Balmer- α and Balmer- β emission cross sections for low-energy H collisions with He and H₂

B. Van Zyl, M. W. Gealy, and H. Neumann Department of Physics, University of Denver, Denver, Colorado 80208 (Received 24 January 1983)

Absolute cross sections for the emission of Balmer- α and Balmer- β radiations resulting from H + He and $H + H_2$ collisions are reported for hydrogen-atom energies between about 50 eV and 2.5 keV. The polarizations of the emitted radiations are also reported. For hydrogen-atom energies above 200 eV, the contributions to these radiations from decay of the relatively long-lived 3s and 4s excited states of the projectile atoms are resolved. The results of the measurements are compared with other available data for these reactions, as well as with data for H impact on other target species.

I. INTRODUCTION

The Balmer- α (H $_{\alpha}$) and Balmer- β (H $_{\beta}$) emission lines of atomic hydrogen play important roles in many diverse areas of physics. Their wavelengths (656.3 and 486.1 nm, respectively) are easily observable, a fact which has enhanced their usefulness as tools to the physicist and the astronomer for observing and probing a wide range of physical phenomena.

This paper reports measurements of the absolute emission cross sections for these radiations resulting from low-energy hydrogen-atom (H) impact on He and H_2 targets, the simplest two-electron atoms and molecules, respectively. In spite of the relative simplicity of these reactions, however, no detailed theoretical understanding of the collisional excitation processes responsible for these emissions exists for H-atom energies in the keV range and below, where the collision velocity is well below the electronic Bohr velocity. It is hoped that the present results, which include resolution of the $3s \rightarrow 2p$ and $4s \rightarrow 2p$ hydrogenic-transition components of the total H_{α} and H_{β} signals, and determinations of the polarizations of the emitted radiations, will stimulate an interest in examining the collisional mechanisms operative in such excitation processes.

This work is an extension of the earlier results of Van Zyl et al.,¹ who reported the cross sections for production of these same emissions for the case of H + Ar collisions, and of Van Zyl and Neumann² for similar measurements for the cases of N_2 and O_2 targets. Because the experimental techniques used for the present studies (such as generation of the projectile H-atom beam, determination of the target-gas density, and absolute calibration of the photon detector) were essentially identical to those employed for the earlier H + Ar work, they will not be reviewed here. Just as in all these earlier investigations, those components of the total H_{α} and H_{β} signal resulting from decay of the relatively long-lived 3s and 4s excited states of the projectile H atoms were isolated from the other signal components by observation of the growth of the measured photon signal as a function of distance along the H-atom-beam axis into the target cell.

The H_{α} and H_{β} emission cross sections reported here have been corrected to account for the polarizations of the emitted radiations (observed at 90° relative to the axis of the H-atom beam). These polarizations, formally defined by $P = (I_{||} - I_{\perp})/(I_{||} + I_{\perp})$, where $I_{||}$ and I_{\perp} are the emission intensities with their planes of polarization parallel and perpendicular to the H-atom-beam axis, respectively, were determined by the same procedures used for the earlier H + Ar studies.¹

The total H_{α} emission cross section for proton (H⁺) impact on He was also approximately determined for H⁺ energies of 2.0 and 1.25 keV. Once again, the techniques used will not be discussed here, as they were documented in detail in an earlier paper³ describing similar measurements for H⁺ + Ar collisions.

For the case of $H + H_2$ collisions, it is of course possible to produce hydrogen atoms excited to the *ns*, *np*, and *nd* states of interest here by dissociative excitation of the target H_2 molecule as well as by excitation of the projectile H atoms. While the photon signals from these dissociative excitation processes could not be distinguished experimentally from the signals resulting from decay of the short-lived *np* and *nd* excited states of the projectile H atoms, the signals from the longer-lived *ns* excited states of the projectile H atoms could still be isolated by the same procedures used for the other target gases.

II. RESULTS OF THE MEASUREMENTS

The results of the measurements for the case of H + He collisions are shown in Fig. 1, where the total H_{α} and H_{β} emission cross sections and the contributions to these emissions from the excited states of the projectile H atoms labeled are plotted as a function of laboratory H-atom energy. The absolute values of the total H_{α} and H_{β} emission cross sections are uncertain by about $\pm 15\%$ for H-atom energies above 80 eV, increasing to about $\pm 40\%$ for the lowest-energy data.⁴ While the uncertainties associated with the contributions to these radiations from the excited states labeled are somewhat larger, only for a few of the data points showing that component of the H_{β} emission arising from decay of the 4s state, do the uncertainties exceed $\pm 20\%$.

