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A new kinetic theory for a particle moving in a random array of static spherical scatterers
is derived. By decoupling a higher-order dynamical correlation function, a kinetic equation
is obtained comprising known approximations like ring, repeated-ring theory, and their
self-consistent versions and, in particular, the equivalence of a recent mode-coupling theory
and self-consistent ring theory is established. Vertex corrections, as represented by a new

class of collision sequences, are shown to be essential for the Lorentz gas. New results for
the Burnett coefficient are also presented.

I. INTRODUCTION

The Lorentz gas, a gas of mutually noninteracting
particles, or equivalently one single particle, moving
in a random array of fixed scatterers, is one of the
simplest models in statistical mechanics. ' The par-
ticular version that will be discussed mainly in this
work deals with a hard-core interaction between the
point particle and scatterers, but no interaction is as-
sumed among the scatterers, so that they are allowed
to overlap.

At low density of scatterers, cluster expansions
and resummations of collision sequences were ap-
plied, and a nonanalytic density dependence of the
diffusion constant was found. Also, by means of a
ring kinetic theory, a power-law long-time decay of
the velocity correlation function (VCF) similar to
the one in fluids, albeit with a different exponent,
was derived.

Both results were confii need by molecular-
dynamic experiments in two dimensions. More-
over, these experiments in two, as well as in three,
dimensions show that with increasing density of
scatterers, particle diffusion becomes more and more
difficult, and a critical density n, was found where
diffusion stops. Above n„ the particle is localized.

Following the kinetic-theory approach, various
approximations, especially the ring and repeated-
ring theory, were examined. ' These theories,
while being quite accurate at low density, were
found to fail to yield a critical density n, and there-
fore a satisfactory description of the system at
moderate and high densities of scatterers in two and
three dimensions.

On the other hand, in a different line of approach,
a mode-coupling theory, developed originally to in-
vestigate the dynamical conductivity of a quantum
particle moving in a random potential, "was consid-
erably improved and applied to the hard-core

Lorentz gas. ' It is based on the idea that the
particle's current relaxation depends on its way of
propagation and therefore should be evaluated self-
consistently. The theory was shown to yield a
diffusion-localization transition, and a critical densi-
ty was predicted where the diffusion constant van-
ishes. Furthermore, the particle's dynamics as re-
flected in the diffusion constant and the velocity
correlation function was studied in detail in the dif-
fusion regime below n, as well as in the localization
regime above n, and compared with experimental
results. Almost quantitative agreement was found
in two and three dimensions, an exception being the
value of the critical density in two dimensions.
Also, new predictions for the localization length and
the dynamical structure factor were made. For a re-
cent survey of this self-consistent current relaxation
theory approach to describe the motion of a classical
or quantum particle in a random potential, especial-
ly in two dimensions, we refer the interested reader
to Ref. 13.

The purpose of the present work is twofold.
Firstly, the connection between the mode-coupling
theory' for the Lorentz gas and kinetic theory shall
be examined. It is shown that the mode-coupling
theory is equivalent to a self-consistent kinetic ring
theory. Also, a new kinetic equation is suggested
that allows us to discuss various other approxima-
tions like ring and repeated-ring theory and their
self-consistent versions as special cases. It further-
more includes a new class of collision sequences
which are shown to be equally important as the ring
collisions. Secondly, a divergency problem of the
collision operator for small frequency originating
from its wave-number dependence shall be dis-
cussed. In the solution of the self-consistent ring
and repeated-ring theories presented so far, the addi-
tional approximation of a wave-number independent
collision operator was made. ' ' It is shown that by
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abandoning this approximation, one encounters seri-
ous difficulties in the form of stronger infrared
singularities peculiar to the Lorentz gas, which may
be overcome only by including vertex corrections.
The new collision sequences serve precisely this pur-
pose and appear quite naturally in our theory.

The paper is organized as follows. In Sec. II, the
follllally exact generalized Boltzmann equation is
derived. An approximate solution is presented
which includes the exact expression for the Burnett
correlation function in tei-ills of collision operator
matrix elements and results for Boltzmann's theory
are presented. In Sec. III, various approximations to
the collision operator are discussed. New results for
the Burnett coefficient in a ring approximation are
reported. Then the equivalence of the mode-
coupling theory' and self-consistent ring theory is
discussed. A new self-consistent kinetic equation is
derived in Sec. IV, and the importance of vertex
corrections is demonstrated. The work closes in Sec.
V with a summary and conclusions.

