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Unstable electrostatic beam modes in free-electron-laser systems
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The electrostatic stability of the free-electron laser is studied for a configuration in which a relativistic

electron beam propagates through combined helical wiggler and axial guide fields. Instability is found for
certain specific parameter regimes which, in the beam frame, is shown to be purely growing and to require

the presence of both the wiggler and axial guide fields. The electrostatic stability is also studied for a con-

fuguration which consists of a linearly polarized wiggler and an axial guide field, for which analogous

results are found.

The stability properties of a free-electron-laser (FEL) con-
figuration in which a relativistic electron beam propagates
through a combined helical wiggler and axial guide field was
investigated by many authors. ' It was pointed out by
Freund et al. that, in addition to the coherent radiation
process, the electrostatic beam modes are intrinsically un-
stable for a specific class of operating parameters. It is our
purpose here to expand upon the discussion in Ref. I and to
discuss the underlying physical mechanism behind such an
instability. To this end, we choose to analyze an idealized
model which consists of a cold relativistic fluid described by
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where n and v describe the electron density and velocity,
respectively, y —= (1 —u /c')

B —= Bpe, +B„(e„cosk„z + e~ sink„z)

is the static magnetic field, hE is the electrostatic field
(which is assumed to constitute a small perturbation), and
d/dt —= 8/dt +v '7 is a convective derivative. The equili-
brium state to zeroth order in 5E is assumed to be homo-
geneous (i.e., V np=O), and is characterized by a veloci-
ty vp=u„et+u~~e3, where up is a constant, u„= Q„u~~/10, 11
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to first order in the electric field, where P„=u„/u~~ and

y~~
—= (1 —u~~/c') ' '. The stability properties, therefore, are

determined by Eqs. (4)—(6) in conjunction with the follow-
ing combination of the continuity equations and Poisson's
equation,
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where cpt, —= (4 re7'n /mp)'t' is the beam plasma frequency.
It is clear from the z component of the momentum

transfer Eq. (6) that in the absence of a wiggler field there
is no coupling between the axial and transverse components
of the velocity, and the dispersion relation reduces to the
well-known positive and negative energy beam modes
c0 = k u

~~
+ cot, /yp 'y ~~. However, the parallel-transverse cou-

pling in the presence of the static fields can alter the dielec-
tric properties of the medium. Elimination of hv1 from Eqs.
(4) and (5) shows that
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form 5E=5Eexp(ikz —itut), Eqs. (2) and (3) can be re-
duced to the form
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define an orthogonal coordinate frame rotating with the
wiggler field. Observe that conservation of energy imposes
the requirement that u„+ u

~~

= (1 —yp ) c .
Under the assumption of plane-wave solutions of the

I

and hi2 is nonzero only if both the axial guide and wiggler
fields are present. Thus, the modification to the dispersion
properties of the electrostatic beam modes which is of in-
terest here is possible only through the combination of both
magnetic fields. The instability can be readily demonstrated
by combination of Eqs. (6)—(g) to obtain the following
dispersion equation:
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The regime considered in Ref. 1, and which is most relevant
to current FEL experiments, is that in which I ~ —ku II I« I Ap —k„v~~l. As a result, the dispersion equation is of
the form
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It is evident that instability results when 4 &0. Further-
more, the instability is purely growing (i.e., the real part of
the frequency is zero) in the beam frame. Additional infor-
mation on the parameters necessary for instability is given
in Ref. 1. Finally, solution of the complete dispersion equa-
tion [Eq. (9)] does not qualitatively affect this conclusion.

In order to understand the underlying physics we consider
motion in the absence of an axial guide field. It is clear
from (6) that the modification of the dielectric properties
results from the presence of a hv2e2 &8„ force in the
momentum-transfer equation. Hence, the essential point is
to determine a source for an oscillatory velocity in the direc-
tion of e2. The possible sources for such a motion are evi-
dent from the two-component of the momentum-transfer
equation [Eq. (2)] and includes a v x8 force

(i.e. , 4 &0) and the net effect of the electric field is to
drive axial velocity fluctuations counter to that produced by
the "direct" action of the electric field. The combined ac-
tion of the axial guide and wiggler fields results in a phase
shift in the axial motion which causes electron bunching to
occur in such a way that the electric field is enhanced.
Thus, although this is a nonrelativistic effect, the system
acts as though the electrons had a negative mass.