The polarizations of the H_{α} and H_{β} radiations resulting from H + He collisions are shown in Fig. 2, where the two sets of data describe the polarizations of the total H_{α} and H_{β} emissions, and the polarizations of those parts of the emissions resulting from decay of the np + nd excited

FIG. 1. Total H_{α} and H_{β} emission cross sections for the H+He reaction. Contributions to these emission cross sections from decay of the hydrogenic states listed were separated for H-atom energies above 0.16 keV.

states. (Recall that radiation from decay of the *ns* states of hydrogen must be unpolarized, because of their spherical symmetry. Thus the two sets of values are related by the fractions of the radiations resulting from decay of the *ns* and the np + nd states populated during the collisions.) The uncertainties associated with these data are indicated by the flags on some of the points plotted.

The emission cross section and radiation polarization data for $H + H_2$ collisions are shown in Figs. 3 and 4, respectively. The emission cross sections labeled $np + nd + H_2$ reflect the inability to resolve those parts of the H_{α} and H_{β} emissions resulting from decay of the np + nd excited states of the projectile H atoms from those parts resulting from dissociative excitation of the target H_2 to all available Balmer-line-emitting states. Because of this situation, and the fact that the contributions to the total H_{α} and H_{β} signals resulting from decay of the excited *ns* states of the projectile H atoms are relatively small, only the polarizations of the total emitted radiations are presented in Fig. 4.

FIG. 2. Polarizations of the total (solid circles) and np + nd parts (open triangles) of the H_{α} and H_{β} emissions resulting from H + He collisions.

FIG. 3. Total H_{α} and H_{β} emission cross sections for the $H+H_2$ reaction. Contributions to these emission cross sections from decay of the hydrogenic states listed were separated for H-atom energies above 0.2 keV. Contribution labeled H_2 results from dissociative excitation of the target H_2 molecules.

While the uncertainties in the H_{α} and H_{β} emission cross sections from the various nl states of the projectile H atoms excited in $H + H_2$ collisions should be comparable to those cited above for H + He collisions, the uncertainty analysis is complicated by the H_{α} and H_{β} emission from dissociative excitation of the target H_2 . Because the target hydrogen atoms excited to the longer-lived 3s and 4s states by dissociative excitation of H₂ will have some kinetic energy (from their separation along a repulsive potentialenergy curve as well as from momentum transfer from the projectile H atoms during the collision), some of these excited atoms, if suitably directed, could move to positions outside the viewing field of the photon detector before decaying. While the energy and angular distributions of these excited dissociation fragments would both have to be known (which they are not) to determine properly the fractions of the total H_{α} and H_{β} emissions not detected for this reason, crude estimates suggest that it is unlikely that more than 5% of the emitted photons from this source should escape detection. Because the contributions to the

FIG. 4. Polarizations of the total H_{α} and H_{β} emissions resulting from $H + H_2$ collisions.

total H_{α} and H_{β} signals from dissociative excitation of H_2 are probably not large (as will be discussed below), the uncertainties in the emission cross section data shown in Fig. 3 should not be significantly larger than those cited for H + He collisions.

The only other experimental data which the present results can be compared with are those of Williams et al.,⁵ who investigated H_{α} emission from $H + H_2$ collisions for H-atom energies down to 2 keV. Where the two sets of data overlap, their agreement is very satisfactory, being well within mutual uncertainties. These workers were also able to separate the H_{α} emissions resulting from dissociative excitation of H_2 from those resulting from excitation of the projectile H atoms (by observation of the Doppler shift of the emitted radiations). While the fraction of the total H_{α} emission from dissociative excitation of H_2 was found to be 26% for an H-atom energy of 10 keV, it decreased to 17% at 5 keV, and to only 11% at 2 keV. Based upon this trend, the present authors would be surprised if H_{α} emission from dissociative excitation of H_2 should emerge as a major source of the here-observed emission at lower H-atom energies.

Hughes et $al.^6$ have also measured the cross sections for H_a emission from excited projectile H atoms for both H + He and $H + H_2$ collisions for H-atom energies between 10 and 35 keV. In this energy range, their results for $H + H_2$ collisions lie about a factor of 2 below the emission cross-section data of Williams et $al.^5$ Based upon the good agreement between the present results and those of Williams et $al.^5$ it seems probable that the emission cross-section values reported by Hughes et $al.^6$ for the $H + H_2$ reaction are too low, thus calling into question their data for the case of H + He collisions as well.

