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We present a detailed analysis of anharmonic effects on the viscous and elastic properties of vari-

ous systems with one-dimensional order. We show that the nonlinear coupling of the velocity field
to thermally excited undulation modes causes four of the five viscosities in these uniaxial systems

(including one, g2, governing shear flow in the layers) to diverge as 1/co when measured at small fre-
quencies m. As a result, sound attenuations scale as cu, rather than co as in most materials. A sim-

ple algebraic relation between the divergent parts of three of the viscosities is derived. We argue that
the divergence in g2 leads to strongly non-Newtonian flow in the liquid layers of these materials.
The calculations here extend the previous work of the authors to include an analysis of irreducible

graphs to all orders in perturbation theory in the temperature. Some new results on the nonlinear
elastic theory of these systems are also obtained, extending earlier work by Grinstein and Pelcovits.
The existing experimental evidence for our predictions is discussed, and additional experiments are
suggested.

I. INTRODUCTION

In a previous paper' we reported that certain viscosities
in smectic-A liquid crystals diverge as 1/~ at small fre-
quencies co. In this paper we describe the details of our
calculation and, in addition, present several new results for
both the dynamic and static properties of these materials.
We will also show that our results apply without any
modification to cholesteric and hexatic-B liquid crystals
as well. The unifying features of these systems, and the
ultimate cause of the divergences, is their "layering, " or
"one-dimensional solidification. " Each exhibits a static,
unidirectional spatial modulation (see Fig. 1) of some field
(the density in smectics-A and hexatics-B; the molecular
director in cholesterics). In smectics-A, this is the only
type of ordering present, while the hexatics-8 have sixfold
orientational order as well. This additional ordering has
no effect on the "undulation mode" depicted in Fig. 2,
which is the principal thermally exicted mode in these sys-
tems. Although the layering field in cholesterics is micro-
scopically different from that in smectics, the hydro-
dynamic equations are nonetheless the same. ' It is the
nonlinear interaction of externally applied stresses with
these thermally exicted modes, which cost very little ener-

gy and hence exist in great profusion in thermal equilibri-
um, that causes the viscosities to diverge.

In conventional three-dimensional materials (e.g., solids,
liquids, gases, nematic liquid crystals, etc. ), the viscosities
may be taken to be independent of the wave vector and
frequency of the excitations under consideration except
near second-order phase transitions. The resultant
description of dissipation in these systems becomes
asymptotically exact in the limit of long wavelengths and
low frequencies (the hydrodynamic limit). In contrast, our
calculations show that over the entire smectic-A, hexatic-
8, and cholesteric phases such a description breaks down.
We must, instead, replace four of the five viscosities g;,
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FIG. 1. (a) Vertical cross section of the ground state of
smectics-A. Density is periodic with period a-20 A. Horizon-
tal lines are surfaces of a given density. (b) Same as (a) for
cholesteric liquid crystal. Spatially modulated quantity is now
the molecular director n which rotates at a constant spatial rate

0

as one moves in the z direction with period a -4000 A. Surfaces
of constant n (not shown) would also be horizontal planes.

required by uniaxial symmetry, with strongly wave
vector- and frequency-dependent quantities q &, g2, g4, and

These four viscosities are given in the small wave
number q and frequency co limit by

q;(q, to) =ri;+a;I(q, co),

where g; is a nondivergent background contribution to the
viscosity,
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The z axis is taken to be perpendicular to the layers, and
8, po, and the dimensionless parameter ~ are defined in
Table I. The phenotnenological constants a; in (1.1) obey
the relation

2
a&a4 ——a5 (1.3)

FIG. 2. Principal excitation in these systems: the undulation
mode. Wavy lines are the new (perturbed) surfaces of constant
density. Note that the displacement of the layers is a function
only of the distance in the direction along the unperturbed
layers.

and their numerical values are estimated in Table I. These
quantities, as discussed in Sec. IV B, are not, strictly
speaking, constants, but weakly diverging functions of
wave number. Expressions for the a s valid at low tem-

TABLE I. This table summarizes the various parameters appearing in the theory, provides an index to their defining equations
(where appropriate) and gives estimates of their orders of magnitude for typical smectic-3 and hexatic-B materials. Note that the
elastic constant B is systematically larger for monolayer materials.

Parameter

Bare elastic constants
0

Bp

Cp

Bp

Definition

Bulk modulus
Dynamic layer compressibility

Layer bending stiffness
Layer density coupling
Static layer compressibility

=Bp —Cp /2 p

Defining equation

(2.2)
(2.2)

{2.2)
(2.2)

Order of magnitude

5&10' dyn/cm '
2 &( 10 dyn/cm

(monolayer)
5 )& 10 dyn/cm

(bilayer)
5)& 10 dyn'

Bp/5 '
Bp

Bare viscosities
Bulk

Yj ]

YJ4

YJ 5

Shear
n2

n3

Layer-normal
In-layer
In-layer —layer-normal

cross term

In-layer
Layer-normal

(3.14)
(3.14)
(3.14)

(3.14)
(3.14)

1 cm sec
1 cm /sec
1 cm /sec

0.1 cm /sec
0.1 cm /sec

Lengths
Ap (K$/Bp )'

Layer spacing

Crossover length for logarithmic
divergences

(2.31)

20 A
Smectics: 20 A'

Cholesterics: 2000 A
104 A—1023 km

Dimensionless parameters
Wp kB T/B0 ~0= ~0~0

+1/PO( I3)

Bilayers: 1

Monolayers: 5
10-4

Miscellaneous
QI, Q2 Q4 Q5

p
Coefficients of 1/co divergences
Coefficient of logarithmic

divergence of g3

(1.1)
(4.22)

B2f
B2

'Reference 7.
Reference 8.

'Reference 9.
References 7 and 10.

'Reference 3.
Lowest order in temperature results for these quantities are given in Eq. (4.25)
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perature are given by (4.25).
The viscosity g3 does not diverge as 1/~ at low fre-

quencies. It does, ho~ever, have a much weaker logarith-
mic divergence given by (4.36) below.

One operational consequence of these divergences is that
the sound attenuations at low frequencies should be far
(divergently) stronger in these systems than predicted by
classical hydrodynamics. The first (i = 1) and second
(i =2) sound "' modes in these systems propagate with
wave numbers

q; =co/c;(B)+ia;(B,co), (1.4)

where L9 is the angle between the direction of propagation
and the z axis, the c;(B) are the direction-dependent speeds
of sound, and the a;(B,co) are the attenuations. In conven-
tional hydrodynamics a;(B,co)/to would approach a finite
0-dependent constant proportional to a linear combination
of viscosities, at low frequencies. Our results imply that
the attenuation obeys

a;/ru'= f; (B)/ru+g;(B) (1.5)

which diverges as I/cu at low frequencies. The g;(B) term
in (1.5) corresponds to the contributions of t); in (1.1).
The coefficients of the 1/co term in (1.5), f;(B), are plotted
as a function of 0 in Fig. 3 and are given explicitly' by
(4.26).

