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Vortex and magnetostatic-mode turbulence produced by a Buchsbaum mode
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It is found that the modulational instability of a finite-amplitude Buchsbaum mode can
give rise to enhanced vortex (convection cells) and magnetostatic modes in a D-T fusion
plasma. The relevance of our investigation to the anomalous particle and heat losses in a
Tokamak device is briefly pointed out.

I. INTRQDUCTION

It is well established that a plasma, consisting of
electrons and two kinds of ions, supports a Buchs-
baum or ion-ion hybrid wave. ' The latter pro-
pagates almost perpendicular to the external mag-
netic field, and the wave frequency co, which is
much smaller than the electron gyrofrequency 0„
lies between the gyrofrequency of the two species of
ions. Since a typical fusion plasma consists of two
ion species (e.g. , D and T), Buchsbaum resonances
are frequently encountered in a tokamak device.
The possibility of ion heating by normal resonance
absorption of ion-ion hybrid waves has been docu-
mented in the past.

Although, in a practical situation, one has to wor-
ry about the mechanism of introducing ion-ion hy-
brid waves from an external source, there now exist
numerous ways by which this goal can be accom-
plished. For example, large-amplitude Buchsbaum
modes can originate during the lower-hybrid wave
heating, ' or in the presence of field-aligned
currents in a plasma with impurities. Taking the
external wave to be at the Buchsbaum frequency,
Satya et al. and Bujarbarua et al. ' investigated
parametric instabilities involving the low-frequency
decay product as the drift wave, ion-acoustic wave,
or the "cold" ion-Bernstein mode. Such nonlinear
effects can lead to significant plasma heating or
enhanced particle losses depending on the excitation
of particular low-frequency oscillations in plasmas.

In this paper, we investigate a new kind of
parametric interaction of the Buchsbaum mode. In
particular, we consider nonlinear interaction of the
latter with zero-frequency vortex, " and magnetos-

tatic modes.
This study is motivated by the fact that the zero-

frequency modes"' can cause cross-field particle
diffusion even in an equilibrium plasma. The trans-
port properties of the plasma are expected to be
enhanced once the energy density of the dampened
modes far exceeds the thermal level. Here, we
present a novel mechanism, i.e., the rnodulational in-
stability, which could be responsible for the genera-
tion of enhanced near-zero-frequency turbulence in
the presence of the Buchsbaum mode.

Section II contains basic equations and appropri-
ate particle velocities in different frequency regimes.
We decompose all the field quantities in two parts,
namely, a high-frequency Buchsbaum mode and
low-frequency vortex or magnetostatic modes. A
coupled set of equations describing their nonlinear
interaction is derived. The linear theory of modes
under consideration is reviewed in Sec. III. Here,
for completeness, we also briefly present the expres-
sions for the diffusion coefficients associated with
the zero-frequency modes. In Sec. IV we carry out a
normal mode analysis on the basic equations. Non-
linear dispersion relations are derived in Sec. V. Ex-
pressions for the growth rate are obtained analytical-
ly. For illustrative purposes, we point out the
relevance of our work to a tokamak device. Finally,
Sec. VI contains a brief summary and problems
which have to be solved in the future.

II. BASIC EQUATIONS

Consider a cold magnetized plasma consisting of
electrons (mass m„charge —e), and two species of
ions (mass m„mb, charge Z, e,Zbe) embedded in
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(8, —p, V +v, +v, V)v,

e - 1E+—v, X(Bp+b)
m, C

e
Vn, ,

m~n~

Bn +Vn v =0,

a unifolnl magnetic field Bp——Bpz. Nonlinear in-
teractions of Buchsbaum modes with convective
cells" and the magnetostatic modes' ' are
governed by

B,n, + V.n, v, =0,

In the following, we first derive the wave equation
for the ion-hybrid waves, taking into account the in-
teraction with zero-frequency electrostatic convec-
tive cells. Near the Buchsbaum resonances, the
waves are nearly electrostatic and are governed by
the two-fluid and Poisson equations. Also, for sim-
plicity, we assume ions to be singly charged, i.e.,
Zg —1 —Z$

Decomposing the field quantities into their high-
and low-frequency components, we have

h I
na =Na +na +na

h I
ne Ne +ne +ne

(~g —pa V +va+ va V)va

Zae E+—v X (Bp+ b)
ma C

V E=4me(Z n +Zbnb —n, ),
b=VXA, E= ——a,A —Ve,

C

(4)

~h ~I
VJ. = VJ+ VJ

where j=e,a, N, =N, +NI„N, and N are the un-
perturbed densities, and the superscripts h and I and
potentials P and P denote the high- and low-
frequency components, respectively.