As noted in Sec. I, the total H_{α} emission cross section for $H^+ + He$ collisions was also approximately determined for H^+ energies of 2.0 and 1.25 keV. The crosssection values obtained were 1.7 and 0.8×10^{-20} cm² at these H^+ energies, respectively, with uncertainties of about $\pm 50\%$ of the values cited. Because of the very small magnitude of this cross section, and its decreasing value with decreasing H^+ energy, experimental limitations prevented extension of these measurements to lower H^+ energies (or to the case of H_{β} emissions from the reaction).

These limitations centered about the fact that, for H^+ energies below 1 keV, the H_{α} emission cross section for H^+ + He collisions was more than four orders of magnitude smaller than the H_{α} emission cross section(s) for H^+ impact on the residual atoms and/or molecules (of undetermined species) present in the target cell as a background gas. Thus, even with He to background-gas pressure ratios of 10^4 or so in the target cell, the measured H_{α} signal was still dominated by H⁺ impact on the background-gas species. While this problem could be overcome somewhat by operating the target-cell He pressure at values in excess of 10^{-3} Torr, second-collision effects became overwhelming in this higher-pressure region. Because the H_{α} emission cross section for H + He collisions is also much larger than that for $H^+ + He$ collisions (by about three orders of magnitude for projectile energies in the 1-keV range), conversion of only a very small fraction of the H⁺ traversing the target cell into fast H atoms via electron-capture reactions can result, from the subsequent H + He collisions, in greatly increased H_{α} signals. In fact, even for the higher H^+ energies at which the H_{α} emission cross section was approximately determined here (by detailed studies of the He target-cellpressure dependence of the H_{α} signals), ignoring the above-mentioned problems would have yielded "apparent" cross-section values much larger than those cited above.

While there are no other measurements with which these results can be directly compared, the data of Dawson and Loyd⁷ do extend down to an H⁺ energy of 3.2 keV, where the total H_{α} emission cross section for H⁺ + He collisions was reported to be 3.1×10^{-19} cm². However, this value is almost a factor of 20 larger than the value of 1.7×10^{-20} cm² obtained here for an H⁺ energy of 2.0 keV, and so rapid a variation of this cross section with H⁺ energy is highly improbable. These sets of data thus appear to be in conflict by approximately an order of magnitude in the 2–3-keV range of H⁺ energies.

III. DISCUSSION

While the H_{α} and H_{β} emission cross sections for H + He and $H + H_2$ collisions are of interest in themselves for a variety of applications, of more fundamental interest are the cross sections for excitation to the various *nl* states of hydrogen which decay via these emissions. Even though the cross sections for excitation to all these *nl* states cannot be accurately determined from the emission cross-section data in Figs. 1 and 3, a considerable amount of information can be obtained from these results.

For example, because high-lying np states of hydrogen decay highly preferentially to the 1s and 2s states, cascade population of the 3s and 4s states from such high-lying npstates (via Paschen- and Brackett-series transitions) excited during the collisions of interest should not represent significant sources of H_{α} and H_{β} emission. Thus, because the branching ratio for the $3s \rightarrow 2p$ hydrogenic transition is 1.00, the cross section for excitation to the 3s state should be quite close to that for H_{α} emission from decay of this state. Similarly, the cross section for excitation to the 4s state should be about 1.71 times as large as that for H_{β} emission from this state, as a result of the $4s \rightarrow 2p$ branching ratio of 0.584.

A further consequence of the preference of excited np states of hydrogen to decay to the 1s state (via Lymanseries emissions) is the fact that the branching ratios for the $3p \rightarrow 2s$ and $4p \rightarrow 2s$ Balmer-line-emitting transitions are only about 0.12. In contrast, the branching ratios for the $3d \rightarrow 2p$ and $4d \rightarrow 2p$ transitions have the much larger values of 1.00 and 0.746, respectively. Thus, unless the excitation cross sections for the 3p and 4p states of hydrogen are much larger than those for the 3d and 4d states, the bulk of the H_{α} and H_{β} emission cross sections labeled np+nd in Figs. 1 and 3 should result from nd-state decay.⁸ The cross section for excitation to the 3d state of hydrogen in H+He collisions should thus not be substantially below the H_{α} emission cross section labeled 3p + 3din Fig. 1, and that for excitation to the 4d state should be a reasonable fraction of 1.34 times the H_{β} emission cross section labeled 4p + 4d. Similar arguments can be made for the case of $H+H_2$ collisions, to the extent that H_{α} and H_{β} emissions from dissociative excitation of H_2 can be ignored.

