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Nonlinear coupling of drift waves, convective cells, and magnetic drift modes
in finite-P plasmas
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A set of three coupled nonlinear equations describing electrostatic drift waves, drift Alfven waves,
convective cells, and magnetic drift modes has been derived for finite ion temperature. The reduc-
tion to simplified nonlinear model equations in different P regimes and the consequences for trans-

port properties are discussed.

INTRODUCTION

The importance of low-frequency vortex modes for the
anomalous transport in magnetic confinement devices is a
question that has recently attracted considerable atten-
tion. ' One of the main points of interest is the influ-
ence of magnetic shear which is generally supposed to al-
most eliminate the diffusion due to convective cells.
There are, however, indications that an appreciable part of
this diffusion remains also in the presence of magnetic
shear since small cells may still overlap and since the
ponderomotive force creates driven convective cells with

kI~ ——0 also for linear modes with finite kII. It was also re-
cently pointed out that for a reasonable ordering for a
toroidal plasma the electric potential obeys the two-
dimensional convective cell equation if P (the ratio of plas-
ma and magnetic field pressure) is larger than 52/q2 where

q is the safety factor and 5 is the inverse aspect ratio. In
the present paper we generalize the treatment of Ref. 5 to
include also the magnetic drift mode, which in the pres-
ence of shear becomes the tearing mode, and a more expli-
cit nonlinear equation for drift Alfven waves. We also in-
clude a curvature drift and finite ion temperature and dis-
cuss the influence of P, the finite-Larmor-radius (FLR)
parameter k p, and different orderings for the elec-
tromagnetic potential.

BASIC EQUATIONS

We are here going to assume that P is so small that a
representation of the electric field in terms of two poten-
tials is adequate. This means that we should have P&5
where 5 is the inverse aspect ratio. ' We may then use the
gauge condition

where g plays the role of a poloidal flux function. We
write the perpendicular particle velocities as
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Neglecting the parallel ion motion we obtain, froin (3),
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where 5n, is the perturbation in electron density and we
expanded for 6n, «np.

Using now the low-frequency approximation

is included only for ions. The ion temperature effects can
to lowest order be included by including the ion diamag-
netic drift (both background and perturbed parts) in the
convective part of the time derivative B/Bt+v. V. This
procedure is in agreement with results obtained by orbit
averaging. ' ' ' A corresponding result for the parallel
electron motion is that the diamagnetic drift should not
appear in the convective part of the time derivative. This
is seen by comparison with the drift kinetic equation.
From Amperes law we now obtain the parallel current

leading to the representations V j=0
we find, in combination with (2) and (3), neglecting v~~ for
ions,

B=zXVQ+&oz, E= VP+-
c Bt
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The equation of motion for electrons along z may be written using (4) and 5p =yT5n,
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where vE is the E&(B drift, vd, is the perturbed diamagnetic drift, co~ is the electron plasma frequency, and vp is the
background parallel electron velocity. The electron continuity equation, finally, may be written
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Equations (6)—(8), in combination with an assumption of quasineutrality, form a closed set of equations describing
nonlinear low-frequency modes in inhomogeneous plasma. They may also allow for the presence of shear if an x- (radial-
ly) dependent background part of P [related to uo through (4)] is included. Assuming $0 (but not h~Pu) to be zero at the
rational surface and restricting the analysis to a region close to the rational surface we may treat g as a perturbation in
Eqs. (6)—(8) when b,~Info &&bqlng.

LINEAR DISPERSION RELATION

For reference it is convenient to write down the linear dispersion relation corresponding to the system (6)—(8).
Neglecting, for simplicity, the current associated with go we obtain, assuming vs & ud,

1 2Pl e 3' 2 2 ~& +& 2 2 2 2k,p ( —., )+ g, —k„.„=k,pk, ~.„y, (9)
cope —cu m(P COg ~

—CO COg ~
—CO

where p =c,/0, , c, = ( T,Im; )
' ~, and a = d /dx inn —0.

