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Universal scaling property in bifurcation structure of Duffing's
and of generalized Duffing's equations
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Computer calculation for the numerical solution of Duffing's and generalized Duffing's equations
shows global scaling properties for the bifurcation in parameter space. These scaling properties are
discussed in terms of a one-dimensional map. The analysis based on a piecewise linear approxima-
tion gave results in good agreement with the experimentally observed scaling behavior.

I. INTRODUCTION

In recent years, many studies have been done on new
universal behavior in chaotic dynamical systems. Period
doubling, intermittent transition to chaos, and other relat-
ed phenomena were investigated in detail by many authors
from the viewpoint of scaling properties. They are all re-
lated to local bifurcation structure which occurs prior to
chaos by changing parameters continuously. ' However,
a large number of phenomena observed in physical sys-
tems, chemical reactions, and biological systems exhibit
interesting global bifurcation structure as well as the local
bifurcations in parameter space. These global structures
correspond to repeating transitions from a phase-locking
state to another phase-locking state or to a chaotic state
and vice versa. Only a few authors have discussed the
global aspects of these bifurcation sets. Among these au-
thors Tomita and Tsuda explained a global bifurcation
structure in the Lorentz system by using one-dimensional
mapping. They have also succeeded in interpreting and
predicting the experimental results for a Belousov-
Zhabotinsky reaction in a stirred-flow reactor utilizing
similar methodology.

A simplest example presenting a global bifurcation
structure is forced nonlinear oscillators which are widely
observed in physical, chemical, and biological systems.
However, scaling properties among these phase-locking re-
gions and chaotic regions have not been noticed until re-
cently.

Recently Kaneko presented similarity and scaling prop-
erties of each periodic state in connection with a map of a
circle. ' Almost simultaneously, Sano and Sawada report-
ed a scaling behavior of the bifurcation parameters in a
differential system of coupled chemical reaction systems. "
In this paper we consider Duffing's equation, which
represents nonlinear oscillation in an X potential with
external periodic force and damping, or generalized
Duffing's equation, an oscillation in an X " potential. As
regards Duffing's equation, Ueda has extensively investi-
gated chaotic phenomena mainly concerning the appear-
ance of the homoclinic orbit. ' ' The system can be a
good prototype for studying chaotic phenomena in ordi-
nary differential equations because it presents various
types of transitions, e.g., period-doubling bifurcation, sub-

critical transition to chaos, and homoclinicity. Concern-
ing the structure of global bifurcation sets, Kawakami and
Matsuo' have pointed out that similarity can be observed
in bifurcation sets of Duffing s equation by computer ex-
periment.

The purpose of the present work is to show for the first
time the existence and interpretation of scaling properties
in global bifurcation sets which can appear in a wide class
of forced nonlinear oscillations. We confirmed numerical-
ly the similarity and scaling property of global bifurcation
sets in Duffing's equation and even in generalized
Duffing's equations.
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This system has a symmetry under the transformation S,

S: (x,y, t)~( —x, y, t +m. ) .—
Therefore, if g is a solution of Eq. (2), then Sg is also a
solution. In order to characterize the bifurcation diagram
by topological properties of solution, we introduce the no-
tation I'„P, and X. Periodic and chaotic orbits are
denoted by P,—(n, m), P, (m, n), and X, where by P(n, m) we
mean a periodic orbit which cuts the y=O plane from the
positive to negative y direction at n different values of x
and cuts the y=0 plane in the opposite direction at m dif-
ferent values of x. The indices s and a indicate symmetric
and antisyrnrnetric solution, and the + represents pair
solutions connected by the transformation S.