II. GENERALIZED BOLTZMANN
EQUATION

A. Derivation of the kinetic equation

In a particular version of the Lorentz gas we want
to discuss in this paper, a point particle whose posi-
tion and velocity are denoted by ro and vo is moving
in a static array of randomly distributed scatterers
of hard disks or spheres which are allowed to over-
lap. The positions of the scatterers in a certain con-
figuration are denoted by r &, . . . , r& and their aver-
age density in volume V is n =N/V. The particle
moves according to Newton's equation of motion
generated by the "pseudo"-Liouville operator'~

L+ =Lp+L '+ and A (t) =exp(iL+ t)A (0), t (0, for a
particle's variable A. Here, Lo —— i v p V o an—d
L~ =gk&o T+(Ok) describe free streaming and col-
lisions where

( kT)=z()reefadr8(+ve r)()(ra rex)—
x(bp —1) .

Here and in the following, r = r/
~

r
~

denotes a unit
vector, o is the scatterer's radius set equal to unity,
d is the dimension of space, and the operator bo
changes the particle's velocity vo to v p=bo vo ——vo —2( vo r )r.

The particle s phase-space distribution is shortly
abbreviated as

f(l, t) =5(1—0)

[P '(12,z) —m(12, z)]$(23,z) =5(13), (2)

where P (12,z) is the Boltzmann propagator. It sat-
isfies Boltzmann's kinetic equatiori

[()I)' ' '(12,z) —t(12)]$ (23,z) =5(13) (3)

with P'-„'„,(q,z) =5„-„,/(q v —z) describing the
free motion of the particle and t (12)
= —nT (14)5(12) the instantaneous and local col-
lision with a scatterer. The kernel m(12,z) is the
nontrivial part of the general collision operator

4'(12,z) =t (12)+m(12,z) .

Its formal expression as provided by the projection
technique is

m (12,z) = —n T+ (11)Gq(11,22;z) T (22),

(5a)

where the operators T and T+ are operating on
functions of the velocity on the right- and left-hand
side, respectively. Introducing a phase-space
particle-scatterer distribution

f(12)=5(1—0) g 5(2 k)/v N, —

the particle-scatterer correlation function G2 may be
written as

G2(12,34;z) =(Qf(12) i (QL Q —z) '
i Qf(34)) .

(5b)

where 1—=(ri, vi) is an external field point. In the
following, we are interested in the temporal and spa-
tial evolution of the particle's phase-space correla-
tion function ()I(12,t) =(f( l, t)

~
f(2)), where the

parentheses denote a mic rocanonical average
(A ~B)=(A*B) over scatterer configurations and
particle variables with fixed magnitude vo of veloci-
ty. It is convenient to introduce the Laplace
transform-ill of P(12, t) by

(1( 12,z) = i f d t e '*'d ( 12,t)

=(f(1)I(L ——z) I f(2))
for Imz & 0 and its spatial Fourier transforlll by

()(q,z)= f drtzexp( —iq rtz)d()2, z) .

The kinetic equation for ())(12,z) is easily derived
by applying the Zwanzig-Mori projection tech-
nique' with P=

~
f(1))(f(1)

~

=1—Q projecting
onto the particle phase-space density. Here and in
the following, a bar over a variable means integra-
tion over this variable. It may be written

=5( r i
—r o(t) )5( v i

—vo(t) ), The main part of the present work will be concerned
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with the derivation and discussion of various ap-
proximations to G2 describing the particle's propa-
gation from phase point 3 to point 1 in the presence
of scatterers at positions r4 and r2.

B. Solution of the kinetic equation

For a given approximation to Gz(12, 34;z) and
m(12,z) one then faces the problem of solving the
kinetic equation, Eq. (2), for $(12,z), which can be
accomplished exactly only in exceptional cases.
Therefore one has to introduce approximations in
solving the kinetic equation, too, which, however,
are controllable and may be improved systematical-
ly. The simplest approximation to the kinetic equa-
tion,

[P' ' '(12,z) —K(12,z)]$(23,z}=5(13),
which preserves particle-number conservation and
allows for an analytic solution, is

e-„-„,(q,z)=&]/(q, z)(&-„-„.—
I
0)(o

I
) (7a)

Here,
I
0) (0

I
is the projector onto the density state

I
0) = 1 in velocity space, and K

& ~(q,z)
= (1

I
X(q,z}

I
1) is the matrix element of the col-

lision operator taken with the longitudinal current
state

I
1)=v, vd (the wave vector q defines the z

direction). Notice that particle-number conservation
implies that K-, .(q,z) integrated over velocities v

or v
' yields zero, which is easily verified using Eqs.

(Sa) and (1).
The approximation equation (7a), used in previous

work on the electron localization problem" and the
Lorentz gas, ' ' ' is designed so as to yield the exact
representation of the VCF in terms of its velocity re-
laxation kernel. In order to discuss the Burnett
transport coefficient we have to improve upon this
approximation. Quite generally in the kinetic model
representation the collision operator Ã, (q, z) is

approximated by a N + 1, N + 1 matrix and a diago-
nal part in such a way that the chosen N + 1 veloci-
ty states are treated exactly. Thus one writes

I I &r„(q z)(i 'I +~(q»)~„,
p,p =0

with a(q, z)=(N+1
I Ã(q, z)

I
N+1) and r&&

=K» —u5». Note that Eq. (7a) corresponds to
Eq. (7b) with the simplest choice N =0. We employ
in the following that N = 1 approximation by in-
cluding in addition to the density state

I
0) and the

velocity state
I
1) the further state

' 1/2

I
2) =(g —1/d)d

2(d —1)

With the use of Eq. (7b) the kinetic equation, Eq.
(6), may be solved analytically.