For the Buchsbaum mode, we have

Vxb= 7T J .
C CO p —Qa—:

eBp ((0, 0, =
maC

eBp

m, c
In Eqs. (1)—(7), a =a,b for each ion species, J is the
total plasma current, b is the wave magnetic field,
@ and A are the scalar and vector potentials, respec-
tively, n, v are the density and fluid velocity, and the
subscripts e,a denote corresponding quantities asso-
ciated with electrons or ion species. Furthermore, v
and p are the collision frequency and the gryoviscos-
ity, respectively.

I

Thus, the motion of the ions is very sensitive to
the external magnetic field. The magnetized elect-
rons execute EX Bp motion, and also suffer a polari-
zation drift, as well as a drift along Bpz. Applying
these facts in the basic equations, we get the expres-
sions for the velocities corresponding to Buchsbaum
modes:

2

v J — VJpxz+ B,V~/ —
z [(V~gxz V)VJljk+(VJQXZ VJ)VJQ]

Bp Bp&, BpQ,

2 h
—+

B, , ll
= Vll&, p+ (V,@x".V )V

m~ m, Bp

where we have used v, ~= cV zg Xz/Bp—, the details of which shall follow later.
Similarly, for two kinds of ions, we find

«a-
(&t+& )v g= — VgPXz—

ma
~Vik+ B (VA'Xz Vi)VA

ma maBp

and

~2 h

C h h h
[(a,v., V, )V,fxz —2(V,gxz. V, )d, v.,+0.(v., V, )V,g]

p

e ec
A' " i ill'ma maBp

The equations of continuity are

and

d, n,"+V.B,v, + V&QXz. Vz(Vz v, )=0
p
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B,n + V' B,v + V'ifxz V'z(Vi v )=0,
Bp

(14)

where now the densities are normalized by the average plasma density N, . Substituting Eqs. (13) and (14) into
Poisson's equation, and using Eqs. (9)—(12), we obtain

[(1+ro',In,')V', 8,'+(8,'+co~, )V'~~]B,Q —g 4rreN B,(V v )
a=a, b

' (V gx" V )V~~p+ g (V px V' )B,(V ) .
0 , ~ n

Equations (11) and (15) constitute the wave equation for ion-ion hybrid waves.
For electrostatic convective cells, we have rp &&n and V~~=0. Thus, the relevant velocities are given by

V„=—'
V,yxz+ '

(a, —~,V')V,y — ', &(V,yxz V, )V,y&,
0 0 e Bo'n.

C - C
V gf Xz —( 8, —p V' ) V'gP-

&0 B Q
h h

& v ()'.l ' v IV ~ L Xz ) (17)

where p~ =0.3v~ p~, p~ =U, In~, v« ——(T~ lm )' is the thermal velocity of species a. In Eqs. (16) and (17),
we have included the contributions of the slowly varying ponderomotive force driven velocities which arise
from the beating of the two Buchsbaum modes. The angular brackets denote averaging over one high-
frequency wave period. Furthermore, self-interaction nonlinearities are not included here. On using the equa-
tions

B,n, +N, V v, +V &n, v, )=0,
B,n +N V' v + 7 .&n" v ) =0,
V /=4m. e(n, —n, nb), —

together with (16) and (17), we readily obtain the equation for convective cells

2 2

1+~,', In,'+ g ", a, v', q — g ", ~.v,'q

(19)

a=a, b a a=ah a
2 2

V, .&(V,yxz V, )V,p&+ ", &V,pxz. V',n,"IN, &
Bp n,' n,

~a nah+Pi g co', v, — (v, (),v, &&z)), (2))
a=., b

'
where the lowest-order linear as well as nonlinear terms are retained.

Next, we obtain the relevant equations describing nonlinear interaction of magnetostatic modes with the
Buchsbaum mode. For the magnetostatic modes, ' ' ions do not play any role and the electron motion is pri-
marily along the external magnetic field. We thus have the following equations which govern the dynamics of
driven magnetostatic modes:

h h m m mt"e[[+( e'V)"e[[ = E[[ ve"e[f+peV Ue]l ' E[[ = ~t~ll v and B~ ——V~A
me C

Here, the superscript m denotes field quantities associated with the magnetostatic modes.
Using the relations

m C

4m.

