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Giving a statistical-mechanical formulation of structure-function dynamics, we present a
formulation of a scaling law for the first-order phase transition. The basic idea proposed,
which previously appeared in a specific form, is that any function of the form Fk(t, , t2, . . .),
where k is the wave number and t~, tq, . . . are times, is scaled as

Fk(ti, t2, . . .)=[R(ti)] '[R(t2)] . F(kR(ti), kR(t2), . . . },
where R (t) is a relevant scale length, such as a linear dimension of an average cluster size,
which is found to behave as R (t) cc t'~' with z being a constant. The autocorrelation func-
tion of the density fluctuation is found to obey the scaling law for the conserved system:

Jk(t, t') = [R (t)]e[R (t')]~ eJ(kR (t),kR (t') }, 8(d/2

where d is the dimensionality. For 0=0 this scaling law can be naturally derived on the
basis of the dynamic-scaling assumption and the conservation law. However, for large t the
possibility of an anomalous scaling law (8~0) is found. On the computer simulation for the
three-dimensional spin-exchange kinetic Ising model we examine such a scaling law for the
autocorrelation function. A remarkable difference in the temporal behaviors of the auto-
correlation function is found. That observation strongly suggests the existence of the
spinodal-like line.

I. INTRODUCTION

The classical theory of the spinodal decomposi-
tion founded by Cahn and Hilliard' and formulated
by Cook gave an impact on the later theoretical
development ' in the spinodal decomposition.
The equation of motion for the time-dependent
structure factor, which is often called the structure
function, Sk(t) takes the form

Sk(t) =ak [-1—(bk —c)Sk(t)]

in the classical theory, where a, b, and c are positive
constants and k is a wave number. In the later
works, the problem is how to determine a, b, and c,
which may have dependences on k. The quantity a,
b, or c in all later theories is time-dependent. This
has been a main criticism to the classical theory.
The theory for the interri~ediate stages of the spino-
dal decomposition by Langer, Bar-on, and Miller4
gives good agreement with a computer simulation
near the critical point. " The effect of the hydro-
dynamic force was treated as a perturbation to their
theory by Kawasaki and Ohta, which nicely ex-
plained the experiment of fluid mixture. '2

In recent years, the scaling properties of the struc-

ture function of phase-separating binary mixtures in
a late stage of spinodal decomposition have been
studied theoretically, ' ' ' by computer simula-
tions' ' and experimentally. ' In these works,
attention is mainly focused on the scaling properties
of the structure function

Sk(t) = [R (t)]"S(kR(t) ),
where R (t) is a time-dependent characteristic length
scale and d is the dimensionality. The exponent d is
due to the saturation of composition in each phase
in late stages of phase separation. The characteristic
length scale R is proportional to the cluster size or
the inverse of the peak position k of Sk(t). The
validity of the scaling law (1) is based on the fact
that a relevant length scale is a linear dimension of
cluster size R only, in the late stage of the decompo-
sition where R is much larger than the therinal
correlation length g. Theoretically, such a scaling
idea appeared implicitly in the cluster-diffusion-
reaction model by Binder and Stauffer. ' The
Lifshitz-Slyozov process of a binary alloy with
off-critical concentrations and Siggia's phenomeno-
logical model for liquid mixtures with critical con-
centration are based on the similar kind of scaling
ideas. The scaling foliii (1) was used by the present
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author in order to analyze the equation of motion
for Sk(t). ' The good agreements with low-
temperature computer simulation and an off-11

critical concentration fluid mixture were obtained,
and also experimental data of binary alloy were

analyzed. In all theoretical studies the scaling as-

sumption (1) accompanies a simple power law for
the temporal change of R (t):

where A and z are constants. Recently, Rikvold and
Gunton" calculated the scahng function S(x)
without the dynamical information and compared it
with experimental data. ' '

