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It has been demonstrated that the Weizsacker inhomogeneity term may be replaced by a gradient-free
form for atomic systems. This forms a realization of a previous conjecture made by the authors IPhys.
Rev. A 25, 668 (1982)]. In the variational context, numerical computations have been performed with

such a representation with the first-row atoms employed as test cases. The resulting energies are seen to
match very well with their Hartree-Fock counterparts.

The Weizsacker term, or the first inhomogeneity term in
the gradient expansion of the kinetic-energy functional
T[p], namely T2[ p], given by
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is a rather significant correction " to the zeroth-order or
the Thomas-Fermi kinetic-energy functional To[ p]:
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This term, therefore, has retained interest especially within
the realm of the density-functional theory of Hohenberg
and Kohn' ( T2 employed here is actually —of the original

Weizsacker term6). Further, the present authors have re-
cently derived two rigorous bounds to T2, ""
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for any non-negative normalizable density p( r ), and

atomic densities in terms of T2 would be given by
r
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The number 1.840 is appropriately chosen to be the mean of
the (fairly constant") ratios Tq/T2s' for the first-row atoms
in the periodic table. Evidently, T2' [p] scales correctly as
the kinetic energy in the sense of Szasz, Berrios-Pagan, and
McGin. "

Now, the well-known Thomas-Fermi-Dirac —von Weiz-
sacker energy functional is

E [ p ] = To [ p ] + T2 [ p ] + VC [ p ] + V„[p ] +E„[p ], (6)
with
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the Coulomb repulsion energy,
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TABLE I. Total energies for the atoms Li through Ne, within the
representations T2, the exact T2, compared with their Hartree-Pock
counterparts. (See text for further details. )
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for any spherically symmetric monotonically decreasing
p( r ) —= p(r). Recently, Csavinszky' has done an exhaus-
tive numerical analysis of these lower bounds. The spirit
underlying the present report is to bring out a simple
gradient-free representation of the Weizsacker inhomogenei-
ty term. For this purpose, the tighter of these lower
bounds, T2sz (from Ref. 12), will be employed. Even
though an upper bound is apt for use in a variational con-
text, such a usage is justified on the lines that the ratio
T2/Tq~' is fairly constant for a given row of atoms in the
periodic table. Thus, as stipulated by the authors in Ref.
(12), the representation of T2 for spherically symmetric

Atom

—E'
Present'

Li
Be
B
C
N
0
F
Ne

14.65
24.85
38.27
55.1

75.6
99.9

128.3

'See Eqs. (7) and (8).
See Eqs. (6) and (8).

—Eb —EHF'

7.61
14.98
25.37
39.00
56.1

76.9
101.5
130.2

7.432
14.57
24.53
37.68
54.4
74.8
99.4

128.5

'Hartree-Fock energies, Ref. 21.
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the nuclear-electron attraction energy, and
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Employing the above total energy functional E', a variation-
al form for the density profile was chosen as'

p(r) =A [Ctexp( —ntr) +C2exp( —(((2r)]

E' [p l = To [p ] + T2 [ ((2 ] + Vc [p 1 + V„,[p ] +E„[p ] (7)

the exchange energy in the Slater approximation' with
cx 3 as given by Kohn and Sham. ' With the prescription
(5) that T2 be replaced by its simpler, gradient-free func-
tional form T2 [p], the total energy functional E'[p]
emerges as

where the C; and the o.
&

are the variation parameters and
2 ((k;, C;) is determined by the normalization constraint

p ( r ) 42r r dr = N
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N being the total number of electrons. Substituting Eq. (8)
into Eq. (7) one obtains after some algebra
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where
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For comparison, : the functional E of Eq. (6) incorporating
the exact T2 in conjunction with the form (7) was also
evaluated independently. Both these computations were
carried out employing a versatile minimization routine
sTEPIT. 0 Table I displays the results for the total energies
E' and E for the first-row atoms (Z =3—10). It is to be
noted that the values E' (with the representation T2') match
fairly well with their corresponding E values; employing the
correct T2, both these (E and E'), in turn, agree with the
exact Hartree-Fock (HF) energies. The mean deviation
between E' and EHq values is merely 0.7%.

Incidentally, it must be remarked that the present scheme

I

allows only a description of atomic systems. The theorem
due to Balazs' rules out the existence of stable molecules if
the replacement T2 T2 is made. However, as inferred
from Table I such replacements indeed yield decent esti-
mates for atomic systems while they simplify computations,
for the total atomic energies. The present computation for
the first-row atoms is purely illustrative; one could proceed
for the second and third rows using appropriate constants. '

Thus, the conjecture expressed in Ref. (12) has been veri-
fied to be true.
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