(22)

(23)

which follow from (6) and (7),

C ~ C""=—
B '~x'+Bn "~

0 0 e
(24)
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and

h V P, (25)

we find from (22) the wave equation for the magnetostatic mode in the presence of Buchsbaum modes:
r

(jt V~ —1 )c),A
( (
+A, (Ve —Pe Vl )VqA

( (

= C

e
(eqpxz. v, )U,

(~

— B, e,e V,U.,(( ),
e

(26)

where A, =c/co~ is the inertial length, and cop, =(4lre N, /m, )'~ is the electron plasma frequency.
The high-frequency velocities are affected by the magnetic field 8& of the magnetostatic modes. Straight-

forward algebra yields a dynamical equation for the Buchsbaum mode taking into account its interaction with
the magnetostatic mode. We find

2 2

[(1+co /Q )V c) +(c) +cop )V))]p —4lreN c) (V 'V )= p V~[(V 'V A~~) — Vi(V~[4)'V A~~ Xz
c Bp

where

(B,+Q )B,v g
——

eQ
V~c),p Xz—

2

bXz Vz(A, V A~~
—A~~)],

Bp

(Q V((PV,A(( X +V((c),PV A)(),
m m Bp

(27)

(28)

and v, z ——0 has been used.
Equations (25)—(28) describe the nonlinear interaction of Buchsbaum modes with the magnetostatic modes.

III. LINEAR MODES

2
P k2

a
(29)

En the absence of nonlinear interactions, we have
the Buchsbaum mode, convection cells, and magne-
tostatic modes as normal modes of the plasma.
First, we consider the Buchsbaum mode. Fourier
transfol-ixiing (11) and (15), we obtain

2 2 2

k'= — ' k' k'+ ' k'

Nb mb((
ma

co& takes the form

2 2 2 2
CO2l

~
COpb Qa /COpa (33)

This is also obtained by assuming Q, »co 2))Qb in
Eq. (30), and requiring the solution to be consistent
with their assumptions.

Second, we consider the convective cells in the
presence of two species of ions. Neglecting non-
linear terms in Eq. (21) and Fourier transfoi-iiling,
we obtain

where k =kl+k~~ and COp =4lrN e /m
perpendicular propagation, i.e., k

~ ~

=0, and

2 2 2
COpe ))Qe ))CO

CO = —1k'
1+Q /cOp

we find
2 2

Q)p~ copb

2 2 + 2 2
CO —Qa CO —Qb

2
Mp~

Q,
(30)

We see that the ion gyrofrequency gives rise to a
norrrlal mode whose electric field damps out ex-
ponentially. The equilibrium electric field energy
density in the convective cells is

When co -Q, Qb, Eq. (30) has the solution
2 2 2 2

COpe Qb +COpb Qa
N =6)g =

COp~ +COpy

(31)

where co2l denotes the Buchsbaum resonance fre-
quency. '

For a plasma with

2 2 2 2(E ) T COpe COpa COpb

Q' Q' Q' (35)

where T is the plasma temperature, and we have as-
sumed a Maxwellian distribution of particles. Since
both the electrons and ions move with the velocity
vl ——cEXz/Bp, the cross-field diffusion coefficient
is given by"
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D= v1 t, v1 t+w (36a)

T1/2

Bp

2 —1

Cc)pg COpy+ 2 +
0 b

1/2

i (v, +p, kz)

1+coq, /c k
(37)

As discussed earlier, ion motion does not enter in
the mode dynamics. The energy of the mode is con-
tained in the wave magnetic field and the particle

)& ln (36b)
2&A.

where L
~~

and L~ are the parallel and perpendicular
dimensions of the system, and A,, is the electron De-
bye length.

Third, the linear dispersion of the zero-frequency
magnetostatic mode is obtained from (26). Neglect-
ing nonlinear terms, and Fourier analyzing, one ob-
ta1HS

motion along the external magnetic field. A test
particle streaming along Boz with velocity Uo suffers
a perpendicular drift given by

v, =U, b/a, (38)

T 2

Bo me

1/2

27TC
(40)

where 2mcL/co&, «1, and D~ &&D'. A hypotheti-
cal relation between the electron thermal conductivi-
ty ICT and D' is KT nD'. ——

In the next section, we discuss the mechanism of
parametric interaction which can enhance the level
of the zero-frequency modes, as given above.

which describes the particle motion along the per-
turbation magnetic field b. Using (36a), (38), and
the equilibrium magnetic field energy density'

(b')
81T 2 c k +Q)

we find"

