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Wiener-Hopf factorization technique as suggested by Baxter has been used to solve the
Qrnstein-Zernike equation for a system of hard spheres in the framework of a generalized

mean spherical model. The method reported here yields unambiguous and accurate values

of the radial distribution function g (r), direct correlation function C(r), and the structure
function S(k). These thermodynamic quantities have been calculated from low to fairly

high densities and, with a normalized g (I(!), they have been compared with the molecular-

dynamics values of Alder and Hecht.

I. INTRODUCTION

The experimentally determined structure function
curves for simple monatomic liquids like argon,
sodium, or potassium look astonishingly similar to
those calculated for an assembly of hard spheres. '

So it is natural to consider a statistical system of
hard spheres as a practical unperturbed first refer-
ence system for dense fluids. Based on this ob-
servation, Andersen, Chandler, and Weeks have
suggested a simple phenomenological equation for
the radial distribution function,

—g(r)/k~ T
g(r) =go(r)e

where g(r) is a renormalized potential and go(r) is
the hard-sphere radial distribution function. The
simple Eq. (1) has been tested for several real fluids.
It is in exceedingly good agreement with all avail-
able data. Obviously enough, the small discrepan-
cies have been attributed by the above authors to be
mainly due to the nonavailability of reliable hard-
core values go(r). One of the major aims of the
present work is to suggest a novel method for ob-
taining accurate values for go(r) as well as other
correlation functions for the hard-sphere system.

It has to be realized that for dense fluid the deter-
mination of the go(r) from its basic definition in-
volving the partition function is extremely difficult.
Therefore the study of the integral equations for
go(r) provides a better alternative and is highly in-
structive. There are two such well-known equations,
one by Born and Careen (BCJ) and the other by Orn-
stein and Zernike (OZ), with various closures. The
BC& equation has the advantage that it predicts a
possible phase transition for a system of hard
spheres at pR =0.95, where R is the hard-sphere di-
ameter and p is the particle number density. But it

breaks down at high density. Therefore in this pa-
per, we shall confine ourselves to the simpler and
more elegant OZ equation, which relates the direct
correlation function C(r) to the total correlation
function h (r) [h (r) =g (r) —1] by

h (r)=C(r)~p fC(r ')h (
(

r —r '
(
)dr ' . (2)

The closure is made by proposing C(r) as

C(r) =g(r)(1 —e ),
called the Percus-Yevick (PY) equation, or

C(r) =h (r) —lng(r) —u(r)IkttT,

called the hypernetted-chain (HNC) equation. Out
of the two closures the PY' '" equation is simpler
and perhaps more accurate, and using this, the OZ
equation can be exactly solved for hard sphere. But
the disadvantage of the PY approximation is that
the equations of state obtained from virial and
compressibility equations are not unique. Thus the
value of correlation functions will be different.
Since this will be the major point of our subsequent
analysis, we further explain this point. The expres-
sion for pressure is

" du(r)=p —
3 7rp g (r)r dr

kgT o dr

and leads to the virial equation of state for the hard
spheres

= (1+ri+ g' —3'') I(1—q)', (6)
pktt T

whereas another expression can be deduced from the
compressibility relation

1 t)p (+p f h (r)drr
—1

gT p
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=1+4gg(R+ )
kgT

(R+ and R are defined as R + 0 and R —0,
respectively). The two values of g(R+ ) so obtained
will be denoted by g "(R+ ) and g'(R+) of which
g'(R+ ) is found to be closer to the exact value cal-
culated by computer experiment.

We shall show that the theory can be made con-
sistent by postulating the appropriate discontinuity
in C(r) at r =R. That there exists a jump for C(r)
across R has already been shown by Croxton. ' He
considered a restricted class of diagrams, called a
small watermelon class, and obtained an expression
which shows a striking jump of C(R) from R+ to
R . But that does not remove the inconsistencies
altogether. So we follow a different technique,
which is outlined in Secs. II and III.