Using the numerical estimates in Table I, we find that
the anomalous part of the attenuation [proportional to
f;(B)ru] starts' to dominate over the "conventional back-
ground" [proportional to g;(B)co ] at frequencies around
10 —10 Hz, which are in the range of ultrasound experi-
ments. And indeed, ultrasonic experiments have long
shown' ' that a;(B,co) does not scale like co as predicted

r-, (8)

'. 8
90

8
90

FIG. 3. Plots of the coefficient of the anomalous (linear in co)

part of the sound attenuation as a function of direction of propa-
gation 0 (0=0 is the z axis). (a) Shows f, (0) (first sound at-
tenuation). Thick line is for a5 ~0; the thin, a5) 0. (b) Shows
f2(0) (second sound attenuation, which has the same qualitative
behavior for either sign of a5).

by conventional hydrodynamics. A recent reanalysis of
this data' shows a good fit to our predictions as summa-
rized by (1.5). In particular the anomalous part agrees
quite well with (4.26) for reasonable values' for the pa-
rameters a;, and the conventional part of the attenuation
g;(B) is virtually identical with the full attenuation in the
nematic phase of the same material (where that phase ex-
ists), and fairly close to that of the isotropic phase in
those materials which lack a nematic phase.

A detailed test of (1.1) is not, strictly speaking, possible
from attenuation measurements alone, since, as is evident
from (4.26), only the sum gz+g4 is determined by the fit.
Fortunately, since q2 is a shear viscosity, it can be deter-
mined independently of the bulk viscosities g&, g4, and g5
(which only affect the damping of compressional modes)
by, say, a mechanical shear impedance experiment. '

A more direct way of measuring g2 is via a steady shear
flow experiment. We discuss such an experiment in Sec. V
and argue that the flow should be non-Newtonian in the
sense that the effective viscosity should depend divergent-
ly on the shear rate. Non-Newtonian shear flow has been
observed by Kim et al. and Bhattacharya and Letcher,
as discussed in Sec. V. A detailed calculation of this shear
dependence is now in progress.

All of these striking effects are ultimately due to the ro-
tation invariance of these systems, which renders the ener-
gy cost of the undulation mode (Fig. 2) very small at long
wavelengths. An external magnetic field breaks the rota-
tional invariance of the system and renders the zero-
frequency and -wave-number components of the viscosi-
ties finite. These viscosities, given explicitly by (4.39),
diverge at small field H as H

Divergences are not restricted to the four viscosities dis-
cussed so far. Grinstein and Pelcovits have shown that
the elastic constants B' and E& (see Table I), respectively,
vanish and diverge logarithmically at long wavelengths.
We have extended their calculation to the elastic constants
A, B, and C. The latter two vanish as (lnq) ~ at small q,
while the former shows an initial logarithmic dependence
on q, but ultimately levels off at a finite value as q~0.
Detailed expressions for these quantities are given by
(2.24). We show in Sec. III that A, B, C, and I(. ( depend
only on wave vector, and not on frequency.

These "static" divergences could, in principle, be mea-
sured through sound speed experiments; they appear, how-
ever, to be much more difficult to detect than the spectac-
ular effects on the attenuation.

In Sec. II we construct an elastic theory for the equili-
brium behavior of these systems, extending the work of
Grinstein and Pelcovits to include a coupling to the den-
sity and the velocity field. This is then used in Sec. III as
an input to the nonlinear fluctuating hydrodynamical
theory we develop. We discuss how to extract effective
viscosities in the presence of nonlinearities and fluctua-
tions with the use of perturbation theory in temperature.
In Sec. IV we implement this theory and derive expres-
sions for all the divergent viscosities as functions of q, co,
and H. In Sec. V we discuss the non-Newtonian shear
flow predicted by our theory, summarize the existing ex-
perimental evidence for our predictions, and suggest fur-
ther experiments.
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II. BREAKDOWN OF CONVENTIONAL
ELASTIC THEORY

A. Construction of the effective Hamiltonian

F[u,p]= —P 'ln fW(g)e

= —,fd3x BE (u)+Ki(V u) +b,E(u)

E(u) =V, u ——,
'

( V'u) (2.1)

The most general effective Hamiltonian ' ' one can con-
struct, to quadratic order in these invariants and lowest
order in 5p=p —po and g is

F[u,p, g]= —,
' fd x .BE (u)+Ki(V u) +DE(u)

+A p +CE(u) p+ g5 ( )'

po po p

+ 3k~Tin
po

(2.2)

where the penultimate term is just the kinetic energy, and
the ultimate term insures that po is the quiescent (equili-
brium) density. Higher-order terms in this expansion can
be shown to be irrelevant to the long-wavelength behavior
of the system. Stability requires that the elastic moduli 3,
B, C, and K& satisfy A, Ki & 0 and B & C /A.

In considering the static (equal-time) correlations of u

and p, we can first integrate the momentum density g out
of the probability distribution to obtain an effective Ham-
iltonian for p and u alone:

In formulating a hydrodynamic theory of any system it
is necessary to consider only those "slow" variables whose
relaxation times diverge as the length scale of their Auc-
tuations goes to infinity. Such "hydrodynamic relaxation"
occurs ' when the variable in question is the local densi-
ty of a conserved quantity or when there is no restoring
force in response to an "infinite-wavelength disturbance"
of the variable from its equilibrium value. In the former
case, the infinite-wavelength mode is the conserved quan-
tity, and hence cannot relax. The latter includes order-
parameter fluctuations near a continuous phase transition
as well as the Nambu-Goldstone modes associated with a
spontaneously broken continuous symmetry. In smectics-
A, the symmetry that is broken is translational invari-
ance, due to the spontaneous layering (see Fig. 1). The
hydrodynamic variable associated with this is the displace-
ment u (x) of the layers in the direction normal to them-
selves (see Fig. 2). The other hydrodynamic variables in
smectics-A are just the conserved mass and momentum
densities p( x ) and g ( x ), respectively.

Our next step in discussing either the static or the
dynamic behavior of these materials is to construct a
phenomenological effective Hamiltonian for these vari-
ables that is consistent with the translational and rotation-
al invariance of the system. Translational invariance re-
quires that the Hamiltonian involve only gradients of u,
while rotational invariance implies that these gradients
can only enter in combinations which vanish when
evaluated for configurations u ( x ) that correspond to pure
rotations. The invariants that satisfy these constraints and
involve only linear and quadratic terms in u are V' u and

+ A +CE(u)
,

Po po
(2.3)

where P '=k~T. Note that the result of integrating out
g has simply been to cancel the last two terms of (2.2). If
we repeat this technique and integrate 5p out of the proba-
bility distribution as well, we obtain the effective Hamil-
tonian of Grinstein and Pelcovits with their parameters t,
k, and B (called B' here) related to the elastic constants de-
fined here as given in Table I.

We shall be interested in calculating the various equal-
time correlation functions

X~p(x —x ') = (5$~(x)5gp(x ') ), (2.4)

p[u p g]—e PF(» p' 8 l/Z (2.5b)

Z being the partition function. The labels a and P in (2.4)
run over the set p, u, and g such that, for example,
ltd(x)—=p(x). In (2.4), 5f (x)=g (x)—(g (x)). We
shall also be interested in the inverse correlation functions
(X ')~p defined by

[X '( q)] harp( q) =5 p, (2.6)

where a sum over the repeated index y is implied and
X p( q ) is the Fourier transform of X p( x —x ').

In finalizing our definition of our model we must, as
discussed in Ref. 2, choose the parameter 5 in (2.2) such
that (V, u ) =0 if the state we describe as u =0 is to be a
true minimum of the free energy.

