of
the startup, suppressing the quantum-mechanical zero-point
field fluctuations which are only proportional to N,. The
expressions derived in I for gain and spread already suggest-
ed that the photon statistics for N =0 and N, >> 1 should
be close to thermal, in contrast to the one-particle case
(N,=1) where they are well known to be almost Poissoni-
an.23

In this Brief Report, we will show explicitly that for
N, >>1 the spontaneously emitted photons satisfy, to a
very good approximation, thermal statistics. This report is
self-contained only with respect to the physical results and
underlying assumptions; for the formalism and notation we
shall refer to .

The amplitude specifying spontaneous emission of n pho-

tons while the electrons have final momenta p;(i),
i=1,...,N,, is given by
An.pl ..... pNe= <0:P1(1): cee ,pNe(Ne)
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\/;T ’ »

where S(7T/2, —T/2) is the time-evolution operator [paper
I, Eq. (10)] and the initial state

BN )Y =10, (7)) @)

describes the field vacuum and N, electrons with identical

lin) =10,p(1), . ..

momenta. The probability that » photons be emitted ir-
respective of the final momenta of the electrons is then
PN = [dpy- - - dow | Anp, .y 17 ®)
e

In order to evaluate Eq. (1) we replace* the time-evolution
operator S by its lowest-order approximation So [paper I,
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Eq. (13)], make use of the commutation relation (18a) of
paper I, and rewrite

Ne
So(T/2, — T/2) = explio(T/2, = T/2)lexp|j(T) 3, 47
im=1
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The quantity j(7) and the operator B are defined in Egs.
(17b) and (8) of paper I, respectively. We have also intro-
duced the abbreviation

Li(rP=z . %)

The integration over the final momenta of the electrons in
Eq. (3) can now be done via closure, and we obtain

pn(Ne,z)=—z—Tl——3—] F(Ne2) ©
n! 0z
where

F(N,z)=(e % | @)

and the expectation value is with respect to the initial state
(2). Proper normalization, i.e.,

S P(N) =1,
=0

is evident from Egs. (6) and (7), because F(N,,0)=1. Ei-
ther from the general expression
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or by direct inspection of the definition of B, it is easily
shown that, for N, >> 1,

n=n!l1 +0|-2|| .

(B™y=n!|l ONe]] ®
We then find

F(N,z)=(1+N,z)! (10)
and, consequently,

N.z |"
= -1 _—"ec
P,(N,,z)=(1+N,z) 1+Nez] an

This expression is the thermal statistics mentioned in the in-
troduction. The above derivation is justified whenever the
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mean number of emitted photons per electron and per
mode is very small compared with unity, i.e., z << 1 [cf. pa-
per I, Eq. 27)]. In fact, Eq. (11) is valid under more gen-
eral conditions as we shall demonstrate below.

First, we want to reemphasize the physical model underly-
ing our formalism: (1) Since we start from the Bambini-
Renieri Hamiltonian we are restricted to one fixed (though
arbitrary) mode of the electromagnetic field. Results, such
as the spectrum and photon statistics of spontaneous emis-
sion, can be summed over various modes according to the
resolution properties of the detector. However, there are no
mode correlation effects. (2) The electron beam is
described by a definite number N, of electrons initially in
identical momentum eigenstates. This implies a cw descrip-
tion of both the electrons and the electromagnetic field.
The possible consequences of a more general formulation
are discussed in Appendix C of I. (3) The direct electron-

A\ dhyo
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Here I, denotes a modified Bessel function and the opera-
tors 9/9z in a power-series expansion of I, only act on the
variable zin F(N,—1,z). Note that Eq. (14) is exact.

For N, >>1, Eq. (14) turns into a condition to be im-
posed on F(N,,z). We can now check whether or not the
previous result (10) derived for z <<1 satisfies Eq. (14).
We realize that

1/2
e P I N __z _
€ °[ z[ 3 exp[ 1+Nez]

Since the last exponential equals 1 — O(1/N,) irrespective
of the value of z as long as N,z >> 1, we take it for granted
that the validity of Eq. (10) is not restricted by the condi-
tion that z << 1.