The Fourier transform of the OZ equation is

h(k) =C(k)+ C(k)h(k) . (10)

To solve this, a function A(k) is introduced such
that

A(k) =1—pC(k) =[I+ph(k) j

A Wiener-Hopf' factorization is carried out and

A(k)=Q(k)Q( —k) . (12)

The function Q(k) is regular, has zeros in the lower
half plane, and can be written in the form

{)(k)=)—2»rp I dr»'"'{?(r) . (13)

Q(r) is a real function and is very useful for the fol-
lowing discussions.

For the PY approximation C(r) is strictly zero
beyond the hard-core diameter R. In this case one
calculates g"(R). To arrive at the correct value of
g (R ), Waisman, Lebowitz, and Percus' ' have
followed a mean spherical model in which C(r) is
extended. We have followed the treatment which
represents a generalized mean spherical model where

Q (r) is extended rather than C (r). This has got cer-
tain advantage in the sense that knowledge of Q(r)
not only gives C(r) beyond r &R, but the whole

By integrating, the pressure p' is now given by

(c) =(1+g+ g') l(1—g)' .
kgT

It is called the compressibility equation of state.
For low densities g~0 both Eqs. (6) and (8) are
identical, but for g —+1, i.e., for dense fluids, one is
quite different from the other. The two expressions
for pressure come from the same radial distribution
function. But they differ because the latter is not
exact. From Eq. (5), for a hard core,

thermodynamics also becomes clear via the inverse
compressibility equation. Q (r) and its Fourier
transform Q(k) have to satisfy certain boundary
conditions and analytic properties, respectively. So
in the simplest case it is chosen as a polynomial
beyond r &R. It is extended until r =R+cr. Then
o is made smaller and smaller to the extent that the
calculated values of g(r) become independent of cr

This extrapolates to the correct value of g'(R+) as
obtained from the compressibility equation of state.
It should be noted that

g(R+ ) —g(R ) =C(R+ ) —C(R )

is a direct consequence of the OZ equation. The
value of C(r) for r &R is unaffected when the range
is extended beyond R to R +o.

Further, the values of the structure function S"(k)
reported in literature refer to the Fourier transform
of h '(r) which would follow from less accurate
g"(r). We shall report the values of S'(k) obtained
by Fourier transforming g'(r) We a.lso report C(r)
in Sec. III for several densities.

It must be emphasized at this stage that none of
the values of g'(r) and g "(r) agree with the
molecular-dynamics (MD) data of Alder and
Hecht. ' These data will be tabulated under g (r)
It is possible to obtain this g (R) by choosing a
different adjusted value for Q'(R+). The values of
g ~(r ) calculated in this phenomenological way
agree quite well with the MD data. The correspond-
ing S(k) values have also been calculated. These are
reported in Sec. IV.

II. FORMALISM

The Wiener-Hopf and Baxter' formalism has
been extensively discussed in the literature. ' So a
brief outline is given here with more emphasis on
our method of computation of go(r).

With the help of Eqs. (11) and (12) it can be
shown that Eq. (2) can be split into

»C(ri= —g'(r)~2»rp f dt Q'(t) (t{—)r) (14)

for 0 & r &R and if C (r) =0 for r & Rand,
rh (r) = —Q'(r)

+2»rp J dt(» —t)h()r t) ){)(t) (15)—
for r & 0, where Q'(r) is the derivative of Q (r).

Since h (r) = —1 for r &R,

Q'(r)=ar+b for 0&r &R .

By integrating and comparing, one gets

Q(r) =a/2(r R)+b (r —R),—
where
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a =(1+2g)/(1 —q)

b = ——,Rg/(1 —g)

Once Q(r), It (r), and C(r) are known in the range
0 & r & R, the value of h (r) for r & R can be obtained
through the Fourier transform of

and h(k) = I [Q(k)Q( —k)] ' —l I /p . (22)

q=nR p/6 .

It is easily seen that

C(r)= —a +6g[(1+g/2) /(1 g) —]r/R
—g/2[a (r/R) ]

for r &R.