It seems that we are now in a position to consider
the scaling law for the first-order phase transition
from more general viewpoint in order to discuss the
scaling properties of other quantities. The purpose
of this paper is to develop a scaling law for the
dynamics of the first-order phase transition, in a
somewhat general form, which already appeared in a
specific form in previous work, ' on the basis of
nonequilibrium statistical mechanics. The scaling
property of a two-time correlation function is one of
many interesting subjects. Billotet and Binder cal-
culated the two-time correlation function by extend-
ing the theory of Langer, Bar-on, and Miller. Their
theory does not, however, satisfy the scaling law (1).
The scaling property of a two-time correlation func-
tion or the autocorrelation function will be discussed
generally. It seems that there is a difficulty arising
from the uncertainty principle for examining a two-
time correlation function using a differential cross
section of particle or light scattered from a system
in a time-dependent state. On the other hand, with
a computer simulation we can develop a two-time
correlation function without any difficulty. There-
fore, instead of the theoretical example we shall
study the two-time correlation function on a com-
puter simulation. Two kinds of scaling law for the
autocorrelation function in the system with con-
served particle number are possible, i.e., one is a nor-
mal scaling law and the other is an anomalous scal-
ing law. The latter may come out for large t or for
large scale length R. An interesting classification of
the mechanisms of the spinodal decomposition will
be found from the behaviors of the autocorrelation
function.

The basic statistical-mechanical method will be
presented in Sec. II. We shall give a set of exact
linear nonstationary equations for the density fluc-
tuations, the autocorrelation function, and the struc-
ture function. The exact equation of motion for the
structure function, which has the same kernel as
that of the density fluctuation and the autocorrela-
tion function, has not been derived so far. In Sec.

III the dynamic scaling law for the first-order phase
transition will be discussed. The sealing law for the
autocorrelation function for the system with con-
served particle numbers will be discussed. In Sec.

the computer simulation for the three-
dimensional spin-exchange kinetic Ising model is
presented. Section V will be devoted to the discus-
sions. The possibility of experimental observation of
the scaling law for the autocorrelation function is
also discussed. In Sec. VI summary and remarks
will be presented.

II. STATISTICAL MECHANICAL
PRELIMINARY

In previous papers we have derived a formally
rigorous Langevin-Mori —type equation for a set of
fluctuations of dynamical variables in nonequilibri-
um states. Such an equation is convenient to the
present purpose, since in the spinodal decomposition
the density fluctuations in the wave-number repre-
sentation have zero average. The exact equation of
motion for the density fluctuation nk of minority
phase (no essential difference exists if we discuss
composition fluctuation instead of nk as used previ-
ously ' ) is written as

d
k ' k ' k

n-(t) =leak(t, t)n-(t) — yk(t, r)n-(~)dr

+fk(ts),

(fk(t, s)n k(s))p ——0, t)s

where ( )p means an ensemble average in a none-
quilibrium state, and

Here the dot stands for time derivative and Sk(t) is
the structure function

S„(t)= (n-„(t)n -„(t))p . -

Notice that (n-„(t))p ——0 for k&0 even in the none-

quilibrium state. The memory function q&k(t, r) is
related to the fluctuating force with a generalized
fluctuation-dissipation theorem

'pk(t, &)S k (r) —(f k (t,r)f k (~,r) )p=0 ~ (7)

The equation of motion for the autocorrelation
function defined by

Jk(t, s) =—(n k (t)n k (s) )p,

which is a real quantity as well as Sk(t) due to the
spatial symmetry, is obtained from (3) and (4) as
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J~(t,s) =K/ (t, t)J/ (t,s) — y(t, v') J/, (r,s)dr
t S

where

O/, (t, r)J/, (r,s)dr,
S

(9)

0'/, (t, v. ) =2K/, (t, t)5(t —r) yk(t,—r) . (10)

We shall here derive an exact equation of motion
for S/, (t), which has not been derived so far. Using
(5) we have

S/, (t) = [Kk(t, t)+K/*, (t, t)]Sk(t)

=2K/, (t, t)Sk(t),
where the asterisk denotes the complex conjugate.
Kk(t, t) is also real by the reason mentioned above.
By integrating (7) over ~ in the region from s to t,
and subtracting the resultant equality and its com-
plex conjugate from the second side of (11), we ob-
tain

N, (t) = J (f , (-t)f „(-t ))'ttdt

nk I;n (13')

Equation (12') has the same form as that of variance
equation for the system-size expansion ' and also
has been used for the study of the spinodal decom-
position. '

When (9') and (12') are applied to the second-
order phase transition, I k, S/„and N/, are time in-
dependent. Then (12') gives the usual fluctuation-
dissipation relation. The static and dynamic scaling
assumption for the second-order phase transition are
written as

(15)

r/, =k 'I o(kg),

where zo and zo are constants. We also observe that

st(t) f[ot(t, t)=+6/(tt)]&k(t)dt,
s

+N„(t,s)+N/*, (t,s), (12)