B. Renormalization-group treatment

We shall now treat the Hamiltonian (2.3) using the
momentum shell renormalization group (RG). We start
by confining the wave vectors of the Fourier-transformed
variables p(q) and u(q) to a cylindrical Brillouin zone
(i.e.,

~ qi ~

&A and —oo &q, & oo). The parameter A
should be comparable in magnitude to the inverse of the
layer spacing a. We then proceed to integrate the degrees
of freedom at the shortest length scales out of the proba-
bility distribution. Specifically, we integrate those com-
ponents of the field in the infinitesimal shell b
& qz/A &1 where b =1+5/. After anistropically rescal-
ing wave vectors (qi~qib and q, ~q, b ) and fields

(quq,i) = Zu(»b q biq, ),
p(qi, q, )=Z&p(bqi, b q, )

(2.7a)

one is returned to a Hamiltonian of the form (2.3) (plus
"irrelevant" terms) but with changed (or "renormalized")

where the brackets indicate the equilibrium average

(A ) =fW(p)W( g)W(u)P[u, p, g]A (2.5a)

and the equilibrium probability distribution P[u,p, g] is
given by
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Z'
Bz —— B— PB 5I +O(w ) .

16~
(2.8)

parameters 3, 8, C, and E&. The integration over short-
wavelength degrees of freedom is done perturbatively in
the anharmonicities, the small dimensionless parameter
being w =tA, . Since such an analysis is now rather stan-
dard, and because of the detailed discussion in Ref. 2, we
will not go into the graphical implementation of this per-
turbative calculation. It is crucial, however, for our later
dynamical calculation, that only the u-u propagator is im-
portant and the dominant fluctuations are those with wave
vectors q, -A,q .

By calculating the renormalization of the (V, u) term in
the Hamiltonian at one-loop order we find the following
recursion relation for the renormalized elastic modulus 8:

dC wt

dl 16m.

dK]
dl 32~

(2.19)

(2.20)

These equations can be used to form the recursion rela-
tions for t and w:

dt wt

d/ 16~ '

dw —5w

dl 64~

(2.21)

(2.22)

which are precisely those found in Ref. 2 by starting with
a Hamiltonian for u alone. Using this RG we can show
that

By calculating the renormalization of the coefficients of
(V,u)(Vu), and

~

Vu ~, we also obtain the relations for
p{A ~l+ ~(e q~, e q„A(1),B(I),C(1),IC~(I

and

Q

g12 PB 51 +O(w )
16~

(2.9)
(2.23)

where A&&
——0, k&„——k„&

——2, and A,„„=4. The utility of
this relation becomes apparent when we analyze the solu-
tion of (2.22) for the coupling strength. We easily obtain

4

PB'5l +O(w')
~a6 (2.10)

( )

1+5w (0)I /64m.
(2.24)

which implies

Bg B— PB——M+O(w ) .
16m

(2.12)

Similar arguments for the coefficients of 6pV, u and
(5p)( Vu) give the renormalized elastic modulus

CR ——C —— pBCM+O(w )
16~

(2.13)

which will be consistent with each other and with (2.8)
only if we choose

(2.11)

X'„„=r /(q, '+ &'q'), (2.25)

evaluated at this wave vector, is smaller than its smallest
value on the Brillouin-zone boundary. This leads to the
choice

and observe that under repeated renormalization l~ ~
and w(l)~0. This means that for large enough I we can
evaluate the right-hand side of (2.23) in the harmonic ap-
proximation. Large enough, in this context, means that
the modes of wave vector longer than that on the right-
hand side have very small Auctuations; operationally, we
shall impose this condition by choosing l such that the u-u

propagator in the harmonic approximation,

I =lnIAmax[qj ', (X/q, )' ]I . (2.26)

Z Q2 (2.14)

Ag ——A — PC~51+0(w~),
16m

wE i
K)g ——K)+ 5I+0(w~) .

327T

(2.15)

(2.16)

We can rewrite these equations as differential equations
satisfied by l-dependent elastic moduli

dA wt

dl 16m
(2.17)

With the rescalings Z„and Z& now determined, we can
readily show that the renormalized A and K~ obey the fol-
lowing:

[X
—'(q)]„„=p[B (q)q.'+&i~(q)q'1

[X '( q )]p„IPC~ ( q )q,——,

[& '(q)]pp=PAz(q)//o

(2.27)

(2.28)

(2.29)

w"ere Az{q) Bz{q) Cg{q) and Kiz{q) are just the A(I),
B(I), C(I), and K~(I) obtained from (2.16)—(2.19) and
evaluated at the I given by (2.26). We easily obtain that

4/5
Ag(q)=- (2.30a)

1+tPB (z "~' 1)—

Putting these results together we find, using (2.23), that
the associated inverse correlation functions [see (2.6)] can
be written as

dB wt

dl 16~ (2.18) BR(q)= 8
1+rpB (z'~' —1)

(2.30b)
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C
Cit(q) =

1+r13B (z4r5 1)—

Alit(q)=Knez ~

(2.30c)

(2.30d)

with z =1+5wll64n. and l given by (2.26). These results
imply those of Ref. 2 for t and X. Note that Bg(q) and
Cii (q) vanish logarithmically at small wave vector as

~

lnq
~

while All(q) after an initial logarithmic correc-
tion approaches a constant.

This asymptotic behavior will only appear on length
scales

(f,.(r)f,.(r') ) =2kji TL;,5(r r')—. (3.3)

In deriving Poisson bracket relations we use the micro-
scopic definitions for the fields

whke Qlj(g) = [ltd;, fj ] is the Poisson bracket between the
variables g;, and F(1') is the effective Hamiltonian given
in this case by (2.2). The damping coefficients L;j and the
thermal noise f; characterize the irreversible, dissipative
part of the dynamics. The noise is assumed to be normal-
ly distributed with zero mean and obeys the fluctuation-
dissipation relation

L & a exp(64m/5w. ) (2.31) p(x)=gm5(x —r ), (3.4)

which may be quite large ( & 10 m) for typical values of
w (-0.7). The additive logarithmic dependence obtained
upon expanding (2.30) for small 1 should, however, be ob-
servable.

C. Extension to hexatics-8

p(x)u (x)=gu~5(x —r~),

g(x)=gp 5(x —r ),

(3.5)

(3.6)

Due to the breaking of rotational symmetry in the
planes of the smectic layers, hexatics have an angle P as a
new hydrodynamic variable. The Hamiltonian which in-
cludes gradients of P up to quadratic order and is con-
sistent with all the symmetries is

where r is the center-of-mass coordinate of the nth mole-
cule in the liquid crystal, p is its momentum, m its mass,
and u the z component of its displacement from the
mean position imposed by the one-dimensional ordering.
The canonical Poisson brackets

F =F~+2 dx E~ ~~ +
+ (JiVi/+ I,V,Q)E (u )], (2.32)

where Fz is the Hamiltonian (2.2) of the smectic A. Note
the absence of terms like V,uV, P and Viu Vig, both of
which are forbidden by inversion symmetry (u~ —u, z
~—z). It is a simple exercise in power counting to show
that the terms proportional to Jz and J, which couple u
and P are irrelevant. Hence the additional variable P has
no effect on the fluctuations of u at long length scales, and
the results derived above apply in their entirety to
hexatics-B, as well as smectics-A.