(20)

(21)

But the inverse transforiri h (r) from h(k) poses
some computational difficulty and is found not to
converge rapidly. However, this can be computed
fairly accurately by Wertheim's zone by zone
method. Alternatively, Baxter' has suggested to
work with the one-sided Fourier transform of h(r),
that is,

R R —r
h+(k}=— f dr e' ' Q'}r}+2mp f dt}h (t}Q( ~}r} (k) . (23)

C =2R(a +b/R) (2S)

S =2a 4mpR —R —+bR (a+b/R) . (26)

{s)

The inverse transforiii of b+(k) leads to h (r) rela-
tively easily for hard core alone. However, this rela-
tion is not particularly suitable if C(r) or Q'(r) ex-
ists beyond the hard core. We find an infinity-
subtraction method works very well for this prob-
lem. The high-k behavior of h (k), denoted by
b (k), is subtracted. The inverse transform of

b,h(k) =h(k) —h „(k)
is calculated rather than h(k) itself. For the hard
core h (k) is taken to be

b (k) =C cos(kR)/k —S sin(kR)/k, (24)

where the coefficients are

I

The h (r) is easily calculated exactly from the in-
tegral tables

It (r) =S /2 for r &R,
h (r)=(S —C )/2r for r)R .

(27)

III. CALCULATION OF CORRELATION
FUNCTIONS IN THE GENERALIZED

MEAN SPHERICAL MODEL

The h (r) is to be added to the Fourier transform of
hh(k). It is to be noted and we emphasize that only
in this way have we been able to strictly obtain h (r)
close to —1 for r &R, which must be satisfied in all
computations.

The radial distribution function go(r) obtained by
this inversion is g (R+) at r =R+, appropriate to
the more inaccurate virial equation of state. This is
the g(r) normally used in all calculations using
hard-core results. The structure function S"(k) cal-
culated using Eq. (22) would also give theoretically
less-accurate values.

As suggested earlier, to get the correct value of
g (R+), one has to introduce the discontinuity in
Q'(r) and C(r). We shall discuss these points in Sec.
III.

l
0

CS

I,O-

O

I}

c (R+)
}I Assuming that Q(r) and C(r) exist beyond the

hard core until, for example, R +a, the Baxter
equation (15) becomes

TABLE I. Q'(R+) for g'(R), g'(R), and g (R) for
different densities. q is packing fraction.

-5.00 I

I /R
-50

10 0 r/R g "(R) g'(R) g MD(R )

FIG. l. (a) Q'(r) at four different densities. Dots at
the bottom represent the Q'(R+) values. Lowest value of
Q'(R+) refers to the highest g. (b) C(r) at four different
densities. Dots at the top refer to the C(R+) values.
Highest value of C(R+ ) refers to the highest 7l.

0.246
0.370
0.435
0.462

—0.11
—0.41
—0.79
—1.04

—0.10
—0.32
—0.55
—0.69
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FIG. 2. (a) g'(r) values for r1=0.246 with the dashed line for o =0.9, the dot-dashed line for cr=0 1, and the. solid line
for cr =0 (b) Sam.e as (a) for 2) =0.37. (c) Same as (a) for 2) =0.435. (d) Same as (a) for ri =0.462.

Q'(r) = rh (r)—
R+a

~2rrp f dt(r —t)h() r —t
~

)Q(t) .

Here
R R+a

A = I —2trp f Q (t)dt —2trp f Q (t)dt

For r & R this reduces to

Q'(r) =Ar +8
R +o.

+2~p t r —tg r —t t

and
R R+a

tt =2~p f tQ(tidt+2~p f tQ(t)dt .

(30)

(29)
Gne can see that the last term in Eq. (29) does not
vanish in the region for small r, 0& r & o. So Q'(r)
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TABLE II. Calculated values of g'(r) compared with corresponding g (r) values for four different densities at cr =0 I.
and R =1.

1.00
1.02
1.04
1.06
1.08
1.12
1.16
1.20
1.24
1.28
1.32
1.36
1.40
1.44
1.48
1.52
1.56
1.60
1.64
1.68
1.72
1.76
1.80
1.84
1.88
1.92
1.96
2.00
2.04
2.08
2.12
2.16
2.20
2.24
2.28
2.32
2.36
2.40
2.44
2.48
2.52
2.56
2.60
2.64

g (r)

2.07

1.78
1.65
1.53
1.43
1.35
1.28
1.21
1.16
1.10
1.06
1.02
0.99
0.97
0.95
0.94
0.92
0.92
0.92
0.92
0.92
0.93
0.95
0.97
0.99
1.00