III. DYNAMIC SCALING LAW
FOR SPINODAL DECOMPOSITION

where

Nt(ts)= f (ft lt, tlf t ( , ))gtt. t (13)

Equation (12) as well as (9) is an identity and there-
fore is a rigorous equation of motion for Sk(t). The
essential point is that (12) has the same memory ker-
nel as that of (9) or (3). Therefore, this provides us
with a rigorous extension of the variance equation
obtained by the system-size expansion. '

For the scaling analysis of the spinodal decompo-
sition, a relatively large time scale such as a time in
which average cluster changes its size by the amount
of the order of itself is important. The assumption
that the fluctuating force has a short-time memory
may not lose its generality of the following discus-
sions. Mathematically this can be done by setting

0/, (t, ~) = —21 /, (t)5(t —~) .

I &(t)=[R(t)] 'I (kR(t))
=k'I" '(kR (t) ),

N/, (t) = [R (t)] 'N(kR(t) )

=k'N'(kR(t)),

(18)

(19)

where I '(x)=x 'I (x) and N'(x)=x 'N(x). In
order that (12') has a scaling solution (1), it follows
that

For the first-order phase transition Sk, r/„and
N/, are time dependent. We shall now formulate the
scaling law for the spinodal decomposition. The
scaling assumption for the spinodal decomposition
is that all such quantities are scaled by a single
time-dependent scale length R and depend time only
through R:

Then (3), (9), and (12) reduce, respectively, to

d
dt

k
n-(t)= —I &(t)n-(t)+ f-(t),k k

Jk(t, s) = —I x (t)Jk(t, s),

S/, (t) = —2r/, (t)S/, (t)+2N/, (t),

where

(3')

(9')

(12')

R -'+' (20)

Thus, (2) follows together with

(21)

Here z in (18) is initially independent of z in (2). But
now it becomes apparent that both exponents are
equivalent.

The scaling law (18) and (19) may be generalized
for the case where the memory kernel (/r(t, 7) has a
finite memory. They are written as
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Kk(t, t) =[R (t)] 'IC(kR (t)),
pk(t, r) =[R (t)] '[R (r)] 'y(kR(t), kR (r)),

(fk(t, r)f k(r, r) )o——[R (t)] ' [R(r)] 'M(kR (t),kR(r)) =[R (t)] '[R (r)] 'M '(kR (t), kR (r)) .

(18')

(18")

(19')

Here from (7) we have

@(x,y)S(y) =M '(x,y) =—(x /y)dM(x, y) . (22)

The equation of motion (12') is rewritten as

Sk(t) =2Nk(t)[1 —Xk '(t)Sk(t)],
t

where

Xk(t) =N„(t)/I „(t)=R X(kR)

Equations (2) and (21) also follow. The scaling
function I and N in (18) and (19) are related to K,
)p, and M as follows:

I

(29) into the third side. to is some constant, which is
introduced in order to avoid any difficulty in deal-
ing with trivial small scale length R &R(to).

We shall here derive the scaling law for the auto-
correlation function, for the system with conserved
particle number. We shall show that there are two
possibilities for the scaling law for the autocorrela-
tion function. The one is more general than the oth-
er. However, the general one is anomalous from the
viewpoint of the dynamic scaling law as will be seen
below. Such an anomalous scaling law is not, how-
ever, ruled out.

A. Normal scaling

For a system with conserved particle numbers, I k
should be zero at k=O since (3') is a diffusion equa-
tion:

=k-'X (kR) . lim I k=O.
k 0

(30)

Thus, Xk has the same scaling exponent d as Sk(t).
Xk corresponds to the susceptibility in the equilibri-
um statistical mechanics. By solving (9') and (12')
we obtain

Therefore, it is natural to assume that the exponen-
tial factor of (29) does not have a logarithmic term,
and we therefore obtain a norma/ forint of the scal-
ing law for Uk(t, t'):

Jk(t, t') = (ttk(t)tt k(t') )0 = Uk(t, t')Sk(t'), UI, (t, t') = vt, (t)[VI, (t')]

Vk(t)= V(kR(t)) . (32)

Sk(t)=[Uk(t to)]'S„(t,)+[U„(t,t, )]'

X k WtP

Thus, the scaling law for the autocorrelation func-
tion is written from (27) as

where
J„(t,t') = [R (t')]dJ(kR (t),kR(t')), (33)

Uk(t, to):—exp — I k(r')dr'
fp

z ~ "~ — dR'
=exp ——f„, ,

I' k)R')

dR=exp —z, ,
I * R (29)

J(x,x') = V(x)[ V(x')] 'S(x') .