[u,ppI =5;,5 p,

[rj,P'PI =5;j5 jl

lead to the relations

[p(x),g'(x') I = —V„'[5(x —x ')p( x )],

[u (x),g'(x ')
I =5(x —x ')[5;,—V„'u (x)],

[g;(x),gj(x ')
I = —Vj [5(x—x ')g'(x)]

+V„' [5(x—x ')gj(x)]

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

III. FLUCTUATING NONLINEAR
HYDRODYNAMICS FOR SMECTICS-A

A. Langevin equations

In deriving a fluctuating nonlinear hydrodynamic
description of smectic-3 liquid crystals we follow the for-
mal development of Ma and Mazenko. ' In this approach
the dynamics of the hydrodynamic variables introduced
in Sec. II are governed by a Langevin equation

between the macroscopic variables. The dissipative coeffi-
cients are chosen to agree with those in the linearized
theory. Thus, since the equation of motion for p must
reduce to the continuity equation, we have L&z ——0. In the
equation of motion for u there is a time-dependent-
Ginzburg-Landau type of dissipation with L„„=I . Fi-
nally, there is the dissipation for the momentum density
due to viscous drag, which can be expressed in terms of
the viscous part of the stress tensor, cr,j., via

W (r) gF= V[/(r)] L,, +f—, . (3.1)
Ls)gj' ——~) og (3.12)

The reversible part of the dynamics is contained in the
"streaming term"

~ij Qij kl ~1 (3.13)

(3.2)
where the viscosity tensor q,jk~ has the general form for a
uniaxial system

gijkl 92(5il5jk +5lj 5ik ) + ( 93 92)[5jz(5li5kz +5lz5ki ) + 5iz(5jk5lz +5kz5lj ) 1 + ( 94 l2 )5ij 5kl

+( /1+ 92 493+ 94 295)5 5j 5kz5I +( l5 14+r)2)(5ij5kz5I +5k!5' 5j (3.14)
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Lf~(q)= r14q;q~+5J I &(q)+5;,5J, I z(q)

+q, (q;51, +qj5;, )I 3,
where

(3.15)

It is then a straightforward matter to identify the Fourier
transform of the damping for the momentum density g as

V= —T. pP
g

(3.20)

The nonlinear equations of motion are now completely de-
fined, but there are a few rearrangements which put them
in a more familiar form. The streaming velocity associat-
ed with the various fields can be written as

~1( q ) = q2qI+ l3qi

I 3='95+'93 —'94 ~

(3.16a)

(3.16b)

(3.16c)

BE 5F
B(V;u) 5g;

Vg ——pV;
5F

g
9E BF

B(V;u) 5u

(3.21)

The associated noise terms are given by fq ——0, f„=O, and

fg =g; and, from (3.3), satisfy 6F 6F—V g.J (3.22)
(8(x, t)0(x ', t')) =2kgTI 5(x —x ')5(t t'), —

(8(x, t)g;(x', t')) =0,
(3.17)

(3.18)

(g;(x, t)(J(x ', t') ) =2pokg Tg;tjkVkVt 5(x —x ')5(t t')—
=2ppkgTLfJ(x)5(x —x')5(t —t') .

(3.19)

i R
Vg ——Vjo iJ,

where o.
;J is symmetric and given by

(3.23)

It is not difficult to show that Vg can be written in terms
of the divergence of the reactive part of the stress tensor:

gI g, A (5p)' BE'
oiJ + ij + —QE —T~KQ(VkVtu) + C +BE+6,

k, l po

+K) V V';u+ V V)u —&)Vk V;
BE p BE

B(VJu)
' B(V;u)

(3.24)

The symmetry o.
;J ——o.;J+o;J——o.J; guarantees that the an-R D

gular momentum is conserved, i.e., that
tions of motion given above. These properties, in the case
of a strongly nonlinear system, are conveniently defined in
terms of the location and widths of the poles associated
with the time and space Fourier transform of the time
correlation function

where
C;, (t) = (5g, 5g;(t) ) . (3.31)

I i =cijkxj gk

is the angular momentum density and

Mik ~ij1+j o lk

(3.26)

(3.27)

is the angular momentum current. Summarizing these re-
sults, we have the equations of motion

Thus we must develop methods for calculating CJ(t). In
carrying out this development it is convenient to go from
a Langevin-equation description to a Fokker-PIanck
description. The connection between these two descrip-
tions is discussed in Ref. 31 where it is shown that Cz(t)
can be written in the form

Qp

Bt
+ V.g=o, (3.28) C,,(t)=(5q, e-~Sq, ), - (3.32)

gz 6F +
p

0 +~ Vu=
9t p

c}t
= —V.o."+gJ 'J

B. Fokker-Planck description

(3.29)

(3.30)
Dp —— V(g)5~y L~ —P ' +—

Bg)

(3.33)

where the average is defined by (2.5) and the time evolu-
tion of the fields is governed by the generalized Fokker-
Planck operator

In the rest of the paper we will be interested primarily
in extracting the transport properties (speeds of sound, ob-
servable viscosities, and sound attenuation) from the equa-

Note that D~ is specified by the same quantities that en-
tered the Langevin equation. It will be useful to introduce
the adjoint operator
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(3.34)

[z5;k —Mk(z)]Ck (z) =X;

where

y,, = C,,(t =0)=
& 5', 5q, & .

(3.40)

(3.41)

which satisfies

&~ (y)D,~(q) & = &~(q)D P(y) & . (3.35)

The proof of (3.35) is facilitated by the use of the theorem
stating that the reversible Hamiltonian dynamics generat-
ed by the streaming term V; leads to a divergenceless
probability current in phase space: [z5k —Ma«»]GkJ(»=51 . (3.42)

The poles of the spatial Fourier transform of Cz(z) are as-
sociated with the zeros of the matrix zI-M(z). Clearly
M (z) carries direct information about the position (sound
speeds) and widths (damping) of the hydrodynamical
modes in the system. For future reference we also define
the "propagator" 6;1(z) via

i
[ V~(g)P(g)] =0, (3.36)

We can derive convenient expressions for M;k(z) by us-

ing the operator identity

C;~(z) = i f dt e—'"C;J(t) (3.37)

where P ( P) is the equilibrium probability distribution
given, in this case, by (2.5b).

The simplest approach to the calculation of these
correlation functions is to calculate their Laplace
transform

zR (z) = 1+R (z)iDy

= I +iD~R (z)

in (3.38) to obtain

zCJ(z) =X~) + &5$)R (z)iDp5$; & .

Comparing this equation with (3.40) we identify

(3.43a)

(3.43b)

(3.44)

which, with the use of (3.32), can be rewritten as

Ci(z) = &5$)R (z)5$; &,

where

(3.38)
M k (z)Ckj (z) = & 5$)R (z)iDp5$; & . (3.45)

Multiplying this equation by z and using the identity
(3.43b) on each side leads to the result

R (z) =(z —iDp) (3.39)

is the resolvent operator. Nonlinear contributions to the
dynamical behavior can be treated most directly through
the memory function M J (z) defined by

Mtk [gkl + & (iD pgj )R (z)5/k & ]
= &5g~iDp5$; &+ & (iDg5$~ )R (z)(iDp5$; ) & . (3.46)

If we use (3.45) we can rewrite the second term on the left
in (3.46) as

M,„&(iD $57/I;)R(z)5$ &=&5$1R(z)(iD$5$;)&[6 '(z)]t &(iD$5CJ)R(»5e & . (3.47)

Taking this term to the other side of (3.46), we see that the
memory function M~J(z) can be written as the sum of two
pieces

(3.48)

The static contribution is given by

(3.49)

where

and

(X ');kXkj =5~J,

Ck(z)[C '(z)]kj ——5~J,

I; (Q) =Dg5$; = V, L;k—' W'k'

J J 1

(3.53)

(3.54)

(3.55)

(3.56)
K~)'= & 5@~iDg5@; & (3.50)

and the dynamic (frequency-dependent) contribution is
given by

C. Quasilinear approximation

Mi~j"(z) =Ki'k'(z)(X ')kj.

with

SC,',"(z)= & I,'R (z)I, &-
+ &5$tR (z)I; &[C '(z)]tk &IJ R (z)5/k &,

where we have introduced the notation

(3.51)

(3.52)

We consider here the approximation where we neglect
the dynamic part of the memory function. As we shall see
later, this approximation involves ignoring the dynamic
nonlinear contributions. It does include static nonlinear
contributions through the exact static correlation func-
tions X,J which enter the static memory function M" as
seen in (3.49).