Of greatest interest is the density correlation func-
tion P(q, z)=Ppp(q, z) of the particle. In general, it
may be written in the following way which stresses
the small frequency and wave-number behavior due
to particle-number conservation:

P(q, z) = —— 1

z+q2D(q, z)
(8a)

defining the generalized diffusion constant D (q,z).
Two other important correlation functions are inti-
mately related to the density correlations by the con-
tinuity equation, namely, the cross correlation
P &p(q z) =Pp&( q,z) between density and longitudinal
current and the longitudinal current correlation
function P»(q, z). They may be expressed by D (q,z)
in the following way:

(8b)
~d qD(q, z)

ipqz =
z +q'D(q, z)

( )
d zD (q&z)

vp z+q D(q, z)
(8c)

These equations hold irrespective of any approxima-
tion to the general collision operator as long as it
satisfies particle-number conservation.

The small wave-number limit of D(q, z) is the
velocity correlation function

D(z)= lim D(q, z)= v,
1

q 0
vz

Furthermore, the diffusion coefficient D is the zero
frequency limit

D= i lim D(z—),
z~O

(10)

if that limit exists.
Assuming that a small wave-number expansion of

D (q, z) is possible in the form

D(q, z)= g ( —q')"D2„+2(z),
n=0

D4 —— i lim D4(z)—
z —+0

(12)

contains new information on the spatial extension of
the transport process, and some results were ob-
tained in molecular-dynamic experiments'6'6 for the
two-dimensional system.

The solution of the kinetic equation (6) with Fq.
(7b) for N =1 yields for the generalized diffusion
coefficient,

one may define the Burnett correlation function
D4(z) and higher-order correlation functions. ' '7
The Burnett coefficient
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vo/d
D(q, z) =—

(0)z+ K))(q,z)+M)) (q,z+ @2q(q,z))

tions. Exact expressions for these in analogy to Eq.
(15b) may be obtained by increasing the order N of
approximation in Eq. (7b) in a straightforward way.

where MI('(q, z') is the free-particle current relaxa-
tion kernel. It may be obtained from the known
free-particle density correlation function

d qVp —Z
T

1 1 O'Uo= ——2F) —,, 1;d /2;
L

by using Eqs. (8a) and (13) for zero density of
scatterers. In Eq. (14), Qd is the surface of the d-
dimensional unit sphere and 2F) denotes the hyper-
geometric function. ' From Eq. (13) one easily ob-
tains the velocity and Burnett correlation function.
Assuming that K(q, z) allows for a small wave-
number expansion in the form

4')((q,z)=K)((z)+(qv()) KI)'(z)+

C. Boltzmann theory results

Here, we want to report the results of
Boltzmann's theory, Eq. (3), which only considers
uncorrelated binary collisions and is expected to be a
good approximation at low density of scatterers. It
therefore often serves as a reference in comparison
to other theories in order to study the effects of
dynamic correlations. The eigenfunctions and
eigenvalues of the Lorentz-Boltzmann operator can
be evaluated in all dimensions and so any correlation
function may be calculated to any desired degree of
accuracy using, for instance, Eq. (7b) or the contin-
ued fraction method. ' In one and three dimensions
even at exact solution is possible. '

Since the Lorentz-8oltzmann operator is
rotational invariant, its ei~enfunctions are the
Gegenbauer polynomicals' Ck '(q v ) (a=(d —2)/2,
k =0, 1,2, . . . ), the generalizations of the Legendre
polynomials in d =3 to d dimensions. For the
eigenvalues we find

K»(q, z)=%22(z)+ .

and using

(o) ~ 2(d —1) (qvo)
M)) (q,z')=—,1++2 z

for small qvp/z', one finds

v () /d
D(z) =-

z+ Ã))(z)

O'Uo

z'

2

4k (k +d —2)
vk ='Y

(2k +d —2) —1
6

where @=nor" 'vpn' "~ /I"((d +1)/2) is the col-
lision frequency. Qf course, vp ——0 due to particle-
number conservation. In d =3, vk =y for all k&0;
for d&3, the eigenvalues are rapidly and monotoni-
cally converging to v =y for increasing k. Thus in
the Boltzmann approximation we find
Ãk„(q,z) =ivk5k„. This independence of wave num-
ber and frequency reflects the fact that the hard-
core collisions are local and instantaneous. Inserting
into Eqs. (15), the Boltzmann results for the velocity
and Burnett correlation functions are