For small N,, Eq. (14) can be used to generate the exact
function F(N,,z). For example, we obtain for N, =2

F(2,2) =e %Iy(2z2)

i=1

1 _ 1
]1+Nez’1+1vez

(15)

since F(1,z) =exp(—2z). It is instructive to compare the
probabilities derived to lowest order in z from Eq. (15):

P,(2,z) =2z 322, 10z%/3, 35z%/12, ... (16)
for n=1,2,3,4, respectively, with the corresponding Pois-
son distribution® which would result for one electron radiat-
ing on the average twice as many photons,

P,(1,22) =2z 222, 423/3, 22%/3, ... . an
Hence, already for just two electrons the photon number
distribution differs significantly from a Poisson distribution.
Comparison of Egs. (16) and (17) makes clear that radia-
tion from one electron stimulates radiation from the other
so that the probability of several photons being emitted in-
creases. Note, however, that the mean number of emitted
photons, if evaluated exactly, would be 2z in either case.

The Poisson distribution has the unique property that if
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electron interaction is neglected.

We now turn to a more precise evaluation of the function
F(N,,z) defined in Eq. (7). Recalling the definition [paper
I, Eq. (8)] of the operator B, introducing A;=exp(ikz;) and
noting that, in view of (p|p +%k) =0,

(M) =840 (12)
we can write
dA v - - dAy
F(N,z) = “——exp —ZEMEM
¢ §(27TI')N8}\1 c }\N i=1
(13)

When the integration over )\Ne is performed, we obtain a
formula which relates F(N,,z) to F(N,—1,z2):

N—1

E i 2 )\/] exp‘——z—z -21 i E AT

(14)

[ R .
two (or more) events are independent and satisfy Poisson
statistics so does their sum, viz.,

i P,(1,2)P,_.,(1,2) =P,(1,z +2)

m=0

18)

This property is not shared by the thermal distribution (11).
Any photodetector invariably has only a finite resolving
power with respect to frequency. Hence, for N, =1 it would
still detect a Poissonian distribution according to Eq. (18),
since in our description there are no mode correlation ef-
fects so that the probabilities for the emission of photons
with different frequencies are independent. On the other
hand, for N, >>1, the thermal distribution (11), since it
refers to a single mode, can never be directly observed.

We shall finally write down the noise-to-signal ratios for
spontaneous and stimulated emission. If we restrict our-
selves to the leading terms we find, from Egs. (32) and (35)
of paper I, for N =0,

[(Hw)?A(ND] =[1 +(Ne—1)z]”2

Fw AN N,z 19

This ratio tends to unity for N,z >> 1, as it should for a
thermal distribution. On the other hand, for N,z << 1 and,
in particular, for N, =1, it is proportional to z =2 ~#'2 in-
dicating that in this case the fluctuations in the photon
number are due to the quantum-mechanical vacuum fluc-
tuations. For stimulated emission (N >> N,z) we have

(2aN1”2 _[me2 [eN+DN )" ]
Fw AN 2m z

(20)

where z'=0z/08 is the derivative with respect to the detun-
ing. Essentially the same results hold true, if the initial
state of the laser field is not an eigenstate of the photon
number, but a coherent state |a) with |a|?=N. The ratio
(20) is independent of #, since N ~%~! and z —%~!, and
goes to zero for N — oo or N, — oo.

The crucial parameter in the above discussion is N,z
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Transformed to the laboratory frame it is given by

2
ea, |,
mc?

N
Vv

1 ¢

_ e’ sin(Aw T/2)
2y? e

AwT/2 @n

Nez

Here 7y is related to the electron energy by E =mc?y,
e fkc =%, a, is the amplitude of the circularly polarized
wiggler field so that (ea,/mc?)? agrees with the frequently
used parameter K2, L =8,T is the wiggler length, X\ is the
wavelength of the mode in question, Aw is the detuning,
and V is a normalization volume so that N,/V is the actual
electron density. Typical values of N,z range between
~10° for the Stanford experiment® and —~ 103 for the ACO
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(Orsay, France ) experiment,’ so that in any event
N,z >> 1 as required for thermal photon statistics.

Cooperative effects very similar to those discussed here
for the FEL have been dealt with in the case of the ordinary
laser in Ref. 8.
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