0.246

2.081
1.910
1.849
1.780
1.747
1.626
1.527
1.436
1.353
1.279
1.212
1.153
1.100
1.055
1.017
0.984
0.958
0.937
0.921
0.911
0.905
0.904
0.907
0.914
0.925
0.939
0.957
0.978
0.998

gMD( )

3.30

2.77

2.36
2.03
1.76
1.55
1.37
1.23
1.10
1.01
0.94
0.88
0.84
0.81
0.78
0.79
0.79
0.80
0.82
0.85
0.88
0.91
0.96
1.00
1.06
1.10
1.14
1.15
1.14
1.13
1.10
1.08
1.06
1.04
1.02
1.00
0.98
0.97
0.96
0.96
0.95
0.96

0.370

3.396
3.000
2.634
2.470
2.312
2.044
1.801
1.588
1.406
1.252
1.124
1.019
0.936
0.871
0.824
0.792
0.774
0.767
0.770
0.783
0.803
0.829
0.862
0.899
0.941
0.987
1.036
1.087
1.127
1.145
1.145
1.133
1.113
1.089
1.063
1.037
1.012
0.991
0.973
0.959
0.949
0.943
0.944
0.944

g (r)

4.36

2.68
2.17
1.79
1.49
1.27
1.10
0.97
0.87
0.80
0.74
0.70
0.69
0.69
0.69
0.71
0.75
0.80
0.86
0.91
0.98
1.04
1.09
1.15
1.22
1.27
1.26
1.22
1.17
1.12
1.06
1.01
0.98
0.96
0.94
0.92
0.91
0.92
0.92
0.92

0.435
g'(r)

4.600
3.800
3.220
2.940
2.687
2.265
1.891
1.579
1.323
1.119
0.960
0.841
0.755
0.699
0.667
0.656
0.662
0.681
0.711
0.750
0.796
0.848
0.903
0.962
1.023
1.086
1.151
1.217
1.257
1.255
1.224
1.176
1.121
1.065
1.013
0.967
0.931
0.904
0.887
0.880
0.881
0.890
0.904

4.95

3.73

2.89
2.23
1.76
1.44
1.20
1.01
0.89
0.80
0.73
0.69
0.66
0.65
0.65
0.67
0.69
0.74
0.80
0.87
0.96
1.03
1.10
1.17
1.22
1.28
1.31
1.28
1.23
1.16
1.10
1.03
0.99
0.95
0.91
0.88
0.87
0.87
0.87
0.89

0.462
g'(r)

5.300
4.140
3.528
3.100
2.859
2.349
1.903
1.539
1.249
1.025
0.858
0.739
0.660
0.615
0.597
0.601
0.623
0.658
0.703
0.756
0.815
0.877
0.942
1.008
1.076
1.145
1.214
1.284
1.319
1.300
1.246
1.175
1.098
1.025
0.962
0.910
0.873
0.850
0.841
0.843
0.856
0.876

for r &R is not necessarily linear in r. However, ex-
panding g (r) near r=R to the lowest order in o, the
last teria in Eq. (29) becomes

R +cr
2mp t r —t

X[g(R)+(R t+r)g'(R t+r)—+ ]Q—(t) .

Hence Eq. (29) will reduce to

Q'(r) =Ar +B
+2wpg(R) f g(t)dt(r t)+—

(32)
which is linear. Furthermore, if one constructs the

Q (t) 's beyond t & R such that

~ =0 (33)
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TABLE IV. Calculated values of C(r) at four different
densities for o.=0.1 and R=1.

00 2 4 8 10 12 14 16 18 20
kp

FICz. 3. S'(k) values for four different densities.

z =2(r R)/—cr 1—
and using the conditions

Q„(z) ~, = l=g(R+)=0

(34)

and

tt t =0,
Eq. (32) reduces to a linear form.

Q'(r)=ar+b for r (R with a and b given by
(18)—(20). Equation (33) forms two important con-
straints for Q (r) beyond R.