Unless co=co~, the expression in the first set of parentheses is normally close to unity and (9) then describes drift
Alfven waves for y, =1 (thermalized electrons). If we include shear, k~~ becomes x dependent and (9) is replaced by the
eigenvalue equation of collisionless drift tearing modes. In the limit k~~ =0 there are three solutions of (9). Putting the
quantity first enclosed within the first parentheses equal to zero we obtain the magnetic drift mode (electromagnetic)

Ct)g e COg ~

2 2 2 2 2 (10)
1+(m, /m;P)k, p I+kgc /co~

For a homogeneous plasma this mode turns into the magnetostatic mode considered to be the magnetic equivalent of the
convective cell mode. The quantity in the second set of parentheses gives the two electrostatic interchange modes. For
vanishing gravity (curvature) they turn into the ion drift mode and the convective-cell mode, co =0.

SIMPLIFIED NONLINAR EQUATIONS IN DIFFERENT P REGIMES

V(bgf ),

We will here make the assumption suggested above and drop the cubic terms in the right-hand sides of (6)—(8). We
then normalize time and space by A, and p=c, /0, , respectively, and obtain, using quasineutrality, the system

2
a a 4 a( a 5n 4 5n—+ud; b,zP — b.z +ug =

z (zX Vg) V(b,zf) —zXV P+y; (1 la)
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where /=ed/T„/=ed/T„and we included a factor
T;/T, in y;.

We now introduce a small parameter e of order 5n/n.
Wc then adopt the ordering (compare Ref. 5)

5n p co
u -5ud

n a n
CI

kyx p p:p I., I., Eq q
'

where l., is the shear length. The ordering of V (corre-
sponding to kp) mill be left open but is usually assumed to
be of order 1. The ordering of g is a crucial point. For an
electromagnetic mode it is natural to assume that the elec-
trostatic and electromagnetic contributions to E~~ are com-
parable. This leads to @-(k~~c/cv)P, or

(i): g-(5/q)cg=ec5/q .
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For low p, i.e., p«5 /q, it turns out that another order-

ing of f is necessary for the terms in (lla) to balance.
Thus, putting the first two terms equal, we obtain the or-
dering

(ii): 1(-(pcq/5)p .

For the electromagnetic case we use the ordering (i) for 1(.
This leads to the orderings of the terms in (ii):
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As a first general remark we point out that the non-
linear terms are comparable to the linear terms when

hz-1 and the weak turbulence limit requires hj &&1 in
agreement with the electrostatic case. ' Furthermore, we
immediately observe two characteristic P values which
come out of the ordering in (12). The lowest value

5 me
1 — EI —$-0(p),

qe mP Bt

5 B 5~ y05 B 5n,

qe Bz q qe Bz no

$2-0
2

p-(m, /m; )b, q

is associated with parallel electron inertia. These terms
are important from the point of view that they correspond
to a deviation from ideal magnetohydrodynamics leading
to magnetic field lines which are not frozen in. This is an
important feature of tearing modes. We will, however,
here usually assume

p& (m, /m;)&j,

$-0(P),
qe c By

(zXVQ). V g —1 $-0(bp),
C m;p

-Sn
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n
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(13)

thus neglecting these terms. The second typical p is
P=52/q2. This P is typical of electromagnetic modes and
as we shall see the system becomes electrostatic in both the
limits P«5 /q and P»5 /q . Starting with the low P
case we should use the ordering (ii) of g. Then multiply-
ing (1 lb) by 5/qe c, the terms, for

p»(m, /m;)b, ,

compare as

n (14)