D4(z)=D (z) —dC)((z)2(d —1) 1 (z)

( +2 z+»z
(15b)

D"'(z)=- v()/d

z +1v)
(17a)

Let us stress that Eqs. (15) are exact formulas. They
express the velocity and Burnett correlation func-
tions in teriiis of matrix elements of the general col-
lision operator 4'(q, z). The element Ã))(z), called
velocity relaxation kernel or dynamical friction coef-
ficient, was shown to be the crucial quantity in the
dynamical theory of the diffusion versus localization
transition in the Lorentz gas, ' diverging for small
frequency at the critical density, while Ã»(z) stays
finite. ' Note that the wave-number dependence of
the collision operator K(q, z) is important for the
Burnett as well as higher-order correlation func-

D(())( )
2(d —1) (D(p)( ))2

1

(d +2) z +i v2
(17b)

While the VCF decays purely exponentially in time,

2

P„'„'(t)= exp( v)t), — (18a)

the Burnett correlation function P4 '(t) starts from
zero at time zero, is increasing proportional t, and
decays exponentially at long times
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2 2
2 UP 2

—v&tt e for d=3
5 3

p4 '(t) =
2 2

2(d —1) Up

(d +2) d
1 —v)f

te
(vz —vi)

(e ' —e '
) for d~3.

( vz —vi )

(18b)

The diffusion and Burnett coefficients in the Boltzmann approximation are, using Eq. (17),

D =U() /dv)

D(p) 2(d —1) (D(p))2/
(d +2)

(19a)

(19b)

Higher-order Burnett correlation functions of Boltzmann's theory may be obtained by making a small wave-
number expansion of the exact solution of Boltzmann's equation in the form of a continued fraction,

(p U()/d a i
2 2 a22D'"(q,z) =-

2 +1V)+ Z +1Vz+ Z +1V3+

with

z z (n +1)(n +d —2)a„=—(qup)
(2n +d —2)(2n +d)

(20)

and comparing coefficients of powers of qz. This continued fraction is especially convenient for numerical
evaluation.

III. APPROXIMATIONS OF THE COLLISION OPERATOR

A. Second-order kinetic equation

In order to find approximations to the general collision kernel m (12,z), we will in this section derive a
second kinetic equation for the particle-scatterer correlation function Gz, Eq. (5b), and examine some approxi-
mations to its memory kernel. Again applying the projection technique, this time to Gz with the projector

+z= IF(12)) —— (F(12) (
=1—Qzg(12)

where F(12)=Qf (12), we find the second-order kinetic equation

[(II) '(13)5(24)+T (12)5(13)5(24)—mz(12, 34;z)]Gz(34, 56;z)=5(15)5(26)g(12) . (21)

For the overlapping Lorentz gas the static pair correlation g(12) between the particle and a scatterer is
g(12)=8(riz —o). The memory kernel mz and Gz may be expressed by a particle-two-scatterer correlation
function G3,

mz(12, 34;z) = nT+(11)G3(—112,334;z)T (33)

with

G3(123,456;z) =(F3(123)
i (QzQL QQz —z) '

i F3(456)),

where F3(123)=Qzf (123) is the particle-two-scatterer phase-space density

f(123)=5(1—0) g 5(2 k)5(3 —i)/X, —
k~p, i~p

properly orthogonalized.

B. Ring and repeated-ring theory

(22a)

(22b)

Let us first discuss the simplest approximation for Gz. Neglecting all but the first terni in the bracket on the
left-hand side (lhs) of Eq. (21), one finds Gz(12, 34;z) =()) (13,z)5(24)g(12), which, inserted in Eq. (5a), yields
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the so-called ring-collision operator

m~(12, z)= nT—+(13)P (12,z)T (23) . (23)

It describes a dynamically correlated process where the particle collides with a certain scatterer, then pro-
pagates in the system according to Boltzmann s equation, which means suffering only uncorrelated binary col-
lisions, and finally collides with the initial scatterer again. This may be represented graphically as in Fig. 1(a).

A well-known consequence of the ring collisions is the nonanalytic small frequency expansion4 of the VCF

D (z)/iD'"=1+
nd (2m ) ( 1)d~&ging (24a)

where g=(z/iD' ')', which implies for long times
a power-law decay D4(z)=a D(z), (26)

(D ' ') 277

(4 D(0)t )d/2+1 (24b)

Evaluating analogously the velocity relaxation ker-
nal at finite wave number in lowest order in density
we find that the leading nonanalytic term in fre-
quency may be simply expressed by its zero wave-
number limit

& i i(e z)=fi'(e) &»«» (25)

Here, f~(q) =df', (q) with f&
(x)=I (d/2)