For R (t) ~&R(t') we have

Jk(t, t')=Jk(t, O)=J(kR (t)) .

B. Anomalous scaling

(34)

(33')

and where

We can find that

I „(t)=t 'I *(kR(t)) .

We have used (2) to transform the second side of

The scaling law (33) or (33') is indirect to the scal-
ing law (1) which seems to have a firm physical
basis as discussed in Sec. I. Although the conserva-
tion law plays a fundamental role when we derive
(33) or (33'), this is not enough to avoid the possibil-
ity of the other scaling law different from (33) or
(33'). In fact, a rigorous restriction to the autocorre-
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V«(t)=[R(t)]8V(kR(t)), 8~0 (32')

is also possible. From (1), (27), (31), and (32') we
have an anomalous scaling law for J«(t, t'):

J«(t, t') = [R (t)]~[R (t')]" ~J(kR (t),kR(t')),

j9~0 . (35)

For R (t) »R (t'), (36) may be approximated as

J«(t, t')=J«(t, 0)=[R(t)] J(kR(t)) . (35')

From (35') and the above Schwartz inequality we
find that

0&d/2 . (36)

From (29) and (32'), I «(t) in this case is found to be

I «(t) = Bz—lnV(kR(t)) . (37)

Thus, the damping coefficient even for the con-
served system has a constant term in this case. This
is the reason why we call the scaling law (32') for
the conserved system an anomalous scaling law.

We shall here show a trick to get the anomalous
scaling law (32') for the conserved system. From
the conservation law, V«(t) must have an expression
for small k,

V/, (t) =exp[a(t)k'"], m & 0 (38)

which is not yet scaled. Equation (38) is now rewrit-
ten as

V«(t)=R exp[ —lnR +a(t)k ] . (38')

Then we may think that the exponential factor of
(38') is the lowest order of the expansion of a com-
plete expression such as

V«(t) =R exp[ —1/(a'x +1/lnR )],
x =kR(t), a(t)=a'R (lnR ) (38")

for not too large k or x, where a' is a constant in-
dependent of time. For the present example (38"),
the scaling law (32') holds for a'x & 1/lnR, while
the scaling law (32') or (32) will not hold for
a'x~ & 1/lnR . The scaling expression for V«(t) is
therefore

lation function is only the Schwartz inequality:

~
J/, (t, t')

~

' & &«(t)&«(t')

Therefore, it must be worthwhile to examine the
possibility of another scaling law for the autocorre-
lation function. We shall show that the following
scaling law for V«(t) as

The corresponding expression for I «(t) is given
from (37) as

a'x & 1/lnR

The scaling law (32') thus holds for large t, i.e., for
large R. The above discussion is by no means a
rigorous one, but gives an example of the anomalous
scaling law for the autocorrelation function for the
system with conserved particle numbers. There is
no reason why we deny the existence of the logarith-
mic term in the integration of the second term of
(28). If the logarithmic term exists, then the second
term of (28) gives the contribution of the form
(R 1nR)S~(kR). However, such a contribution gives
no serious deviation from the scaling law (1). On
the other hand, a similar kind of logarithmic term in
the exponential factor of (29) gives a drastic change
in the scaling law for J«(t, t'). From this fact we
know that the scaling law (1) is more stable than the
scaling law (33) or (35). We also consider that the
scaling law (1) would be approximately correct even
if the scaling law (33) or (35) does not hold.

Although the scaling theory discussed here is ba-
sically the direct extension of the field-theoretical
approach in previous work, ' this is also closely
related to the phenom enological scaling
theories. ' ' ' We should, however, be careful to
deal with phenomenological models. Since, the
phenomenological modes do not explicitly treat the
contribution from the fluctuating force, i.e., N«(t).
N«(t) always has the contribution from the bare
thermal noise, i.e.,

N«=k//TM k

which can be scaled as

(39)

N =R k//TM (kR) (40)

N«(t) =N«+N«(t)

with

(41)