We can evaluate the quantity KJ", defined by (3.50), by
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K~"=ip '(Q;1) i—p 'L;1 . (3.57)

using (3.55) and carrying out a functional integration by
parts to obtain the simple result

It is straightforward to evaluate the averages of the vari-
ous Poisson brackets given by (3.9)—(3.11) and determine
K,J'. Combining this result with (3.49) and (3.40) we ob-
tain the equations of motion for the correlation functions:

zCR (z) —q;Cs (z) =XR

zc„.(z) —1p,-'C, .(z)+lfl-'r(X-')„„C„.(z) =X„.,

(3.58a)

(3.58b)

zCg. «)+P '[ —q(& ')RRpo+i&'(& '),.)CR (z)+fl '[ —q po(& ')R. +i&'(& ')-]C. (z)+lpo 'LikCg (z)=&s.

(3.58c)

where the index a runs over values p, u, and g. We can then solve these equations in the small-q and -z limit to obtain
the hydrodynamic pole structure. This just involves solving for the zeros of the determinant of (zl-I"). There are two
pairs of solutions of the form given by (1.4) where the sound speeds are related to the renormalized elastic moduli de-
fined by (2.27), (2.28), and (2.29) by

po(c 1+c 2 ) =AR + (BR 2CR )co—s 0,
ppc lc 2 = (AR BR —CR )slrl 8 cos 8 .

The sound attenuation is given by

(3.59a)

(3.59b)

a;(8) ( —1)' 2 2
I sin 8 cos 8['glAR +('g2+'q4)(AR +BR —2CR )+2vl3(CR —2AR )+2&is(CR —AR )]

2ppc 1 (8)[c 1 (8)—c 2 (0))

+713[AR + (BR —2CR )cos 8]+ I BR (CR cos 8+AR )cos 0

—poc; (0)[(211+I BR )cos 8+(212+214)sin 8+rl3] I . (3.60)

(X ')„„-0(e ),
(X ')„R-0(e ),
(X ')RR-0(1) .

(3.61a)

(3.6 lb)

(3.61c)

Since we will need an explicit expression for C„„(q,z), we
will concentrate on (3.58) with a=u. Ignoring higher-
order terms in e, these equations reduce to

zcpu —a Cg,.u =&pu

zen. —&po Cg ~ =&u.

(3.62a)

(3.62b)

(z+iv3)q;Cg „—ARq CR„ippCRq, q —C„„+iv4Cg „——0,
(3.62c)

In Sec. IV we shall carry out a perturbative analysis of
the nonlinear corrections to the transport coefficients
which will require the evaluation of integrals of products
of correlation functions over wave number and frequency.
Fortunately, since the dominant contribution to these in-
tegrals comes from the region (see Sec. II) co —q, -kq, we
only need detailed expressions for the correlation functions
that contribute to the integrals in this regime. As we now
show, the resulting expressions for the correlation func-
tions are relatively simple.

As a first step in developing this analysis let us intro-
duce an ordering parameter e such that q1-0(E),
q, -O(e ), and z —0(e ). We can then, using (2.27),
(2.28), and (2.29), make the estimates

where

vl ——q(cos8)(ri3+ ri5),

v2=q [ l3+cos 0('ql —g3 g3)]2 2

v3 q'[q2+ 94+cos 0(2q3+ l5 q2 94)1

(3.62d)

(3.63a)

(3.63b)

(3.63c)

v4 ——q [ cos8(2213+ rl5 —2l2 —2l4)

+cos 8(g, +ri2 4rl3 27l5 g4)) (3 63d)

We easily find from these that vl, v2, and v3 are of 0(e ),
while v4 is of 0(e ). Inserting the appropriate estimates
for z, X&„, and X» in (3.62) leads to the estimates for

&pp and Cpp shown in Table III. Using these esti-
j

mates we can drop the q;Cs „and Cg „ terms in (3.62c) to
obtain

CR„—— iq, pp(CR /AR )C—„„, (3.64)

which is consistent with (3.61) and the estimates in Table
III. Similarly, in (3.62d) we can drop the q;Cg „ term and

l

eliminate C~„ in favor of C„„,using (3.64), to obtain

t

(z+iv2)Cg „—q, (AR —CR )CR„

Pp[iCRq—,' i(X ')„—„Pp
'—]C„„+iv,q, C„=.0,
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TABLE II. Summary of the divergent quantities, and equation numbers of detailed expressions for
them.

Quantity

Elastic "constants"
(q),B (q), c„(q)

E)g(q)

Divergence

(lnq)-4"

Full expression

(2.30)
(2.30)

Viscosities

g1~ g2~ g4~ g5 '(1nq), a) )~q, (aB jpo)'~
q, '(lnq) ~,co &&q, (~8/po)'~

(1nq)

(1.1), (4.14), and (4.23)

(4.36)

Miscellaneous
a&(q), a2(q), a4(q), a5(q) (lnq)

(z+iv2)Cg „+ipo(X ')„„C„„=O,

where we have identified

po(X ')„„=kgT(X ')„„.

(3.65)

(3.66)

no nonlinear couplings then we would have M"(z) =0.
Let us now restrict ourselves to the specific case of

smectics A. Note, since there are no nonlinear corrections
to the continuity equation, that

Combining (3.65) and (3.62b) leads to the results K,".(q,z) =K.",(q,z) =0 (3.73)

(z+i v~)
C„„(q,z) =

D +QQ

where

Cg „(q,z)=

(3.67)

(3.68)

for any a.
In the quasilinear approximation the damping of the u

variable in its equation of motion is proportional to
I (X ')„„. It is easy to see that within the memory func-
tion formalism the correction to this is

(3.74)

and

D =(z —z+ )(z —z ), and therefore the renormalized I is given by

I g(q, z)=I +ipoPK„'„'(q, z) . (3.75)
z+ iv2/2+ ——[(X„„) ' —(v2/2) ]' (3.70)

—1
—iz t

C„„(q,r) =
(z+ —z )po „+ z„

(3.71)

D. Dynamic nonlinear contributions

We are now interested in the corrections to the quasilin-
ear approximation due to the dynamical part of the
memory function M"'(q, z) defined by (3.54) and (3.52).
It is important to point out that if there were no nonlinear
terms in the equations of motion, the dynamical part of
the memory function would vanish. To see this let us
write

I;(f)=I; (rtj)+I; (P), (3.72)

where I; (g) contains all nonlinear contributions to I;(P).
Inserting (3.72) into (3.52) we find that any terms constant
or linear in g cancel and we can replace I and IJ in (3.52)
with the nonlinear contributions I; and IJ . If there were

C&„can then be evaluated by inserting (3.67) into (3.64).
Since D —O(e ) and X„„-O(e ) we easily verify that
the estimates in Table II are all consistent. It is not diffi-
cult to invert the Laplace transform for C„„(q,z) to find,
in this limit, that

Similarly, we see that Kg'g (q, z) is to be identified with
l J

the nonlinear contribution to the viscosity matrix:

Lg,j ( q, z) =L fi ( q ) +i PKg's ( q, z)po (3.76)

Finally, we have the contributions K„'g' ( q, z) and
J

Kg „(q,z). K„'g'(q, z) corresponds to a damping term in

the u equation linear in g, while Kg'„'(q, z) leads to a
damping term in the g equation linear in u. These damp-
ing terms, which do not appear in the linear equations of
motion, are not important since they are of higher order in
wave number than the leading hydrodynamical results.