Now, subtracting (llc) from (lib) and using (14) we ob-
tain the equation

Thus, in the limit P«52/q2 only the second and third
terms remain in (11) and we obtain the Boltzmann distri-
bution (y, =1)
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B—(b,j —1)p+(ud ht+ u —ud)
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Equation (15) is the nonlinear equation for electrostatic
drift waves, and is the generalization of the Hasegawa-
Mima equation for finite ion temperature (y; contains
T;/T, ) and curvature Ug. We notice here that due to the
Boltzmann distribution (14) the curvature only introduces
a frequency shift and does not cause interchange mode
solutions. As is well known, Eq. (15) leads to cascading
towards smaller and larger k&. In the limit of weak non-
linearity (5~&&1) the pump wave is the wave with the
largest frequency. Equation (15) has two constants of
motion, total energy and total enstrophy (squared vortici-

ty) and describes turbulence with many features in com-
mon with Navier-Stokes turbulence. Another interesting
property is that it may lead to zonal flows have an inhibit-
ing influence on the transport.

The reason why Eq. (15) does not contain interchange
mode solutions is that the charge separation due to the
perpendicular motion is shielded by the free-electron
motion along 80 as described by (14). When P increases
the induction force increases and impedes the free-electron
motion. This leads to electromagnetic interchange modes.

When p-5 /q the system (11) describes nonlinear drift
Alfven waves or tearing modes. In order to obtain a sim-
plified equation for drift Alfven waves we shall assume
that b,z & 1 (weakly nonlinear) so that we can drop non-
linear terms of order 6. Then differentiating (11a) with
respect to time and substituting (11b) and (11c),we obtain,
for y, =1,

r

B ~ B p 2 B B 5n ude—+ udi —UA kg+Kg + u& +t Bt By Bz' Bz Bz no c By
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where ~= —d/dx lnno and ~g = UgUdj.
In order to eliminate the last linear term it is convenient to use the ion continuity equation
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and adding the two equations we obtain, dropping the
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Now, operating with B/Bz on (17) and with (U~, /c)B/By on (11b)
linear terms of order 6,

(B B B 5n; ud, Bf
+Ude +

Bt By Bz n c By

We notice that the main linear part of the expression

B 5n ude ~B+
Bz n c By

vanishes. Now, operating with BIBt+ud, BIBy on (16) and substituting (18) we find that the nonlinear terms of (18) can-
cel the last nonlinear part of (16) to leading order. This follows from the fact that, due to (16) and (11b), we have
BQIBt=c Bp/Bz (compare also the ordering assumed for g). Then, inverting the operator B/Bt+ud, B/By, we obtain the
equation

2() A B p ug B A ~ A B A 5n—u„, A,p+~g, =,—(zXV,Q) V(A, l()+—V p+y; — Xz V(b, ,p)
Bz By e Bt n

(19)

which is our reduced nonlinear equation for drift Alfven waves. Since we assumed 4 & 1 we can substitute linear expres-

sions for P and 5n in terms of P into the nonlinear terms. The equation thus obtained is identical to the model equation
derived in Ref. 11 if the nonlinear term containing 6n is dropped. This is equivalent to assuming Tg (Eg.

Equation (19) with T; —T, can also be obtained from the nonlinear equation for ballooning modes derived in Ref. 18 in
toroidal coordinates if the shearless limit is taken. In Ref. 11 it was found that (19) can give the same type of cascade to-
wards smaller and larger kz as is typical of electrostatic drift waves. Explosively unstable solutions and possibilities for
up conversion were also found. Another important electromagnetic mode is obtained for k~~ & e 5/q . We obtain, from
(11b),

+u„=(zXVQ) V' 6,—1 g —y, zXV' .Vg — ' (zXVl(). V(b, ,g).
m P Bt '

By mp '
n c pm;
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This is a generalization of the system derived in Ref. 10
for finite ion temperature. It was found to lead to spectral
cascade rules of the same type as for the Hasegawa-Mima
equation but also to possibilities for up conversion. In the
limit U~0 the equations couple only through the non-

linear terms, and (21a) is the nonlinear equation for the
ion drift branch. In order to obtain the convective-cell
mode it is necessary to differentiate (21a) with respect to
time and to substitute (21b}. This leads to the equation