It is also of interest to determine whether an analogous
instability exists for a configuration in which the static mag-
netic fields consist of a linearly polarized wiggler in com-
bination with an axial guide field. In this case we represent
the magnetic field in the form 8=8oe, +8 sink„ze~. The
equilibrium orbits in this field geometry are
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where n—= Q„k„v~~/(Ap —k„'v„) and oscillatory terms in
2k z (and higher) have been neglected. Conservation of
energy, therefore, imposes the constraint (I +Pq) v~~

1= (1 —yp ') c, where pq —=
2
n'(1+ Ap/k„'v~~). Perturba-

tion analysis of Eqs. (1)-(3) about this equilibrium state to
first order in hE, and combination of the result with Eq.
(7), therefore, yields the following dispersion equation:

convection (note that '2 e~ ——k„e2) due to the centripetal
force arising from the rotation (or gradient) of the wiggler
field,
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as well as a relativistic contribution which arises from the
variation in the total energy. When no axial field is present,
u„= —0„/k„and the convection exactly balances the v xB
force with the result that no net velocity in the e2 direction
occurs. The relativistic contribution is the sole remaining
source, but it can be shown to drive oscillatory motion only
in the e~ direction. However, the axial guide field tends to
increase the transverse velocity (i.e., v„), and results in
enhanced convection as well as a net source which drives an
oscillation in the e2 direction. As mentioned previously, the
finite he 2 causes a 6v & 8„ force in the axial direction which
affects partial bunching and modifies the dispersive proper-
ties of the medium. As long as k„nil ) O, o the convection
acts to oppose the v xB force (12), in part, and causes an
effective enhancement in the plasma frequency (10). In
contrast, when k„u II ( Ao the direction of the e~ com-
ponent of the zeroth-order transverse velocity is reversed
(i.e. , v„&0), and convection tends to enhance the effect of
the v &8 force. It is in this regime that instabliity is found.

The actual motion in the case in which instability occurs
may be summarized as follows. The electric field drives a
fluctuation in the axial velocity which, in turn, causes a net
velocity fluctuation in the e2 direction by the combined ac-
tion of the Lorentz force and convention. This velocity
then feeds back upon the axial velocity via the Lorentz
force (gv2ezxB ). The feedback provides the dominant
contribution to the axial velocity when
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in the limit in which lcu —kv~~l && I II0 —k~v~~l. This is
analogous to the dispersion equation for the helical wiggler
field (10), and instability is found when
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As in the case of the helical wiggler, the instability is purely
growing in the beam frame, and arises from the same physi-
cal mechanism.

The central question raised by this analysis is how the ins-
tability will affect the performance of the FEL. On the basis
of a linearized theory it has been shown that the growth
rates for the amplification of radiation are large &and exceed
those found in the limit as 80 0), and the bandwidth is
enhanced for the range of parameters leading to the electro-
static beam instability. However, since it might be expected
that the electrostatic instability will lead to degradation of
beam quality in the nonlinear regime, the effects of this in-
stability on the saturation of the FEL are of prime irnpor-
tance. This question has been addressed by means of a par-
ticle simulation of a cold beam in an FEL amplifier, "and it
was found that (for the parameters considered), the satura-
tion efficiency is greatest when the electrostatic instability is
present, It should be remarked that this conclusion is rein-
forced by experimental results' ' in which maximum
power was observed for parameters corresponding to the
electrostatic instability. Thus, while the question of the ef-
fects of the electrostatic beam instability on the FEL has not
been conclusively answered (i.e. , a more complete parame-
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ter study of the nonlinear saturation efficiency is required,
as in a knowledge of the effects of a finite velocity spread),
it should not be concluded that these effects are necessarily
deleterious.
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