Here M0 is a constant. If N« is only the contribu-
tion from the fluctuating force, we then obtain

a'=a0 —= (d +2) ', z =z0—=d + 2,
Z —ZD =2

where a'—:d lnR/dt =1/z. In the phenomenologi-
cal models, not z' but a' is computed. The contribu-
tion from the bare fluctuating force is not treated in
phenomenological models. Thus, by letting a'& be
the exponent obtained by a phenom enological
model, one may have'

V«(t) =R exp( —1/a'x ), a'x & 1/lnR
I

N«(t) =R 'N '(kR), z'& ——1/a
&

—d . (42)
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By comparing (42) with (40) we can find that N~
can be neglected for z'»z~ or a& &ap= 1/(8+ 2)
(for large t), while NP can be neglected for z', ~z~ or
a'& ~a~. This means that 1/(d+ 2) gives a lower
limit of the exponent a' in the field-theoretical
method. The cluster-diffusion-reaction model by
Binder and Stauffer' gives a'~ ——1/(d+ 3) for the
spin-exchange kinetic Ising model at low tempera-
tures I.n the field t-heoretical method, such a reac-
tion process should be neglected and the exponent a'
should not be 1/(d+ 3), but I/(d+ 2).' On the
other hand, the cluster-diffusion-reaction model for
fluid mixture with off-critical concentration gives
a ~

——I/d. ' In this case N~ should be neglected for
large R, and the field-theoretical method' gives the
same exponent a'=a', =1/d as that of the cluster-
diffusion-reaction model. As can be found from the
above discussion, for a~ & 1/(d+ 2) we always ex-
pect that the phenomenological exponent a '~ is
equivalent to the field-theoretical one. Therefore,
for both the Lifshitz-Slyozov process, where
a'& ———, , and for Siggia's process, " where a'& ——1, the
field-theoretical approach should give the same ex-
ponents as phenomenological ones, i.e., a'=a ~. The
exponent a'=1/(d+ 2) at low temperatures is due
to the individual transfers of atoms, while the
phenomenological exponents are due to the coopera-
tive transfers of atoms.

There is a similarity between the scaling law for
the second-order phase transition and that for the
spinodal decomposition. The damping coefficient I
and the strength of the fluctuating force N are
scaled in similar ways in both cases by a single scale
length, i.e., the thermal correlation length g and the
linear dimension of the average size of droplet R,
respectively. Such a similarity was also noted by
Binder, regarding the diffusion constants of drop-
lets in both cases. Some important differences
should, however, be recognized. Almost all ex-
ponents in both cases are not related to each other.
Especially, the exponent d for S~(t) and X~(t) in the
spinodal decomposition does not hold for the
second-order phase transition. All corresponding
functions are different from each other. For in-
stance, X(x) or S(x) does not have x tail in the
spinodal decomposition. It is usually considered
that S(x) has x ~ tail with d+ 1&y(2d. ' y de-
pends on the surface condition of droplets. If the
surfaces of droplets are not so tangled, then
y=d ~ 1. Such an x " ' tail was ascertained by
Lebowitz et al. The scattering cross section of
fluid mixture with off-critical concentration also
seems to show such a tail as k . x ' tail was
discussed also by Rikvold and Cxunton. Such an
x ' tail of S(x) is also found for the system with
nonconserved order parameter, which has the same

origin as that of the conserved system.
The most important difference between the scal-

ing laws of the second-order phase transition and
the first-order phase transition is the following. In
the first-order phase transition no final state is
reached in a finite time, while all phenomena occur
around the final state in the second-order phase
transition. This makes the two problems almost un-
correlated. In the second-order phase transition the
autocorrelation function J~ ( t, O) explicitly contains
time t. However, the inverse of time t ' in the spi-
nodal decomposition plays as the temperature
T —T, in the second-order phase transition.

We shall present here results of computer simula-
tion on a three-dimensional spin-exchange kinetic Is-
ing model. The main purpose of our simulation is
not to examine the scaling law (1), but to examine
the scaling law for Jq(t, O) [see Eq. (35')]. The scal-
ing law for Sq(t) was extensively studied by Le-
bowitz, Marro, and Kalos. ' The purpose of study-
ing S~(t) is to understand the time dependence of
R(t) in the present simulation. The simulation was
done in a similar way as in previous work. A sys-
tem is suddenly quenched from a state with initial
random configuration into a two-phase region. The
system has 24)&24/24 lattice sites with simple cu-
bic lattice structure. Monte Carlo samplings are,
however, done not for each lattice site, but for each
particle of a minority species, in order to gain a
computation time (we made simulation for small
densities less than 0.1). Usually Monte Carlo sam-
plings are made for lattice sites. The meaningful ex-
changes are, however, those between different
species. This fact makes two random sampling
methods essentially equivalent.