8 8 B BP+ vd; 6f —Kg'
By Qy~

B - '6n= ——ZXV' P+y,
Bt

V(Aqua)

This is the equation for the magnetic drift mode, indicat-
ing possibilities for coupling to drift waves, convective
cells, and drift Alfven waves. For the interaction between

magnetic drift modes with k~~ =0, however, P and 5n/n
are small and in fact generated by vv (QD} as found in Ref.
19. In this case

Uo X'ct ~
c cok

and no nonlinearity remains for up ——0. As was pointed
out in Ref. 16, for a homogeneous case Eq. (20) turns into
the Hasegawa-Mima equation~ for P =5n/n =0 but v&&&0.

For this approximation to be correct for an inhomogene-

ous plasma with the above relation for P and co-co~, we
must require that A; p »1. In the homogeneous case the
magnetic drift mode turns into the magnetostatic mode
which can cause signficant electron thermal conductivity
due to perturbations of the magnetic flux surfaces. The
coupled set of equations (20) and (11a) was also recently
investigated from the nonlinear stability point of view in
the homogeneous approximation with P »(m, /m; )b,~ and

Uz
——0. It was found that nonlinearly growing solutions

exist in a background of random phase waves.
We now turn to the large P region, i.e., P »5 /q~. We

then observe from (12a) that the electromagnetic terms
vanish from (1 la) and we obtain the two-dimensional sys-
tem

P»5 /q is very important since it can give rise to sub-
stantial convective cell transport in a system with magnet-
ic shear. The presence of curvature (vs) may, however,
lead to a strong reduction of the transport. In this case
the higher-order process derived in Ref. 11 and studied in
Ref. 17 becomes important. Owing to the finite k~~ al-
lowed for here, it is, however, not clear if the effective cur-
vature experienced by this mode is favorable; and if this is
not the case, the usual convective cell diffusion remains
strong.

CONCLUSIONS

%'e have seen how a comparatively general nonlinear
system (11) reduces to well-known nonlinear equations in
different P regimes and for different orderings of kll. I
particular, the eigenfrequency of the convective cell (inter-
change mode} and the magnetic drift modes are important.
When P&5 /q the influence of shear on the convective
cell mode disappears. The influence of shear (k~~v, ) and
curvature (ag) are comparable when P=5/q . Thus, for
P&5/q the question of the eigenfrequency is mainly
determined by the question of the effective average curva-
ture experienced by the mode. This can only be deter-
mined by the mode structure and requires the solution of
the poloidal eigenvalue problem. The question of the
transport thus boils down to the question of the stability
of ballooning modes. For the magnetic drift mode we no-
tice that the ordering 5& 1, co-eA would eliminate the
linear eigenfrequency, leading to a situation where the
dynamics is dominated by the nonlinear terms, and this
may lead to enhanced transport. Another interesting
property of the system (11) is that it contains possibilities
for nonlinearly unstable solutions. These may occur for
modes driven by the combined influence of curvature and
pressure and described by (19), which is the slab limit' ' of
a model equation for ballooning modes' and for tearing
modes ~ described by (11) for vs=0 but finite fv. The
background part fv is associated with a background
current in the toroidal direction and with magnetic shear.
The interesting result for a homogeneous plasma obtained
in Ref. 16 that the magnetostatic mode in the presence of
current obeys the Hasegawa-Mima equation has turned
out to apply for an inhomogeneous plasma only in the
strongly nonlinear region k p & 1.

Another interesting mode which is closely related to the
modes studied here is the curvature-driven trapped elec-
tron mode. In the low P limit this mode turns into the
electrostatic ubiquitous mode, while for large P it is hard
to distinguish from the ballooning mode. Here an electro-
static mode is also obtained in the limit when all electrons
are trapped.

-5n(Vgxz). VF By n

The reason why it is not possible to obtain the convec-
tive cell mode in the limit V+~0 in (21) is the singularity
in 5n/n when co~0 as seen from (21b). As was pointed
out in Ref. 5, the two-dimensional character in the limit
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