X(2/x) 'Jd~2(x) may be replaced by its small
wave-number limit f~(q =0)=1, since at small den-
sity the mean free path is large compared to the
scatterer radius a= 1. It is not difficult to realize
that the other matrix elements of the ring-collision
operator show no stronger singularity than
K~~(q =O,z). Together with Eq. (25) this then im-
plies that the higher-order Burnett correlation func-
tions decay at large times with the same exponent as
the VCF. This was conjectured by Alley and Ald-
er' on the basis of results from molecular-dynamic
experiments in two dimensions. For the Burnett
coefficient this conjecture was confirmed recently on
the basis of ring theory also. ' Using Eqs. (25) and
(15b) and noticing that Ã2z(z) is less singular than
Ã»(z) we find in particular for the leading nonana-
lytic part for small frequency

FIG. I. Dynamically correlated collision events contri-
bution to m (12,z). =, Boltzmann phase-space propa-
gator P;~, binary-collision operator T; and Ca,

scatterer. (a) Ring collision. (b) Simple repented-ring col-
lision.

where in the low-density limit a =2. Alley and Ald-
er'6 tested Eq. (26) in d =2 at a medium density
ncr =0.2 with a = 1 and found good agreement with
experimental results, which suggests that the ring
theory is no longer accurate at this density.

The ring-collision events were also shown to lead
to logarithmic terms in the low-density expansion of
the diffusion constant, for instance, in two dimen-
sions

D/D' '=1+ n ln—n+o
3 (27a)

Qne may also evaluate the contribution of the ring
collisions to the Burnett coefficient, and we find in
d =2 a similar expansion as for the diffusion con-
stant

D4/D4 ' ——1+ , n inn —+

and in d =3 the nonanalytic term is proportional to
n inn, also similar to the diffusion constant.

Returning to the discussion of the second-order
kinetic equation, we note that the second term on
the lhs of Eq. (21) gives rise to the so called
repeated-ring collisions. The repeated-ring kinetic
equation, obtained by keeping the first two terins on
the lhs of Eq. (21), solving for G2, and inserting into
Eq. (5a), allows the particle to collide with the same
scatterer more than once while its propagation be-
tween these scattering events occurs according to
Boltzmann's equation. A simple example is shown
in Fig. 1(b). In one dimension, the exact solution of
the repeated-ring equation yields the correct result
of a zero diffusion coefficient. But besides this, the
VCF of the repeated-ring equation shows a long-
time power law decay proportional to t ~, in con-
trast to the exact solution for the one-dimensional
Lorentz gas which shows exponential decay. In
two and three dimensions, the repeated-ring equa-
tion was demonstrated to exhibit no critical density
n„where the diffusion constant vanishes and the
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theory fails' above roughly one-fourth the experi-
mental n,

G2(12, 34;z)=$(13,z)5(24) (28)

and replacing the phase-space propagator by its
Boltzmann's approximation P . Inserting 62 into
Eq. (5a), the resulting memory kernel

m2(12, z) = —nT+(13)P(12,z)T (23)

is a very natural extension of the ring memory ker-
nel. It may be called a self-consistent ring approxi-
mation (SRA) since the memory kernel m (12,z) has
to be determined by solving Eq. (29) and the kinetic
equation (2) simultaneously. The self-consistency
requirement, as discussed previously in work on the
localization problem of a quantum particle in a ran-
dom potential, " expresses the intuitive physical pic-
ture that the friction the particle experiences de-
pends on the way the particle is propagating. The
importance of this fact becomes most obvious at
high density of scatterers when the particle is local-
ized.

With the additional approximation of ignoring
the wave-number dependence of m (q, z), that is, re-
placing m(q, z) by m (q =O,z), Eq. (29) represents
the mode-coupling theory discussed extensively, '

and we will therefore only outline briefly its main
results.

At low density it reproduces the results of the
ring theory as is to be expected. But at higher densi-
ties the feedback mechanism introduced by the self-
consistency leads to important new qualitative ef-
fects. The diffusion constant is reduced relative to
its Boltzmann value, and at a certain critical density
n, it drops to zero linearly with density. Above n,
the particle is trapped in a finite region, the exten-

C. Self-consistent ring theory

Notice that the ring-collision operator could be
obtained more easily directly from Eq. (5a) by fac-
torizing the dynamical particle-scatterer correlation

sion of which defines a localization length. Ap-
proaching the critical density from above, the locali-
zation length increases with an inverse square root.
The critical density is found to be n, =d/Vd, where
Vd is the volume of the d-dimensional unit sphere.
While this value is in surprisingly good agreement
with molecular-dynamics and Monte Carlo results
in d =3, its values turns out to be too large by a fac-
tor of 1.7 in two dimensions, compared to
molecular-dymamics and percolation theory re-
sults (see Table I).

The VCF exhibits a
~

ro
~

~ small-frequency
singularity below n, signifying a t '"+ ' long-time
tail, while at the critical density the singularity is

~

co
~

'~ with logarithmic corrections in d =2, and
above n, the long-time decay is exponential. This
was used successfully to explain' the experimentally
observed apparent density variation of the long-
time exponent in two dimensions.