Introducing a change of variable

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10

0.246

—6.887
—6.312
—5.742
—5 ~ 182
—4.637
—4.113
—3.614
—3.146
—2.713
—2.321
—1.975

0.105
—0.008
—0.039
—0.028
—0.002

0.018
0.025
0.016

—0.002
—0.015

0.000

—19.219
—17.243
—15.289
—13.378
—11.531
—9.769
—8.113
—6.586
—5.208
—4.M)0
—2.985

0.410
—0.031
—0.154
—0.110
—0.009

0.073
0.099
0.062

—0.009
—0.058

0.000

0.435

—34.315
—30.526
—26.782
—23.127
—19.607
—16.265
—13.148
—10.299
—7.764
—5.587
—3.813

0,786
—0.059
—0.296
—0.211
—0.018

0.140
0.190
0.120

—0.017
—0.112

0.000

0.462

—46.345
—41.073
—35.866
—30.789
—25.907
—21.285
—16.987
—13.079
—9.625
—6.691
—4.341

1.080
—0.081
—0.406
—0.289
—0.024

0.192
0.260
0.135

—0.024
—0.155

0.000

Q„(z) ~,=+i=g(R+~r)=0,
we find that for r )R

Q„(z)=—Q'o.(1—6z +5z )/16

+Q'o(3z —10z +7z )/16,

(35)

TABLE III. Calculated values of structure function
S'(k) at four different densities at o =0.1.

where Q'o. is the derivative of Q at z = —1, and as
such, Eq. (36) satisfies all the constraints of Eq. (33).
For o ~0, Q' (R)=Q'(R+ ).

The discontinuity as estimated for both Q'(r) and
C(r) is shown in Fig. 1. The Q'(R+ ) 's are the bot-
tom bold points of Fig. 1(a) and the C(R+) 's are
the top bold points of Fig. 1(b).

The Fourier transfoinL Q(k) is of the form

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0.246

0.1565
0.1967
0.2907
0.5034
0.9333
1.3343
1.2078
0.9745
0.8787
0.9007
0.9895
1.0670
1.0661
1.0093
0.9621
0.9566
0.9867
1.0226
1.0326
1.0125

0.370

0.0561
0.0711
0.1079
0.2042
0.5103
1.4646
1.6269
0.9801
0.7606
0.7749
0.9353
1.1347
1.1634
1.0311
0.9216
0.9022
0.9610
1.0452
1.0764
1.0321

0.435

0.0314
0.0395
0.0595
0.1117
0.2871
1.1328
2.1841
1.0065
0.6787
0.6748
0.8638
1.1724
1.2612
1.0572
0.8903
0.8558
0.9325
1.0596
1.1170
1.0523

0.462

0.0242
0.0303
0.0454
0.0845
0.2151
0.9018
2.5745
1.0287
0.6369
0.6243
0.8184
1.1824
1.3208
1.0744
0.8743
0.8306
0.9148
1.0653
1.1406
1.0647

g(k) =Q/„(k)+ g (k),
where Ql„(k) is given by Eq. (13) and

R+u
Q (k)= —2' I e' 'g(rldr .

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50

0.246

0.105
—0.007
—0.036
—0.025
—0.002

0.015
0.020
0.012

—0.001
—0.011

0.000

0.370

0.410
—0.029
—0.143
—0.098
—0.008

0.061
0.080
0.49

—0.007
—0.044

0.000

0.435

0.786
—0.057
—0.274
—0.189
—0.015

0.118
0.154
0.092

—0.013
—0.084

0.000

0.462

1.080
—0.078
—0.377
—0.259
—0.021

0.162
0.212
0.130

—0.018
—0.116

0.000

TABLE V. Calculated values of C(r) at four different
densities for 0 =0.5 and R = 1.
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TABLE VI. Calculated values of C(r) at four different
densities for ~=0.9 and R = 1.

r/R

1.00
1.09
1.18
1.27
1.36
1.45
1.54
1.63
1.72
1.81
1.90

0.246

0.105
—0.007
—0.034
—0.023
—0.001

0.013
0.017
0.010

—0.001
—0.009

0.000

0.370

0.410
—0.028
—0.133
—0.089
—0.007

0.053
0.068
0.041

—0.005
—0.035

0.000

0.435

0.786
—0.055
—0.256
—0.171
—0.013

0.101
0.130
0.078

—0.010
—0.068

0.000

0.462

1.080
—0.075
—0.351
—0.235
—0.019

0.139
0.179
0.108

—0.015
—0.093

0.000

I. 2
I I I

1.4 1.6 I. e 20 22 24 26
r/p

FIG. 5. g o(r) values and gE~(r) values are represent-
ed by the solid and dashed line, respectively, for g =0.37.