IV. NONLINEAR DISPERSION RELATIONS

A. Electrostatic convective cells

First, we consider the parametric instability in which the electrostatic convective cells (co, k) and the high-
frequency sidebands (co+, k+) are excited in the presence of a finite amplitude Buchsbaum mode (coo, ko). Ac-
cordingly, we split the high-frequency fields into three components, namely, the pump and the upper and lower
sidebands. Thus,

yh
~h
Va

No

VaO

+
exp(iko x icoot)+—c.c.+

Va+
exp(ik+ x ico+t) +— exp(ik x ice t), —

V a—
(41)

where co+ ——co+coo, and k+ ——k+ko.
The low-frequency potential g is assumed to have a space-time dependence of the form

/=/exp(ik x icot) . —
(42)

Inserting (41) and (42) into (11), (15), and (21), and matching the phasor, we obtain, after some algebra,

0
~+&+ =&+g (43)

cg =D+0+0o+D (44)

where we have defined

2 2
pe COpa+ 2

—
2+e a=a, b ~+ a

2 2 2 2
co +k + —ci)p~ k +

~ ~

(45)
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B+ =+ co~, (k Xz.kp)ko~~pe

2

+ coop 2 2
'(kXz ko)

Bo (coo —Q')
2 2 22coo+Q ) COp

(k ko~+ko~)+ 2 2 k ko~+koJ
co o —Qa coo —Q

+ ~ 2 [(k Xz'kp) +(k'kp)( k kpy+kpj )]
co o —Qa

2 2

C ik 1+ ~2 + g 2 (co+i 1 e)
e a=ah a

2 2

D+ ——
2

(kXz. ko)(2k. ko+k )

(46)

(47)

2

+ g 2 ~ ~ I2(k Xz.kp)[coo(k ko+kog)+Qa(2k kpg+ko~+k )]
Bo . (~o Q—.')'

+icooQa[ko~(3k'ko~+ko~+2k )+2(k'koXz)2]] (48)

where
2

e= g 2Pak
a a

2
' —1

Ct)p~ Q)p~'+Q +&Q
e a a

Combining (43) and (44), we get the nonlinear dispersion equation

B+D+ B D
+ Idol' ~

A+

This equation describes the modulational instability of the ion-ion hybrid wave involving the long-lived convec-
tive cells as the modulating agent.

B. Magnetostatic mode

For the excitation of the magnetostatic mode, again, we split the high-frequency fields into three com-
ponents. The low-frequency vector potential A~~ is assumed to have space-time dependence as given in Eq. (42).
Here, equations similar to (43) and (44) can be obtained, with the replacement / ~A

~
~, and

2 2
COpe Mp~ 2 2 2 21+ 2

—g 2 2 co+k+g —
co&ekp~~

Q, , b co+ —Q
(50)

B = (2+A, 'k')k Xz k, —g (k'+2k k„),leo ekp

Bp a=a, b ~0 Qa 0
(51)

C =i (1+1,kz)( +coi I ), (52)

D+ = — (k +k'ko, )(koxz k)
p COp (53)

where

I
A,~kg(p, k~+v, )

(1+khZ, )

and p, =U«/Qe. Equation (49) is then also the

dispersion relation describing the coupling of the
ion-ion hybrid wave with the magnetostatic mode.
ln both cases, we have assumed the pump to be
weak so that only ternis up to order

l Po l
have

been considered.
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V. STABILITY ANALYSIS

A. Electrostatic convective cells

Because of the complexity of the algebra, it is dif-
ficult to analyze the instability in full detail. How-
ever, the instability growth rate (y=lmco) can be
calculated analytically for different limits. For ex-
ample, if klkp, then Eq. (49) becomes

(co+i I, )(co —5co )

where

~P.&.(~o &—b)+~Pb&b(~o &—b)
2 2 2 2 2 2

2 2
COpg +COpb

For co »5co and I, the growth rate is given by

c ko~~ pe I

k. koi I
(ko. k &&z)2Q Po I

Bp copkpr(1+A, kr )

(59)

where

cz cokpr(k ~z kpr)Pz
I Pp I

z

2 2 2 2&o cope + copb )'9k

g =1+cop, /0, +cop, /0, +copb/Qb,

[coP, Q, (coo —Qb) +coPbflb(coo —Q, ) ]

( —0 ) (co —A )

(54)
We note that magnetostatic modes obtain a real fre-
quency which is of the order of the growth rate in
the presence of an external pump.

As an illustration, we apply the results of the
present investigation to a laboratory plasma. Ac-
cordingly, we choose typical parameters: X, =10'
cm, N, /N, =0.5, Bp ——25 kG, Eo ——15 V/cm, and
T, =10 eV. It is found that growth rates (57) and
(59) compete with those found earlier. '

Next, we consider when k is nearly parallel to kp,
and

I
k

I
«

I
ko I. Equation (49) then takes the

foiirr

(co+il, )(co —Ro )

cz ko4ilk koi
14o I

'
Bp 'gk (cop+ +copb )

and the corresponding growth rate is

c z I

k.koi P2I Po I

2

)c koi
+p rik (cop +copb )

(57)

We have thus considered two regimes of parameters,
and have shown the possibility of convective cell
(vortex modes) generation by a large-amplitude ion-
ion hybrid wave.