The repeated-ring approximation may also be ex-
tended to its self-consistent version (SRRA) and for
d =1 a zero diffusion coefficient and an exponential
decay of the VCF at long times in agreement with
the exact solution were found. Recently, some re-
sults for the SRRA using the single relaxation ker-
nel approximation, Eq. (7a), ignoring the wave-
number dependence of the collision operator, were
obtained in one, two, and three dimensions with a
variational method. Extending their method to d
dimensions we find that the diffusion constant goes
to zero at a critical density n, =(d/Vd)(1 —1/d),
which is compared with the result n, =d/Vd of the
self-consistent ring theory and experimental results
in Table I.

IV. A NEW SELF-CQNSISTENT
KINETIC EQUATIQN

There are mainly two ways to improve the
theories presented so far. The first one is to aban-
don the simplifying assumption of ignoring the

Dimension

TABLE I. Critical density n, for the Lorentz gas of d-dimensional spherial overlapping
scatterers. MD is the molecular-dynamic experiments. MC is the Monte Carlo experiments.
SRA, Refs. 12 and 23. SRRA, Ref. 26.

1 2 3

SRRA 0

'Reference 6.
bReference 5 (extrapolation).
'Reference 25.
"Reference 24.

=0.37'
0.359+0.002'
0.64
0.32

=0.72
0.81+0.05'
0.72 d/Vd

(d/1/d )( & —&/d)



28 SELF-CONSISTENT KINETIC THEORY FOR THE LORENTZ GAS 1769

wave-number dependence of the general collision
operator C( q,z). The second one is to include new
classes of collision sequences, in particular, those
yielding infinite contributions to the velocity relaxa-
tion kernel at the critical density. It turns out that
these two points are closely related. It is easy to ver-
ify that the inclusion of a wave-number dependence
in the collision operator of the self-consistent ring or
repeated-ring theory would change the results drasti-
cally, e.g. , one would find zero diffusion in d =2 at
all densities and a long-time power-law exponent
d /2 instead of d/2+1 for d )2.

The reason for this, which will be elaborated on
later, is that in these self-consistent theories certain
collision sequences with strong infrared singularities
are summed; but other collision sequences with the
same strong infrared singularities, up to a sign by
reasons of symmetry, are completely ignored.
Hence these new collision sequences have to be iden-
tified and included to allow for a cancellation of
these singularities. A hint for the nature of these
new collisional events may be obtained from the
density expansion of the diffusion constant. It was
found that there are collisional events contributing
to the leading density correction of D which are not
included in the ring or repeated-ring theory, or their
self-consistent versions.

A. Factorization approximation,
vertex function, and kinetic equation

Notice that G3 by definition has to be symmetric
under the interchange of scatterers at positions r2
with r3 or at r~ with r6. We want to point out here
that the theories discussed so far violated this im-
portant symmetry by keeping only the first term on
the right-hand side (rhs) of Eq. (30a) which leads to
the difficulties discussed above.

Inserting Eq. (30a) into Eq. (22a), one readily ob-
tains

mz(12, 34;z) = nT+ —(11)P(13,z)T (31)5(24)

nT+ —(14)P(13,z) T (32) . (30b)

Gz(k, q —k;~, q —~;z)

i Pc- r 3+i( q —Z)- r 4Xe

and analogously for the other correlation functions.
Defining a vertex function I (k, q —k;z) by

P (k,z)I (k, q —k;z)

This is the new approximation to be discussed fur-
ther after insertion into Eq. (21). Let us introduce
Fourier transforms by

Continuing with the discussion of Eq. (21) we
suggest a simple factorization approximation for the
particle-two-scatterer correlation function G3,

= Q Gz(k, q —k;~, q —a';z)T (~ —q), (31)

G, (123,456;z)=P(14,z) [5(25)5(36)+5(26)5(35)] .

(30a)
the integral equation (21) may be rewritten in the
following way:

I (k, q —k;z)=T (k —q) —g [T (k —I~) —mz(k, q —k;a. , q —I~;z)]P (a. ,z)I (~, q —~;z),

where transforming Eq. (30b),

m&(k, q —k;sc, q —~;z)= ng T+(k —1—)P( l,z)T (1 —k)5k
I

nT+(q —~)P(—k+lr —q, z)T (k —q),

and g „denotes the wave-number integral
d"a./(2m) . The generalized Boltzmann kinetic

equation (2) for the phase-space propagator P(q, z)
may be rewritten as

[P '(q, z) —m(q, z)]P(q,z)=1, (32c)

where the memory kernel m ( q, z) may be expressed

m(q, z)= ng T+—(q —k)P (k,z)I (k, q —k;z) .
k (32d)