A coarse bifurcation process with increasing 8 is com-

II. EXPERIMENTAL RESULTS

Duffing's equation with cubic nonlinearity is

d x dx+k +x =8 cost,
dt

where k is the damping rate and 8 is the modulation am-
plitude. Equation (l) can be rewritten as simultaneous
equations,
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posed of the alternative appearance of periodic and chaot-
ic states:

~ ~p —+X~p~J—+ ~ ~ ~

The chaotic region would appear between two periodic
states which have topological properties different from
each other. When k is small the bifurcation process can
be described, in more detail, as

P,+(n, n) P, (n, n + 1)
~p, (n, n)~ '~X —+ 'P, 1, ' —+X~P,(n+i, n+1)~

P, n, n I D u(n+ n) I D

(double bifurcation process), where the curly brackets mean coexistence of symmetric pair solutions. The route to chaos

is period doubling (indicated by I) or subcritical transition (indicated by D). On the other hand, when k is relatively large

the bifurcation process is

P, (n, n+1) P, (n + l, n +2)
P ( +1, ) ' + ' + .( +2, +1)

(single bifurcation process). Figure 1 shows some exam-

ples of the periodic orbits and Fig. 2 shows an example of
transition from the periodic state to the chaotic state. In
the chaotic region the fine structure of windows of phase-
locking states is inevitably observed in addition to the
homoclinic orbits observed by Ueda. '

Present computer experiments have elucidated a series
of similar bifurcation structures in k-B parameter space as
shown in Fig. 3. A part of this structure in the small-B
region was studied before' but the region with a large
value of B has not been investigated. To examine quanti-
tatively the scaling properties for the bifurcation process,
we measured B as shown by Fig. 3. B represents the
initiation value of B for a period-doubling bifurcation
from a periodic state P, (n, n+1) 'where m=2n+ 1. The
logarithmic plot of B~ vs m shown in Fig. 4 exhibits a re-
lation

B ~m (3)

where a =3.18 for the ordinary Duffing's equation.
Similar experiments were carried out for the generalized

Duffing's system

d x dx

dt
+k +x +'=B cost, (4)

where v=2, 3,4, . . . . The numerical results for these bi-
furcation sets are shown in Fig. 4. We have obtained
a =2.57 for v=2, a =2.42 for v= 3.

In order to understand the scaling behavior of the bifur-
cation sets we take here a Poincare mapping obtained
from "the maximum absolute point" of x. I.et p =(t,x,y)
be a solution of Eq. (2). The maximum absolute point is
p(t, x,0) in x&0 (but d xldt &0) and in x&0 (but
d xIdt ~0). If we let p„=(t„,x„,0), p„+& (t„+&,x„+„0)——
be two successive maximum absolute points, then one ob-
tains a discrete dynamical system,

T: pn ~pn+1 ~ (5)

FIG. 1. Periodic orbits of Duffing s equation in phase-locking

regions at k=0.3. P(1,1) for B=2.0, P(1,2) for B=5.0, P(2,2) for
B= 15.0, P(2,3) for B=31.0, P(3,3) for B=70.0, P(3,4) for
B=92.0.

Near the bifurcation point from a periodic to a chaotic
state the point sequence given by Eq. (5) was found by
computer experiments to move on invariant sets which
can be approximately regarded as one-dimensional attrac-
tors embedded in the x-t plane. Therefore, one can reduce
the map given by Eq. (5) to the following one-dimensional
map which is useful in order to discuss the topological
structure of Duffing's system:

f: 8„~8„+),
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tude was experimentally found to be proportional to
B '~ . 0 has a very weak dependence of k. N(8„,k+) is
a nonlinear contribution in the map which is responsible
for the occurrence of chaos.

III. DISCUSSION

In this section we discuss the reason for the scaling law
obtained in the preceding section. The map f represented
by Eq. (7) reminds us of the map which has been studied
by Shenker, ' but f has a global structure shown by Eq. (3)
which is different from the map by Shenker.