The above arguments assume that cascade population of the 3d and 4d states of hydrogen can be ignored. While the assumption should be reasonably valid for transitions from higher-lying np states (because of the small branching ratios for these transitions), no similar conclusions can be reached about possible $nf \rightarrow 3d$ and $nf \rightarrow 4d$ transitions (which have large branching ratios). Because the excitation cross sections for these nf states are not known, the only kinds of arguments that can be made against the likelihood of such cascade effects are similar to those discussed in the earlier report on H+Ar collisions,¹ having to do with how such effects would perturb the measured increase in photon signal as a function of distance into the target cell. While these kinds of arguments are valid, they are not highly definitive, demonstrating only that these cascade effects are not major sources of the observed H_{α} and H_{β} emissions.

It is interesting to note that the cross sections for excitation of projectile H atoms to the 3s and 4s states in H+He and H+H₂ collisions have very similar magnitudes and H-atom-energy dependences, in spite of the considerable differences between the internal structures of these target species. Even more remarkable, perhaps, is the fact that the H-atom-energy dependences of these ns-state excitation cross sections are also very similar to those reported earlier^{1,2} for H-atom impact on Ar, N₂, and O₂, which also reach their maximum values for H-atom energies between 0.5 and 1 keV. (Curiously, the ns-state excitation cross sections for H impact on these heavier targets are also quite similar in magnitude, averaging about four times as large as those for He and H₂ targets. Note the approximate scaling of all these cross-section magnitudes with the number of outer-shell electrons present in these various target species.)

It is also interesting that the ratio of the cross sections for excitation to the 4s and 3s states of hydrogen is about 0.33 for both H+He and H+H₂ collisions. Similar ratios, although slightly smaller, were also obtained for Himpact collisions with Ar, H₂, and O₂. This ratio is not far below the value of 0.42 predicted by the n^{-3} scaling law for *ns*-state excitations of hydrogen (which scaling might be expected to be valid for much higher H-impact energies in such collisions, or for electron-impact excitation of hydrogen atoms).

The surprising consistency of these *ns*-state excitation cross sections for all the reactions discussed above seems to point to an excitation mechanism which is substantially independent of the details of the interactions involved. Could it be, for example, that these excitation processes can be thought of simply as excitation of the projectile H atoms by the orbital electrons of the target particles? While such an interpretation must be considered to be rather naive, it is consistent with the experimental observations. In any case, it would appear that whatever the operative mechanism, it is not strongly dependent on the nature of the rather different transient molecular complexes which must exist during such diverse interactions.

In sharp contrast to the similarities in all the *ns*-state excitation cross sections discussed above are those for H_{α} and H_{β} emission from decay of the np + nd states of the collisionally excited projectile H atoms. For example, for the H+Ar reaction,¹ the H_{α} emission cross section (presumably resulting largely from decay of the 3d state of

hydrogen) reaches its maximum for an H-atom energy of about 0.07 keV, where its absolute value is about two orders of magnitude larger than that for H+He collisions at a comparable H-atom energy. While the H_{α} emission cross section for H+He collisions does exhibit a structure in the H-atom—energy range below 0.1 keV, the polarization of the H_{α} emission from this reaction is here quite small, in contrast to the larger value (~0.3) resulting from H+Ar collisions. Thus, both the cross-section magnitudes and radiation polarizations point to significant differences in the details of the excitation mechanisms involved in these collisions at low H-atom energies. Essentially identical arguments can be made for the case of H_{β} emissions from these reactions.

For the case of H+Ar collisions, it was suggested¹ that the large cross sections for nd-state excitation at low Hatom energies, and the polarizations of the consequent H_{α} and H_{β} radiations, could be explained by the existence of a transient ionic state during the interaction; i.e., by thinking of the reaction sequence $H + Ar \rightarrow H^- + Ar^+ \rightarrow H^*$ +Ar. The *nd*-state-excited hydrogen atoms would thus be produced on the outward-bound leg of the collision where, at fairly large internuclear separations, the potential-energy curve for the ionic state will cross (at least in a diabatic sense) the curves leading to the postcollision $H^* + Ar$ products. However, for the case of H + Hecollisions, no such crossings are possible, because of the high potential energy of the $H^- + He^+$ state (resulting from the large ionization potential of He). Thus the absence of a large maximum in the H_{α} and H_{β} emission cross sections for H+He collisions at low H-atom energies is certainly not inconsistent with this model of the H+Ar interaction.