Notice that in these equations the velocity indices
are omitted to simplify the notation. Equations
(32a)—(32d) have to be solved self-consistently.
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m&(q, z)= ng—T+(q —k)P (k,z)T (k —q),

(33)

where the subscript R denotes ring theory. On the
other hand, in the self-consistent ring theory, one
also keeps the first telirI on the rhs of Eq. (32b).
The vertex function is thus approximated by

sit(k q —k;z)= T (k —q)

+ ms'(k, z)P (k,z)

where

&&1 sit(k, q —k;z),

ms+(q, z)= ng—T (q —k)P(k, z)

and the subscript SR denotes self-consistent ring
theory. It is easy to verify by solving Eq. (34a) for
I s~ and inserting in Eq. (32c) that msit as defined
in Eq. (34b) is indeed the memory kernel of the
phase-space propagator of the self-consistent ring
theory. In Eqs. (34a) and (34b), a very special class
of an infinite number of collision sequences is
summed that has the effect of dressing the
Boltzmann propagator and replacing it by the self-
consistent one. This is illustrated graphically in Fig.
2. The first graph on the rhs in Fig. 2 represents the

B. Relation to self-consistent ring theory

It is quite instructive to reconsider the previously
discussed theories as various special cases of Eq. (32)
by dropping certain collision sequences. The ring
theory is equivalent to truncating Eq. (32a) for the
vertex function in lowest order yielding
I ~(k, q —k;z)=T (k —q), which leads to the fol-
lowing approximation for m ( q,z):

ring collisions, the next graph a ring within a ring,
and so on.

As will be shown in Sec. IVC, the ring diagram
mz(q, z) has at finite wave number q a stronger
small-frequency singularity than at zero wave num-
ber, e.g., in d =2 it is diverging as lnz at q&0, while
at q =0 it behaves as zlnz. Hence if mz(q, z) is
iterated in the self-consistent theory and inserted,
for example, in the second diagram on the rhs in
Fig. 2, this stronger singularity stemming from
nonzero wave numbers will dominate the singularity
of the self-consistent ring diagram even at zero wave
number. This has various consequences which,
however, are not supported by experiments, e.g., a
long-time power-law exponent d /2 instead of
d/2+1 for the VCF in d & 2, or even zero diffusion
at all densities in d =2.

This stronger singularity of mz(q, z) for q&0 can
be suppressed artificially within self-consistent ring
theory by neglecting the wave-number dependence
of mR(q, z) altogether, thereby cutting off this
unwanted feedback mechanism at finite wave num-
bers. ' The same arguments apply for the self-
consistent repeated-ring theory.

The derivation of the self-consistent ring theory
presented here indicates a solution to this problem.
As explained before, in the SRA only the first part
on the rhs of Eq. (32b), or equivalently in Eq. (30a),
is taken into account, which leads to the dressing of
the propagator P in the memory kernel mR(q, z).
But in that way, one violates the symmetry of inter-
changeability of scatterers in 63 [see Eq. (30a)].
The expansion of the rhs of Eq. (32a) in powers of
the T operator makes it very clear that to every dia-
gram included in the SRA corresponds a diagram
which is not included and may be obtained from the
former by interchanging scatterer labels. These new
diagrams are generated by the second terin on the
rhs of Eq. (30a) or (32b) and they have the form of
vertex corrections. The simplest pair of graphs con-

FIG. 2. Memory kernel m(12, z) in SRA. :-,self-
consistent phase-space propagator p (see also Fig. 1).

FIQ. 3. ( ontributions to memory kernel m(12, z). (&)

insertion of a ring diagram in a ring [Fig. 1(a)], generated

by self-consistent ring theory. (b) Vertex correction, not
contained in self-consistent ring theory.
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(o) (b) C. Cancellation of leading singularities

k -]c

FIG. 4. Vertex functions I (k, q —k;z) corresponding
to Fig. 3.

tributing to m(q, z) is depicted in Fig. 3. Let us
mention in passing that the collision sequence
described by Fig. (3b) was shown to contribute to
the leading density correction of the diffusion con-
stant in d =3. In Sec. IVC, it will be shown that
these new diagrams also exhibit strong small-
frequency singularities, and moreover, exactly cancel
the leading singularities of the ring diagrams.

In the following, we will demonstrate the cancel-
lation of the leading singularities in the lowest-order
diagrams shown in Fig. 3. It is convenient to intro-
duce a complete set of states in velocity space, the
simplest of which are the density state

~

0) and the
current states

~

k ) (k =1, . . . , d). To discuss the
small-frequency and wave-number properties of the
present theory, it is sufficient to keep only these
states since possible singularities are caused by the
presence of a diffusive particle mode in the system.