At first let us consider the two-dimensional map T for
the generalized Duffing's equation and introduce the
piecewise linearized version at the small interval
t„&t & t„+i where P„=(t„~„,0), the maximum absolute
point. Thus

dx Jx+k +a(x„)x =Bcost, (8)

kx (t) =A exp — t —cos(co„t +Bi)
2

B+»»2 cos(t +52),
[(& 1)2+k2]lf2

where A, 5& are determined by initial conditions,
52 ——tan '[k/(a —1)], co„=[a(x„)—k /4]'~ . From the
definition of map T, initial conditions are x (t„)=x„,
dx (t„)/dt =0 and

where a (x„)= (2v + 1)x . In the real Duffing's system
the motion of a forced pendulum is very complicated but
Eq. (8) is valid when the interval [t„,t„+i] is sufficiently
small (i.e., B is sufficiently large) and x„ is large. When
a (x„)& k /4, the solution of the piecewise linear equation
1s

10.+]=~a+ (10a)

2&
X~+) X 2ITO~+ (lob)

where „8=t„ 2/ir(mod 1). 8„ is the phase of the periodic
perturbation. When k &&1, B»1, and x„»1, then Eq.
(10) is

1
0„+( --0„+

(2v+1)
~
x„~ "i/2

2mB
&n+1=&n- n2&~n

(2v+ 1) ~
~
x„~

(1 la)

(1 lb)

1.0 We approximate the recursion relation Eq. (11) by a dif-
ferential equation on which the step space is dr,

dO 1

(2v+I)' x i"
GX 2mB

sin2mO .«(2v+1) ~x
~

These equations are readily integrated;

x=(Bcos2n8)' ' "+". .

(12a)

(12b)

(13)

This result was found to be in good agreement with com-
puter simulations near bifurcation points. The map f de-
fined by Eq. (6) is

8.+ i =f(8. )

=8„+(2 +1) '~
( ~Bcos2 8„~ )

" ' "+" (14)

1.0

FIG. 5. One-dimensional map obtained by computer simula-
tions. (a) k=0.3, B=130.0; (b) k=0.3, B=500.0. Map is ex-
pressed as 0„+~——0„+0+%(8„)where Q=—0.15 and N(0„) is
the nonlinear contribution.

We discuss the global structure of the generalized
Duffing's system by using this one-dimensional map.

If there is an m-periodic orbit of f then the dependence
of m on B is obtained by applying a theory of intermitten-
cy. Approximating the discrete dynamic equation (14) by
a differential equation

d7-
=(2v+ I) ' (1/

~

B cos2ir8
~

)" '2"+"
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and by integrating Eq. (15) one obtains, as the period,
1T=— d7

1
gv/(2v+1)(2v+ 1)1/2

~

cos277g
~

v/(2v+1)dg
0

)g v/(2v+ 1)

where C(v) represents a constant independent of B. Since
T ~ m holds roughly in the m-periodic state, the scaling
law is

~ m (2v+1)/vm~m
which explains excellently the experimentally observed re-
sults. In fact, the values of experimental results and
theoretical results a, —:(2v+ 1)/v are

a=3.18, a, =3.0,
a=2.57, n, =2.5,
cx =2.42, cxt =2.33. . .

for v= 1, 2, and 3, respectively.
Usually in the intermittency problem one considers a re-

8„+1 f (6„)=——9„+eg(8„,e), (18)

where e is a control parameter and g is an arbitrary func-
tion. Considering a small deviation and expanding Eq.
(18) by Taylor series around the fixed point of f (B) and
e=O, one obtains a map f constituting the class of abnor-
mal intermittency as e—+0.' Those maps belonging to the
abnormal intermittency class have the scaling law for m-
periodic orbit (m=2, 3,4, ... ) where m ~e ' as e~O and
its scaling law is independent of g (H, e).

cursion relation
2

+n +1 +n +QXn +
where e is a small parameter, for which it is well known
that the scaling behavior for the m-periodic orbit in the
limit of the small parameter approaching the critical value
is m ~ e '+ ' .' In this paper, however, we have dis-
cussed an example of abnormal intermittency which can
appear in a map of a circle onto itself or a forced non-
linear oscillator in the limit of the rotation number ap-
proaching zero. The map in this case can be expressed
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