Comparisons of the present H_{α} and H_{β} emission crosssection data for $H+H_2$ collisions with those obtained earlier for molecular N_2 and O_2 targets² also point out some interesting differences. For example, for H-atom energies above about 0.3 keV, the H_{α} emission cross sections for H impact on N_2 and O_2 are dominated by decay of the 3sstate—excited projectile H atoms, while for H_2 targets, the bulk of the observed emission probably comes from decay of the 3d state. In addition, the polarization of the H_{α} radiation from $H+H_2$ collisions is fairly large and positive, in contrast to the generally smaller and negative polarizations for $H+N_2$ and $H+O_2$ collisions in this range of Hatom energies.

As discussed earlier for H+Ar collisions,¹ the polarizations of the H_{α} and H_{β} emissions resulting from decay of the 3*d*-state—excited projectile H atoms would be +0.48, + 0.26, and -0.70 for decay of the pure $m_l = 0, \pm 1$, and ± 2 sublevels, respectively, for that interaction. While interpretation of such polarization data may depend on the nature of the interaction (i.e., at what internuclear separations in the rotating reference frame of the collision the excited hydrogen atoms are produced), it appears likely that projectile H atoms excited to the $m_l=0$ and ± 1 sublevels of the 3d state in H+He collisions should make major contributions to the H_{α} and H_{β} radiations, because they are observed to be strongly positively polarized for projectile H-atom energies above 0.1 keV. For the cases of the molecular targets discussed immediately above, the differences in the H_{α} polarizations noted also seem to imply that differing m_l sublevel populations are being produced in the collisions, although the issue is here somewhat complicated by the basically triatomic nature of these interactions (i.e., by the uncertainty in correlating a "molecular axis" for the collisions with the H-atom-beam axis).

In summary, the H_{α} and H_{β} emission cross sections reported here can be used to determine some of the cross sections for excitation to the various nl states of the projectile H atoms populated in H+He and H+H₂ collisions. The cross sections for excitation to the 3s and 4s states of hydrogen in these collisions are remarkably similar to those obtained earlier^{1,2} for the cases of H impact on Ar, N₂, and O₂, while those for excitation to the 3d and 4d states are highly dependent on the particular target particle involved. The planned extension of this work to in-

clude Lyman- α emission cross-section measurements and to determinations of the 2s-state excitation cross sections in such collisions should provide further insight into the interaction mechanisms involved in the excitation processes.

ACKNOWLEDGMENTS

The authors thank R. C. Amme for his contribution to this measurement program. This work has been supported by the Aeronomy Program, Division of Atmospheric Sciences, National Science Foundation, and by the Department of Physics, University of Denver, Denver, Colorado 80208.

- ¹B. Van Zyl, H. Neumann, H. L. Rothwell, Jr., and R. C. Amme, Phys. Rev. A <u>21</u>, 716 (1980).
- ²B. Van Zyl and H. Neumann, J. Geophys. Res. <u>85</u>, 6006 (1980).
- ³B. Van Zyl, H. L. Rothwell, Jr., and H. Neumann, Phys. Rev. A <u>21</u>, 730 (1980).
- ⁴The total measurement uncertainties reflect quadrature combination of all known individual uncertainties associated with the measurements and the data-analysis procedures employed.
- ⁵I. D. Williams, J. Geddes, and H. B. Gilbody, J. Phys. B <u>15</u>, 1377 (1982).
- ⁶R. H. Hughes, H. M. Petefish, and H. Kisner, Phys. Rev. A <u>5</u>,

2103 (1972).

- ⁷H. R. Dawson and D. H. Loyd, Phys. Rev. A <u>15</u>, 43 (1977).
- ⁸If the H_α emission cross section labeled 3p + 3d in Fig. 1 were to result entirely from the 3p→2s hydrogenic transition, the 3p-state excitation cross section would have to be about 3.5×10⁻¹⁷ cm² at 1-keV H-atom energy. This is considered unlikely, because the 2p-state excitation cross section for H+He collisions appears to be only slightly larger than this value, as determined from the Lyman-α emission cross-section measurements of J. H. Birely and R. J. McNeal, Phys. Rev. A 5, 257 (1972).