Transforming the integral in Eq. (38) to the z space
one gets

1

Q (k) 2~+ eik(R +n/2) eiknz/2Q (z)dz00 0 7

C =2R (a +b/R) 4RQ'—

S =2a+ [24Q' —12(a +b/R)] ir/(1 —g)

+64Q'R /o. . (41)

1.2

0.8 '
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(4) % = 0.246

-0.4
0.8—

0.4

0

(I)
(2)
(&)
(4) (t )

-o.4 Q
I

I.O I. I

I I I I I I

I.2 I.3 l.4 l.s l.6 I.7
r/8

I
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FIG. 4. C(r) values beyond the hard-core radius. (a)
cy =0.9, (b) o.=0.5, and (c) cr =0.1.

which is more amenable to direct computation.
As before, we make an inverse transform of

b,h(k)=h(k) —h„(k) .

h (k) is again given by Eq. (24) with changed coef-
ficients:

Using Eq. (39) in Eq. (37) and finally making use of
Eq. (22) one can evaluate S'(k).

MD results for hard-sphere distribution functions
by Alder and Hecht are available for four different
densities. We now attempt to compute the g'(r) at
these densities with the additional extension to Q (r).
Take, for instance, g=0.246. The g'(R+ ) calculat-
ed for this density is 2.08. The Q'(R+) to obtain
this g'(R+) is —0.11. Using this Q'(R+), we recal-
culate Q(r) and g'(r).

Similarly, we furnish the Q'(R+)'s for g"(R),
g'(R), and g (R) for four different densities in
Table I. For each density g'(r) is calculated for dif-
ferent o, of which o =0.05, Q. l, and 0.9 are report-
ed. At a particular density, g'(r) changes appreci-
ably from a=0 9to 0.3 b.ut there is almost no
change in g'(r) for smaller values of cr, especially for
o =0.1 and 0.05. The values of g'(r) for various r
up to r/R=1. 32 are plotted in Fig. 2 for three dif-
ferent cr, such as cr=O, 0.1, and 0.9. The g(r) for
o =0 relates to g "{r). There is a remarkable change
in g(r) for or=0 and 0.1 in the region r/R =1 and
almost no change when r/R ~&1. The g'(r) values
for o =Q. 1 is closer to MD data. So g'(r) for o =0.1

are compared with the MD data at four different
densities in Table II.

The structure function S'(k) is computed at four
different densities and plotted in Fig. 3. The values
are furnished in Table III. The results do not show
much changes over the S"{k)in the low-k region.

Even more striking is the behavior of the direct
correlation function with o. With Q (z) known,
C(r) can be easily obtained from Eq. (14). One gets
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TABLE VII. Calculated values of g o(r) compared with g (r) at four different densities for o =0.1 and R= l.

1.00
1.04
1.08
1.12
1.16
1.20
1.24
1.28
1.32
1.36
1.40
1.44
1.48
1.52
1.56
1.60
1.64
1.68
1.72
1.76
1.80
1.84
1.88
1.92
1.96
2.00
2.04
2.08
2.12
2.16
2.20
2.24
2.28
2.32
2.36
2.40
2.44
2.48
2.52
2.56
2.60
2.64

gMD( )

2.07
1.92
1.78
1.65
1.53
1.43
1.35
1.28
1.21
1.16
1.10
1.06
1.02
0.99
0.97
0.95
0.94
0.92
0.92
0.92
0.92
0.92
0.93
0.95
0.97
0.99
1.00

0.246
g o(r)

2.070
1.849
1.747
1.627
1.527
1.436
1.353
1.279
1.212
1.153
1.101
1.0S5
1.016
0.984
0.958
0.937
0.921
0.911
0.905
0.904
0.907
0.914
0.925
0.939
0.957
0.978
0.998