B. Magnetostatic modes

For the magnetostatic mode, the coupling is not
so strong and the maximum growth rate can occur

2only for k «k ko«kp. We can write the disper-
sion relation (49) for this case as

(co+i I )(co —6co )

4ic ko(( pe(k kor ) (ko'k &«)Qco
I 4o I

&0 copkpr(1+re. kg)

(58)

and 6co is the frequency shift. For
I

co »1, and
5co, the growth rate is

c I
koi I I

k&&z koilP
I do I

'iI (copa +copb )

VI. SUMMARY

A plasma composed of two types of ion species,
as occurs in tokamak devices, supports a resonance
at the so-called Buchsbaum or ion-ion hybrid fre-
quency. At this layer a mode-converted electrostatic
Buchsbaum mode can directly interact with the ion,
and can cause wave absorption. On the other hand,
anomalous absorption takes place due to the
parametric interaction process in which a finite-
amplitude ion-ion hybrid wave further decays into a
daughter wave and a low-frequency ion-acoustic or
an ion-Bernstein wave. In an inhomogeneous plas-
ma, the latter is replaced by drift waves or drift-
Alfven waves. In particular, it was found that a
Buchsbaum mode with a moderate electric field am-
plitude —15 V/cm can indeed produce numerous
kinds of nonlinear effects.

In this paper, we have discussed a new kind of
nonlinear effect which can be the cause of
anomalous particle or heat losses in a tokamak de-
vice. Specifically, we have considered the nonlinear
interaction of zero-frequency vortex and magneto-
static modes in the presence of the ion-ion hybrid
wave which arise in the presence of two species of
ions. The process of four-wave interaction results in
a modulational instability which can enhance the
level of low-frequency modes. In a driven system,
both the vortex and the magnetostatic modes obtain
a real frequency. Therefore, the particle diffusion,
always being anomalous in the presence of driven
fluctuations, could be enhanced' by an order of
magnitude. For cases involving a purely growing
mode, one expects an even higher diffusion rate.

At the present time, it is not possible to present a
self-consistent theory of the parameter interaction,
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as has been discussed here. However, one' ' ex-
pects that in a fully developed turbulent state most
of the energy of the system could be contained in the
low-frequency modes. Thus, if the energy density of
the latter is two orders of magnitude higher than the
thermal level, then the diffusion coefficient would
be increased by one order of magnitude. A definite
answer to this question is only possible provided
that we know the enhanced electric and magnetic
field spectra of convective cells and the magnetostat-
ic modes. This problem has to be investigated
separately.

Finally, our investigation should be refined to in-
clude such effects as the plasma inhomogeneity, the
gravity, and the magnetic shear. In particular, one"
finds that in the presence of the magnetic shear the
two-dimensional convective cells can obtain a real
frequency due to a finite kii. On the other hand, the
shear can also allow the electrons to move rapidly
along Boz, thereby destroying the two-dimensional
particle motion. In this case, slow electrons may
follow a Boltzmann equilibrium (n, =N, eg/T, )

and the three-dimensional ion motion yields the ion
sound oscillations in a low-P plasma. Furthermore,
due to the magnetic shear, the magnetostatic modes
can appear' only in a region of thickness (L,A, )'i,
where A, =c/co&, in the electron inertial length, and
l., is the shear length in the neighborhood of the
k B=O surfaces. Since the Buchsbaum modes are
also localized in the presence of the magnetic shear,
one encounters an eigenvalue problem for nonlinear
interaction purposes. However, on the basis of re-
cent analytical works, ' we can suggest the applica-

bility of our theory to a plasma with magnetic shear.
Like drift-convective cells, we anticipate the locali-
zation of enhanced modes near discrete magnetic
surfaces. In the presence of enhanced fluctuations
(e.g., originating due to the parametric processes) the
effective mean free path would be much shorter
than the classical value. If the effective mean free
path or the length of the system is shorter than the
shear length, then the shear has no appreciable ef-
fect on suppressing the convective-cell-enhanced dif-
fusion. '8 Otherwise, the diffusion is proportional to
L, near the closed surfaces. In conclusion, we men-
tion that for a real system with magnetic shear our
theory has to be revised in a systematic manner.
This, however, would lead us far beyond the scope
of the present investigation.
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