We shall calculate M'p(q, z) in a perturbation theory in
the temperature. The systematics of higher-order correc-
tions in this expansion are complicated and will be dis-
cussed in Sec. IV. The calculation of M"~(q,z) to lowest
order in the temperature, however, is straightforward.
This is because fluctuations are small in the low-
temperature limit and the probability distribution is effec-
tively gaussian. The average over a Gaussian probability
distribution Po[gj of a product of 2N fields g will factor-
ize into a sum of products of % two-point correlation
functions each of which is proportional to k&T. The
essentials of this argument are not changed in the dynamic
case although the specific analytic properties of the time-
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We analyze these contributions in detail in Sec. IV.

E. Extension to hexatics-S

The equations of motion for hexatics-8 are again
given by the Langevin equation (3.1) with two modifica-
tions: the g's now include P as well as u, g, and p, and the
appropriate Hamiltonian is now (2.32). We also need the
Poisson brackets between P and the other variables:

[g;(x),P(x ')
I
= —,e;,J.VJ5(x —x '),

Iu ( x),P(x ')
I =0 .

(3.80a)

(3.80b)

The linearized version of the resultant equations of
motion read, after Fourier-transforming in space,

dependent correlation functions are rather more involved.
In the end, the lowest-order contribution to M'" (and
K"') will come from keeping as few powers of g as possi-
ble in I; . Thus the lowest-order nonlinear vertex is of the
form

I.",o(4) = ~,k5(4. ,4i )

and we immediately obtain from (3.52), after noting that
the "subtraction terms" can be ignored since
(I; R (z)5ig)o is zero to this order, that

X (5(/k', )e 5(pie ) )0 (3.78)

where the angular brackets with subscript zero indicate a
Gaussian average. It is not difficult to show that the
Gaussian average factorizes into products of zeroth-order
correlation functions such that

K,"J'(')(z) =i f dt e'"Viim Vjg„

X[C„~(t)Cki(t)+Ck~(&)C„((t)] . (3.79)

The most important feature of these equations for our
purposes is that the variables gz=qz. g&/q&, g„and u,
completely decouple, for all wave vectors q, from the vari-
ables gT =—z ( q X gt) and P as can be seen by forming the
dot and cross products of (3.81) with qt and noting that
gr does not appear in the equations of motion for p, u,
and g, . Thus the quasilinearized correlation functions of
the variables gl, g„p, and u are exactly the same as in a
smectic-A. In particular, the C„„correlation function is
unchanged. Since the nonlinear terms in u in the equa-
tions of motion are also identical with those of a smectic-
A, all of the divergences derived for that case will also be
present here, in precisely the same form. Furthermore, we
can show by power counting that the gr and P fluctua-
tions, when nonlinearly coupled back into the others, give
rise to no new divergences. This completes the verifica-
tion of the claim in the Introduction that the smectic-A re-
sults transcribe perfectly in hexatics-8.

IV. ANALYSIS OF THE DOMINANT NONLINEAR
CONTRIBUTIONS TO THE TRANSPORT

COEFFICIENTS

A. Lowest-order contributions

Our first task is the explicit evaluation of the zeroth-
order contribution to the dynamic part of the memory
function given by (3.51) and (3.79). Given the large num-
ber of components and the various integrations involved
even this is a formidable task. Fortunately, we can show
that the dominant contributions to E' come from the
"streaming terms" quadratic in u. This result follows
straightforwardly from the power counting developed in
Sec. IIIC and summarized in Table III. Thus we need
only consider a few terms in the streaming velocity, name-
ly,

Vs
———,(85;,V, —CV; )( Vu) +B5;,V (V,u Vu )

8

Z
'+(n, q', +n,q,')gi+g4qt(qt g~)+iAq~'at

+BV,(V;u V, u) (4.1)

+(g3+q, )q, q,g, Cq, q,u+iz —X qK(q)y= g, ,

(3.81a)
V„=—, I BV,(Vu) (4.2)

Bu gz +I (Bq, +K i q )u i I Cq,p—=9,2 4

Bt p

(3.81b)

(3.81c)

~gz 2 2+i (A C)q,p+ (ri3q. +—g,q, )g,at

+(ri3+ns)q. (qi gi)+((& —C)q'+Kiqt]& =k. ,

TABLE III. Surnrnary of power counting for correlation
functions and propagators, in the regime of wave vector and fre-
quency q&-O(E), q, -O(E'), ~-O(E'), and E~O. Top half
gives power counting for correlation functions, bottom half for
propagator 6 s with columns as a and rows as P.

gT

dt
——,"(q Xg )+I+(q)P=y, (3.81d)

(y(x, t)g(x ', r')) = (y(x, t)8(x ', r') ) =0 . (3.82b)

where K(q) = Ktqt+,K, q, and we have neglected the ir-
relevant g and g, terms in the Hamiltonian (2.32). y(X, t)
is the Gaussian noise for P with correlations:

(y(x, t)y(x ', t') }=2kiiTI p5(x —x ')5(t —t'), (3.82a)

P
g3
gT

0
P
g3

—6

4

4

—2

—2

E
—2

4

E
—3

—4

—2

E
—2

E
4

—2

—2

E
—2

1

1
2

E'—I

E
—1

—3
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where only the relevant parts of each term have been writ-
ten out. When Fourier-transformed in space, these are

3

Vg (q)= Vg „„(q,p)u(p)u (q —p)
(2m. )

and

b, ti4 ——C I(q, co),

by, =C(C —B)I(q, co) .

Note that these b g; satisfy

b,g, h!14——(b,g5)

(4.12b)

(4.12c)

(4.13)

3

V„(q)=f 3 V„„„(q,p)u(q —p)u(p),
(2m. )

(4.4)

(B—q, 5;, —Cq;)p +iBq,p;p,2

+iB6;,p, q . p, (4.5)

V...(q p)=—1.(q p)= ——' I Bq.p'.
2

(4.6)

Using these results in (3.79) we find, using (3.74) and
(3.75), that the real part of the viscosity matrix is altered
by an amount

KLfj ( q, ro) =RePpo 'I(g'g 0 ( q, co )

G

where the vertices, corresponding to the V~jk in (3.77), are
given by

V „„(q,p)=I;(q, p)

Using the Fourier transform of (3.71) we can carry out
the integrals in (4.11) and find that I(q, co) diverges as q
and co go to zero. We can gain an understanding of the
dependence of I(q, co) on q and!o in th!s divergent regime
by investigating the extreme cases (a) co&0, q=0; (b)
co=0, q, »A,q =0; and (c) co=0, q, «A, q . The analysis
is simplified in the limit ~=If!/pot)3&&1. [For typical
smectics (see Table I) a-10 .] In order to understand
the significance for the ~ &&1 limit, note that g3 governs
the damping of the undulation mode parallel to the layers,
and K] its speed in that direction. Analysis of the normal
modes of the u —u correlation function, given by (3.70),
show that for lr & —,