3.30
2.77
2.36
2.03
1.76
1.55
1.37
1.23
1.10 q

1.01
0.94
0.88
0.84
0.81
0.78
0.79
0.79
0.80
0.82
0.85
0.88
0.91
0.96
1.00
1.06
1.10
1.14
1.15
1.14
1.13
1.10
1.08
1.06
1.04
1.02
1.00
1.98
0.97
0.96
0.96
0.95
0.96

0.37
g o(r)

3.301
2.635
2.315
2.045
1.801
1.589
1.406
1.252
1.124
1.019
0.936
0.871
0.824
0.792
0.774
0.767
0.770
0.783
0.803
0.829
0.862
0.899
0.941
0.987
1.036
1.087
1.127
1.145
1.145
1.133
1.113
1.089
1.063
1.037
1.012
0.991
0.973
0.959
0.949
0.943
0.942
0.943

g (r)

4.36
3.44
2.68
2.17
1.79
1.49
1.27
1.10
0.97
0.87
0.80
0.74
0.70
0.69
0.69
0.69
0.71
0.75
0.80
0.86
0.91
0.98
1.04
1.09
1.15
1.22
1.27
1.26
1.22
1.17
1.12
1.06
1.01
0.98
0.96
0.94
0.92
0.91
0.92
0.92
0.92

0.435
g ~(r)

4.360
3.226
2.690
2.271
1.894
1.581
1.321
1.119
0.960
0.841
0.755
0.699
0.668
0.656
0.662
0.681
0.712
0.751
0.798
0.847
0.905
0.962
1.023
1.086
1.151
1.217
1.257
1.255
1.224
1.176
1.121
1.065
1.012
0.967
0.930
0.904
0.887
0.881
0.881
0.890
0.903

g MD(r)

4.95
3.73
2.89
2.23
1.76
1.44
1.20
1.01
0.89
0.80
0.73
0.69
0.66
0.65
0.65
0.67
0.69
0.74
0.80
0.87
0.96
1.03
1.10
1.17
1.22
1.28
1.31
1.28
1.23
1.16
1.10
1.03
0.99
0.95
0.91
0.88
0.87
0.87
0.87
0.89

0.462
g o(r)

4.950
3.530
2.866
2.356
1.903
1.552
1.247
1.024
0.857
0.738
0.654
0.615
0.598
0.602
0.623
0.659
0.704
0.756
0.817
0.877
0.942
1.008
1.076
1.145
1.214
1.284
1.319
1.299
1.246
1.175
1.098
1.025
0.962
0.910
0.873
0.850
0.841
0.843
0.856
0.876

RtC(r)= —g'(r)+2 ttfpQ'(t)Q(t r)dt+2ttp—

(42)

For R &r, C(r) is the same as that obtained by
Baxter, Wertheim, ' and Thele. " But when
R +o.& r &R, it follows from Eq. (42) that

(43)

This direct correlation function has been calculat-
ed for four different densities with varying o. The
values of C(r) are given in Tables IV—VI for
o.=0.1, 0.5, and 0.9. The results are plotted in Fig.
4. The hypothesized C(r) now shows a peak at
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r/R= 1, falling to zero after two oscillations. As o
is decreased, the amplitudes of the small peaks in-
crease and ultimately shrink to the axis.

IV. CALCULATION OF g o(r)

It is to be noted at this stage that g'(r) and g "(r)
agree with MD data when r &~R but differ near
r=R Ho. wever it is possible to obtain g (R) by
choosing the exact value of Q'(R+ ) as shown in the
third column of Table I. This changed Q'(R+ ) also
improves the other g(r) values which we designate
as g ~(r), and the agreement with MD data is
better. The comparative results of correlation func-
tions are reported in Table VII for all the four densi-
ties, but Fig. 5 is drawn only for rI =0.37. The S(k)
are also calculated and are found not to be very
much different from S'(k).

The merit of the technique will be further re-
vealed when one attempts to include attractive po-
tentials along with the hard core. In that case, one
need not use the elaborate procedure of Smith, '

Tosi et al. , and Hoye and Blum. ' One has to
assume the existence of Q (r) beyond the hard core
and with proper discontinuity of Q'(r) fit g (r) to the
MD data for the said potential. Once Q (r) is known
for the entire range, the thermodynamics becomes
transparent. The work along these lines is being
pursued.
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