First, we consider the ring-theory graph, Fig. 3(a),
or rather the corresponding expression for the vertex
function I'. An examination of the diagram with
the relevant velocity states attached to it leads us to
the following special diagram, depicted in Fig. 4(a),
as a candidate for a singularity. Its mathematical
expression is

I' '(k, q —k;z)=nVg(uo/d)f(k —q) g f (l7)(k'K)f cc(k —K,z)
k'+ z /D(k, z)

(35)

where

I' '(k, q —k;z)= g k„(n
~

I' '(k, q —k;z)
I
m )q

n, m

Here Pcc(k,z) denotes the density correlation function, and the cross-correlation function between density and
current as given in Eq. (Sb) was inserted together with the relevant matrix element of the T operator
(0

~

T (k) ~i ) = —(uc/V'0 )Vdk;f(k) with f(x)=(d/x)f&(x) and f~(x)=l (d/2)(2/x)~ ~~ Jd&&(x). Equa-
tion (35) may be rewritten as

I'"(k, q —k;z)= Vdf(q k) — R(k,z),
k'+z/D(k, z)

where R (k,z) is the lowest-order ring diagram

R (k,z)=nVd(uc/d) g f (ir)(Pc k) Pcc(k —Ir,z) .

(36a)

(36b)

In two dimensions R (k,z) exhibits an infrared divergency for k&0 due to the diffusion mode. The singular
part R, (k,z) of R is

R, (k,z) =nVd(uc/d)k f (k) ggoc(lc, z) (36c)

diverging proportional to lnz for small frequency at k&0. Inserting this into Eq. (32d) this would entail a
divergency of m (q,z) at zero wave number.

We now turn to the vertex correction, depicted in Fig. 4(b), and show that it cancels the divergency of the
ring diagram in Eq. (36b). Inserting special velocity states the corresponding expression is

-+

I ' '( k, q —k;z) =n V (u /d) f( k —q ) g f2(a.)y ( k —gc z)
(~ q) +z/D(Pc —q,z)— (37)

This vertex correction also exhibits an infrared divergency in d =2 for k&0, and this divergent part may be
written

I, '( k, q —k;z) = nVd ( u o /d )f( k ——q )f (k ) g Pcc(a,z) .
( k —q ) +z/D( k —q,z)

(38)
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This singular contribution thus cancels the singular
counterpart of I"(k,q —k;z), Eq. (36a), at q =0,
as can easily be verified. Hence both diagrams to-
gether lead to a memory kernel I (q,z) which is not
divergent at q =0. These arguments may be repeat-
ed for higher-order diagrams.

It is interesting to note that a cancellation similar
to the one of the leading singularities of the two dia-
grams in Fig. 3 for zero wave number described
above occurs also in the related quantum-
mechanical problem of the Anderson localization,
and it was shown ' that the classical diffusion
pole does not yield divergent contributions to the
current relaxation kernel at zero wave number in a
diagrammatic weak-coupling expansion.

V. SUMMARY AND CQNCLUSIGNS

The difficulties discussed in Sec. IVC are con-
nected with the fact that the vertex describing the
coupling of the current mode to the product of the
particle and scatterer density vanishes at zero wave
number. On the other hand, in the case of a fluid,
there is in addition a coupling to the transverse
current of the fluid. The corresponding vertex does
not vanish at zero wave number. This first of all
implies that the small-frequency singularity of the
VCF is stronger in the fluid than in the Lorentz gas
and, secondly, that the singularity of mz(q, z) at
nonzero wave number is not stronger than at zero
wave number. In this sense, the Lorentz gas is very
peculiar and different from the fluid. In particular,
the inode-coupling theory applied successfully in
liquids has to be modified by vertex corrections.
The present work is a first step in this direction in
the framework of kinetic theory. In this way, it is
possible to clarify and elucidate the relation between
the mode-coupling theory presented recently for the
Lorentz gas' and different versions of kinetic

theories. It is shown that the mode-coupling theory
is a self-consistent ring theory. Moreover, it is
shown that the existing self-consistent ring and
repeated-ring theories for the Lorentz gas are in-
complete because of missing collision sequences in
the foi-in of vertex corrections. A kinetic equation is
presented in Eq. (32) which includes an important
new class of collisional events, and these are shown
to cancel the spurious small-frequency singularities
of the self-consistent ring theory. The simplest of
these collision sequences was found also to contri-
bute to the leading density correction to
Boltzmann's theory in a low-density expansion of
the diffusion constant.

In view of the cancellation of the spurious in-
frared singularities of the straightforward extension
of the mode-coupling theory to finite wave numbers
the present kinetic theory appears to be promising.
But its detailed predictions, especially for long times
or near the critical density, which are entailed by the
wave-number dependence of the current relaxation
kernel, have still to be worked out. Owing to this
wave-number dependence which leads to integral
equations instead of transcendental equations' and
due to the necessary inclusion of quite intricate col-
lision sequences, the solution of the self-consistency
equations derived here is more difficult than before
and is deferred to a separate investigation.
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