S-„(t)and J-„(t,O) are computed to

S-„(t)= g g [n(r;+ r, t)n(r;, t) n]—
i k-r (43)

J-„(t,O) = g g[n(r; ~r, t)n(r;, 0) n]e'—
(44)

where r and r; run over N =24 sites and n (r, t) is
~ 1 if site r is occupied, and 0 if otherwise. n is the

average density, i.e., n =N„,/N, where N„, is the
total particle number of minority phase, which is
conserved. K is a discrete wave-number vector
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with p =0,1, ,23 and a=x,y,z. For definition,
Sz (t)=n for k&0. The most interesting quantities
are spherically averaged ones:

SI,(t) = g'S-„(t) g'1, (46)

Ji, (t, O) = g' J-„(t,O) +1, (47)

I. DISCUSSION

It might be found that Jr, (t, O) becomes slightly
negative at certain wave numbers. Since J~(t, O) is
real, I 1, (t) in (9') should be real. This means that
JI, (t, O) in (9') cannot be negative. This discrepancy
between the theoretical prediction and experimental
observations is due to the short-time approximation
for the memory of the fluctuating force in the
theory. The memory effect should be considered.
Since, however, we have not observed such a
memory effect for SI, (t), the memory effect would
be small.

In both cases of the simulations we may observe
that the peak position of Ji, (t, O) saturates after end-
ing a relatively short transient state, thus satisfying
the normal scaling law (33). However, there is a re-
markable difference between the behavior of the au-
tocorrelation functions in both cases. Namely, the

where k =( —,4 )harp, @=1,2, . . . , and the sum
goes over all values of p such that

( —„)harp &
i
k

i
&(2/24)m(@+1) .

All these definitions except for JI, (t,O) are the same
as that of Ref. 11. The final form for SI,(t) and
Jr, (t,O) are obtained by averaging over eight dif-
ferent runs with the same density and the same tem-
perature T. We have done the simulation at
T=0.44T, [case (a)] and T=0.59T, [case (b)] with
the average density n=0 075 .(Figs. 1 and 2). The
time interval for simulations is 0-8000 in both
cases, where one try per particle of minority species
is taken as unit time. Our results for St, (t) are con-
sistent with those of Ref. 16. We have obtained the
exponents z and 8 in each case as

1/z =0.2, 8=0
1/z=0. 33, 8&0

in cases (a) and (b), respectively. Here the exponent
z 's were given so as to get a smooth function S(x),
and 8's were given to get J(x). However, these
evaluations may not be the most suitable ones.
Slight changes in these values do not yield rernark-
able changes in the scaling function S(x) and J(x).

peak of the autocorrelation functions in case (a) rap-
idly grows after the quench, while that in case (b)
rapidly decreases after the quench. In both cases the
structure function grows, satisfying the scaling law
(1), as already shown extensively by I.ebowitz
et al. ' In case (a) we therefore find that a part of
the damping coefficient I I, (t) is negative as was
traditionally believed. On the other hand, in case (b)
there is no negative part in the damping coefficient
I 1,(t). This seemingly peculiar phenomenon, which
was, however, previously predicted for

XI,(t) =—NI, (t)ri, (t)

f N*(r')dt', for k&k

XI (t), for k )k

(48a)

(48b)

That is, Si, (t) is nearly independent of I I, for
k & k . In such a case we are anxious about the va-
lidity of the scaling law (33) or (35) for the auto-
eorrelation function, since the scaling law (1) is in-
dependent of scaling law (33) or (35). Furthermore,
since JI, (t,O) decays, the contribution from the mi-
croscopic degrees of freedom cannot be neglected.
This also makes it difficult to justify the scaling law
for the autocorrelation function in this case.