' the undulation mode is diffusive for
q, =O. More importantly, for ~~0 and q, (kq, the
eigenfrequencies z+ of the undulation mode satisfy
z+ -~z &&z . Thus only the contribution from the sin-
gle mode with frequency z+ needs to be taken into ac-
count. This fact simplifies the evaluation of I(q, co) in the
cases mentioned above. We find that in d dimensions

I(O,co)-co'" '~, I(q„O)-q,'" ', and I(q~, O)
—

~ qz ~" . In more detail, for d =3,

X C„'„'(p,II)l, ( —q, p)

while the kinetic coefficient I is shifted by

b, I ( q, co) =RePIC„"„'o(q, co)

d
277 3 1T

(4.7)
1I(O,co) =

64B'pp cu

( 7T —2 )LU 7J 3

64~(B')' &q

I ( q!,0)-q!
This means, with the use of (4.10), that

(4.14a)

(4.14b)

(4.14c)

XC„'„'(p,Q)1 „(—q, p) . (4.8)

and

AL g~( q, co) =(B5;,q, —Cq; )(B5~.,q, —Cqj )I( q, co) (4.9)

EI (q,co)=I B q, I(q, co)po,

where

I ( q, co)

(4.10)

p!C„"„(q p, co Q—)C„"„(p—, Q) .
po d p dA 4

4k~T (2~)' 2~

(4.11)

We can then gead off the corrections Ag; for the individu-
al viscosities from (4.9) using (3.15);

baal!

——(B—C) I(q, co), (4.12a)

In (4.7) and (4.8) C„'„'(q,co) is the Fourier transform over
time of C»(q, t) given by (3.71). After inserting the expli-
cit expressions for the vertices given by (4.5) and (4.6) we
find that

r

EI —.q for co=0, q ++Pq&

q, /Aq! for co=0, q, «A, q~

(4.15a)

(4.15b)

(4.15c)

All the above corrections vanish for q~O so that I is
unaffected at long wavelengths by the nonlinearities. The
viscosities g&, g4, and q5 diverge as 1/co for very long
wavelength probes as seen from (4.12).

A particularly useful way of looking for transport
anomalies in these systems is through a study of the sound
attenuations. The sound attenuations a;(O, co) are related
to the renormalized elastic constants and transport coeffi-
cients by (3.60). Thus, to obtain the shift in a;(H, ro) due
to the nonlinearities, we simply replace the g; s and I in
(3.60) by their shifted values. As shown above b, I makes
a negligible change, but the shifts in the viscosities, Ag;,
lead to a significant shift, ha;(O, co), in the sound attenua-
tion. Notice that in evaluating hu; we must evaluate Ag;,
and therefore I(q, co), for wave numbers and frequencies
satisfying the dispersion relation q;=c/c;o[see (1.31)].
Thus we need to evaluate I(co/c;, ro) in order to obtain the
nonlinear contributions to the sound attenuation. Note,
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however, from (4.14), that

I (O, co) tI z ro

I( qi, O)

1/2
I(O, ro) ~ 8' 9z

I (q„O) COpo Po

1/2
1

C;

(4.16a)

(4.16b)

and in both cases, except for the case of second sound
propagating almost along the ordering direction, we have

I(q, O) » I(O, ro), since a && l. This means that the fre-
quency provides a cutoff at a shorter spatial scale than q
and the additional cutoff due to q is negligible. Therefore,
to a very good approximation

I (ro/c;, ro) =I (O, co) (4.17)

B. Higher-order corrections

Since the lowest-order corrections to the viscosities are
divergently larger than the bare viscosities, the validity of
the entire perturbation theory might seem dubious.
Indeed, in other situations, such as critical phenomena, the
true divergences can only be obtained by either cleverly

resuming an infinite series of such individually divergent
terms, or by performing an expansion around the upper
critical dimension (5 in this case) below which the diver-
gences occur. Fortunately, such an approach is not neces-
sary; the divergences at higher order are no worse than
1/m, and we can say with confidence that the physical
viscosities do indeed diverge like 1/ro.

In order to show this we must develop a systematic ap-
proach to the calculation of higher-order corrections to
the memory function. This is most conveniently (for the
pictorially minded) done with the use of the graphical ap-
proach described by Ma and Mazenko. ' We begin by
graphically representing the equations of motion as illus-
trated in Fig. 4. This representation suggests a straight-

except for propagation of second sound almost along the
ordering direction. In this case c2 vanishes and I(O, ro)
can no longer be taken as small in comparison with
I(q„O). A detailed analysis shows that ro is the relevant
cutoff until qt/q, is less than v a. which is on the order of
0.01. We have then that the attenuations go as co for
second sound except when it propagates at an angle of less
than 10 rad ( —, deg) to the layer normal. In that case
we expect the attenuation to diverge as I/q, . The resolu-
tion available in experiments is, however, of the order of a
few degrees so this effect is probably not observable.

The case of second sound in the layers, i.e., q, «Xq, is
different, since the damping here is governed [(3.60) for
O=rr/2] entirely by F13. This viscosity diverges only loga-
rithmically, as we shall show in Sec. IV D, so that I(q, ro)
does not enter, and the anomaly in this range of wave vec-
tors is a very mild one. It should be noted that g3 is the
only viscosity appearing in I(q, ro). The fact that it
suffers no power-law divergences implies that the pertur-
bation theory is self-consistent to this order, apart from
logarithmic corrections. We shall now show that the 1/ro
(or 1/q, ) nature of the anomaly as well as the relation
(4.13) hold to all orders.

a a+ + ~ 4 ~

FIG. 4. Graphical representation of the equation of motion.
Thick lines represent the fluctuating fields; thin ones, the bare

propagators [defined by Eq. (3.4)] evaluated in the quasilinear

approximation. Points where n fields meet represent nth order

nonlinear terms (vertices) in the equations of motion, and the
small circles represent the Langevin noises. Sums over repeated
indices, which include frequency and wave vectors as well as

field labels are implied.

forward iterative solution, obtained by replacing each of
the t)'j lines in the nonlinear vertices, by the expression for

g itself. This leads to the iterated form represented graph-
ically in Fig. 5. Note that to solve the equations to nth or-
der in the external noise (which amounts, as we shall see,
to calculating the correlation functions to nth order in
temperature) we need only include such "tree" graphs of
no more than n + 1 branches.

Now consider the calculation of correlation functions.
The thermal averaging that must be performed in such a
calculation involves, in the Langevin-equation approach
used here, an average over the external noises. Because the
latter are Gaussian, averages over products of several such
noises can be replaced by products of averages of pairs of
noises. This pairwise averaging can be represented by
joining the branches in the iterative solutions to the equa-
tions of motion at the noise bubbles, as illustrated in Fig.
6. A single such pairing [(a) of Fig. 6] gives the quasilin-
ear correlation function C~p. These graphs now have all
the properties of Feynman diagrams; momentum and fre-
quency are conserved (by construction at the vertices, and
as a result of the 5-function correlations of the noises
through the correlation lines) and integrals over all uncon-
strained loop wave vectors p and frequencies Q are im-
plied.