We should here remark on another of our obser-
vations. For a certain set of different runs for
T=0.44T, and n =0 05 we . have observed the
growth in the peak of the autocorrelation function,
satisfying the anomalous scaling law (35'). But for
another set of the runs for the same temperature and
the same density we observed that the peak height of
the autocorrelation function initially grew and then
approximately saturated. In both cases the structure
function SI,(t) behaves almost in the same way. At
this moment, therefore, we cannot conclude from
our computer simulation which scaling law the au-
tocorrelation obeys best. We consider that the
anomalous scaling law for the autocorrelation func-
tion for the conserved system should not be ruled
out. For instance, if the strength of the fluctuating
force NI, (t) is neglected for k & k, we then should
have

Sr, (t) ~ [JI,(t, O)] for k &k (49)

(Ref. 14), may come from the fact that each droplet
behaves as a free-Brownian movement, which
wanders faster than its growth rate. Then the
Brownian movements easily lose their memories of
positions. Thus, Ji, (t,O) may decrease, i.e., I" may be
positive. In this case, NI, (t) is responsible to the
growth of the structure function
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and t erefore O=d/2 follows hws, s owlllg t e

siderati
anomalous scaling law for J (t 0). A
si eration also suggests the possibility of the ex-
istence of the anomalous seal' 1 . Aing aw. simple scal-
ing analysis for the density fluctuation

nk(t)=[R(t)]"~ n(kR(t)) (50)

leads to O=d/2. Equation (50) do, owever, since an appropriate expression for
nk t is

ttt t =Ut t, t')ttt(t )+U'„(t, t') J [U„tt., t')] 'f„(t)dt .

The second termerm gives the scaling law (1), even if
is not equivalent to d/2. Muchuc more information

ou t e autocorrelation functions of phase-
separating binary mixtures will be needed. otice
that the scaling law (35) or (35') '

the order ar
or is not anomalous if

e or er parameter is not conserved W
sider here t e

e wlix coI1-
e physical meaning of the diff

behaviors in the
e i erenow

above simulation.
e autocorrelation function h

ation. We can observe that the auto-
correlation function J ( 0) '

creases, while that in case (b)
' ' '

ll

w i e it as no negative part in case (b) in the ear y

ince t e damping coefficient I ( )
' d'

e to the second derivative of the free ener t e

nega ive part, while it has no negative art i
ar y stage of the phase separation. This

in icates that there is a spinod 1-1'k 1'o a - i e me in between

the two statesates considered above (see Fi . 3) Th'
line shoulduld, however, be distinguished f he rom t e spi-

a llile w e
a ine m a usual sense. The spinod 1-1'k 1'

where a free energy of metastable states e-
comes singular. That free energy is obt

'

ana y ic continuation or coarse graining. The
spinodal-like line thus obtai d

'
aine is not unique, but

depends on parameters such as a volume of the
coarse-grained cell in a system with short-range in-
teracting forces. It is plausible that th
ine i enti ie in t e present work is related to the

spinodal-like line through an kan un nown volume size
of the coarse-grained cell. At th'is moment, howev-

the spinodal line in a usual sense.
o ar, to set a spinodal-like line by means of onl

This isis is because that the equation of motion for the
structure function aion as an mhomogeneous term Xk(t)
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ae (t) Re[t((t))e f ttt'e' " 't[tt(t'l]e eJ(kR(t), ktt(t')) . (53)

If the integrand of (53) changes rapidly, then ok (t)
has a time dependence as

ae(t) f d te ae(t)

always behaves in the same way as (54).
ok „(t)oc [R (t)] (54)

VI. SUMMARY AND REMARKS

cr„„(t)~ [R (t)] (55)

Equation (55) provides us with a possibility to ob-
serve the scaling law for the autocorrelation func-
tion. The total cross section

which is, however, essentially the same as that of the
scattering cross section from an equilibrium system.
On the other hand, if the integrand of (53) changes
slowly, then o.k (t) has a time dependence, which is
different from (54), as

The main purpose of this paper has been to ex-
plore the general framework of the scaling law for
the first-order phase transition. An exact descrip-
tion of the motion for the structure function Sk(t)
and the autocorrelation function Jk(t, t') are avail-
able. The equations of motion for both quantities
have the same memory kernel.

The basic idea for the scaling law for the first-
order phase transition of the system with conserved
particle numbers is that any quantity depending on
wave number k and times t [,t2, . . . , is scaled as

Fk(t&, t2, . . . )=[R(t[)] '[R(t2)] ' . F(kR(t[),kR(t2), . . .), (57)

where R (t) is a relevant scale length at time t. The
scaling law (57) is similar to those for the second-
order phase transition. Applying such a scaling
law as (57) to the equation of motion for Sk(t),
which is assumed to be scaled as (1), the dependence
of the scale length R on t is rederived as (2). There-
fore, (57) may also be written as

Fk(t, ,t, , . . . ) =t, 't, ' F(kt', ',kt,' ', . . . ) .

(57')

The scaling property of the autocorrelation func-
tion Jk(t, 0) was discussed. Two types of the scaling

Tc

~A
0

FIG. 3. Schematic aspect of the spinodal-like line. The
points A and B correspond to cases (a) and (b), respective-
ly. Inside the coexistence curve, the structure function
grows. Inside the spinodal-like line the autocorrelation
function would grow. In between the coexistence curve
and the spinodal-like line the autocorrelation function
would decay, while the structure function grows.

I

law for the autocorrelation function has been dis-
cussed. One is the normal scaling law (33) or (33'),
which can be naturally derived from the dynamic
scaling law discussed here, and from the conserva-
tion law. The other is the anomalous scaling (35) or
(35'). In the present computer simulation case (a),
where T=0.44T, and n=0 075, seem. s to follow the
normal scaling (33'). Case (b), where T=0.59T, and
n=0.075, also seems to obey the normal scaling law
for the autocorrelation function. However, we can-
not deny the possibility that the autocorrelation
function in this case obeys the anomalous scaling
law or does not obey the scaling law. It is difficult
to justify the scaling property for the autocorrelation
function in this case because of the large fluctuation.

There exists a remarkable difference between the
behavior of the autocorrelation functions in cases (a)
and (b). Namely, the autocorrelation function in
case (a) grows and then saturates, while the auto-
correlation function in case (b) decays and then
seems to saturate. In both cases the structure func-
tions grow, satisfying the scaling law (1). This fact
strongly suggests that there is a spinodal-like line in
between two states corresponding to these eases. At
this moment it is not clear which scaling law, the
nokikkal one [(33)] or the anomalous one [(35)], is
usually satisfied. However, it would be correct to
say that there exist two opposite behaviors in the au-
tocorrelation functions according to whether the
quenched state locates inside or outside the
spinodal-like line. At this moment, however, noth-
ing is known about the relation of the spinodal-like
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line identified in the present work with the
spinodal line in a usual sense. The mechanisms of
the phase separations in both cases are different
from each other. In case (b) the growth of the struc-
ture function and therefore of the cluster size is due
to the fluctuating force fk(t), while in case (a) the
negative part of the damping coefficient is also im-
portant for the growth of the structure function. To
find a spinodal-like line is, however, left for the fu-
ture problem, together with the scaling law of the
autocorrelation function in a real system.

So far the discussion rests on the general con-
sideration of dynamical scaling for the spinodal
decomposition. Except for a few examples discussed
in the previous paper, ' the calculation of the scal-
ing expressions for the damping coefficient I k and
the strength of the fluctuating force Nk has not been
obtained for other cases. Various theoretical estima-
tions of the temporal change of R, for example, the
exponent z, based on the scaling idea, ' ' ' howev-
er, provides us with useful infoririation for the
damping coefficient I k(t) and the strength of the
fluctuating force Nk(t).

We shall remark here on the essential deviation of
scaling law from (1), which would be important
when we calculate I k and Nk by microscopic calcu-
lations. As an example, we consider the Lifshitz-
Slyozov process. For this process, the differences
in chemical potentials among droplets are essential.
Such differences in chemical potentials give only
small correction to the scaling law (1). However,
this correction is important to the dynamical
behavior of Sk(t), i.e., is effective to I k and Nk.
Such a small correction is also crucial to the spino-
dal decomposition of fluid mixture with critical con-

(p„(t) „(t)) =R 'S""(kR),

(pk(t)p k(t) )o R——S""(kR) .

(59)

(6O)

Since the deviation of the density in a droplet from
the value at the coexistence state can be regarded as
a linear functional of 5p, the deviation of the scaling
law from (1) is

Sk(t) R "S(k—R)=Rd 'S&(kR)+O(Rd 2) .

Throughout this paper, we have considered the
system with conserved particle numbers. A similar
idea would also be possible for the system with a
nonconserved order parameter.
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centration proposed by Siggia. The chemical po-
tential is written as

p(r) =po+5p(r),
where po is the chemical potential at the coexistence
state at a given temperature. 5p is a quantity of the
order 1/R [notice that 5n =n n i—s a quantity of
the order O(1)]. Thus, we obtain the scaling law for
5p as
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