We can now apply this graphical procedure to the cal-
culation of any correlation function. In particular, we can
calculate the various correlation functions contributing to
the dynamical memory function M'~ given by (3.52).
Since the second term on the right in (3.52) acts to remove
various one-body reducible terms from the first term, we
can take it into account by considering only the irreducible
graphs contributing to the first term in (3.52). We com-
pute then the contribution of irreducible graphs to the irn-

aginary part of (IzR (z)I; ), which gives the higher-order
corrections to the transport coefficients. Two of the
graphs that result are shown explicitly in (b) and (c) of
Fig. 6. Higher-order corrections are shown in Figs. 7 and
8. Figure 7(b), with the internal indices all set to u,

FIG. 5. Graphical representation of the iterative solution of
the equations of motion. Note that each "branch" of every
"tree" ultimately terminates on a noise.
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a P P

( )
(b)

+ e ~ ~

FIG. 6. Graphs for the correlation function C p. Note that
we can "tie legs together" either by correlating noises between
the two fields (a,P) being correlated, as in (a) and (b), or correlat-
ing them within the noises for each, as in the ear of (c). Note
also that tying together just two legs generates the quasilinear
approximation for the correlation function C p.

represents the lowest-order correction to the viscosity ten-
sor and was analyzed in detail in the first part of this sec-
tion. There are two classes of higher-order diagrams, il-
lustrated in Figs. 7 and 8, whose contribution to the
viscosity tensor also diverge as 1/co at low frequencies.
The first class, illustrated in Fig. 7, arise from vertices in-
volving four u legs [see Figs. 7(a) and 7(b)] or six or
more u legs ' [see Fig. 7(c)] in the equation of motion for
g. Graphs arising from such vertices in which none of the
legs are diverted into "ears," can be shown by power
counting to diverge, at most, logarithmically. We can in-
clude any graphs in which all the "extra" legs (i.e., all but
two of them for a higher than three point vertex) are
diverted into a subsidiary ear by replacing every three-
point vertex with a renormalized three-point vertex,
given graphically in Fig. 9. This renormalized vertex
differs in three important ways from the original or bare
one.

(1) It is not expressible, even in principle, in terms of the
elastic constants Az, 8&, and Cz, but requires the intro-
duction of new phenomenological parameters which de-
pend on the microscopic (short-distance) details of the sys-
tem.

(2) Its tensor structure is different. As we shall see, this
leads to the 1/co divergence of the shear viscosity gz.

(3) It is temperature dependent. All the corrections to
the bare three-point vertex are higher order in tempera-
ture, since they involve one or more loops, and hence van-

r ——a
I

I

l

I

L

+ ~ ~ ~

FIG. 8. Higher-order corrections that cannot be absorbed into
the renormalized three-point vertex. None of them diverge more

strongly than 1/co.

d =
2 ((Vtu) ), (4.19a)

b =-,' ((V,u)') —d . (4.19b)

The new tensor structure of I;;, relative to I, , is reflected
in the term proportional to p; q ~. This corresponds to a
nonlinearity proportional to V (V;u Vu) and is not
present in the bare vertex. As we shall see later this new
term is responsible for the divergence of the shear viscosi-

The statement above that this vertex involves new
phenomenological parameters becomes apparent when we
actually attempt to evaluate d and b given by (4.19). We
have that

d = J q, (qt)'X„„(q)
(2m. )

ish as T~O. Consequently, the results of Ref. 1 and the
beginning of this section are recovered in the low-
temperature limit.

Statements (1) and (2) are apparent even at one-loop or-
der. Evaluating the first and second graphs in Fig. 9 we
find the renormalized vertices are

I,"(q, p ) = I'; ( q, p )

iB[ '
, b5—;,q,p +—2dq;p

4d(q—.pp. +~'p. q p+p;q P)]
(4.18)

where I; is given by (4.5) and

and

d q(qz)=k~T
(2m)'[BR(q)q. +&1R(q)q'1

d3b+d= J q, q,'X„(q),
(2m )

(4.20a)

(4.20b)

FIG. 7. Graphs for K p arising from higher-order vertices in
the equations of motion that also diverge as 1/co at small co.
"Ears" described in the text are inside the dotted lines, and can
be absorbed into a renormalized three-point vertex as illustrated
here and in Fig. 8. FIG. 9. Graphs for the renormalized three-point vertex.
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where B~(q) and E&z(q) depend logarithmically on q, as
given in (2.30). Both of these integrals diverge for large q.
This divergence is merely an artifact of our truncation of
the gradient expansion of the Hamiltonian (2.2) at lowest
order in the gradients. The inclusion of higher gradients
[e.g., a (V u) term] in this expansion would render d and
b finite. The coefficients of these higher-order terms,
however, are new phenomenological parameters, which are
not determined by those already introduced. Hence we
suffer no loss of information if we simply consider d and b
themselves to be new adjustable, temperature-dependent
parameters.

We can estimate the order of magnitude of d and b by
simply restricting the domain of integration in (4.20) to
a cylindrical Brillouin zone with

~ q~ ~
& A~,

~ q, ~
& A, &&Az. We have then from (4.20) that

kg TAJ
(4.21a)

8'(BRK)g )'~

5g& (8 ——C—) I(q, co), (4.23a)

5q2 ——y I(q,m)/8, (4.23b)

5g4=(C y/—2) I( q, co), (4.23c)

related to previously determined parameters only at zeroth
order. Even at first order the parameters B, C, y, and p
depend on the short-distance properties of the system and
should, within a hydrodynamic development, be taken as
independent, adjustable parameters.

If we analyze the contribution of the graph shown in
Fig. 7(d) to the viscosity matrix using the general vertex
(4.22) we find that the four viscosities g~, rl2, rl4, and g5
diverge as I /co. Their divergent parts are given by

kgT
b = A, Aq.

Sn Bg
(4.21b)

5g5 ——(C B)(C —y/2)I (—q, co) .

Defining

(4.23d)

If we assume that Aj is of the order of magnitude of the
layering wave number qp ——2~/a and insert typical values
for monolayer smectic at a temperature of 350 K, we find
d=0.06. Looking at the renormalized vertex we find a
first-order correction to the coefficient of q;p of roughly
0.12B. Since the "bare" value of this coefficient is C/2,
which typically is -B/6, we see that the correction is
quite large. We must emphasize that our estimates for d
and b above are very crude. We do not really know how
to treat the wave-number cutoffs accurately.

An important question at this point is whether new ver-
tex terms will be generated at higher order to correct (4.18)
just as V (V;u Vu) was generated at first order. This
question can be answered by constructing the most general
vertex compatible with the symmetries of the system.
These are the following:

(i) the symmetry of the stress tensor and conservation of
momentum, which imply that I; (q, p)=q Q,"(q,p)
where 2;z is symmetric;

(ii) translation invariance, which requires that only gra-
dients of u appear, so that (since I; couples to a pair of
u's) A;J. must be quadratic in q and p; and

(iii) uniaxiality.

a )
——(& —C) (4.24a)

(4.24b)

a4=(C —y/2)', (4.24c)

a g
——(C —8 )(C —y/2) (4.24d)

ai =(B —C) +O(T), (4.25a)

a2 ——O(T ), (4.25b)

we recover the results (1.1) and (1.2). The main new qual&-

tative feature of these results when compared with the re-
sults reported in I is that the shear viscosity q2 diverges as
1/co. In particular, for low temperatures, we have, on
comparing (4.22) and (4.18), that

Taken together, these lead, apar" from irrelevant terms, to
the form

aq ——C +O(T), (4.25c)

I;(q, p)= [&8;.e.p ' Cp—;p—'+yp;q p—
2

ag ——C(C —&)+O ( &), (4.25d)

+V(J;e.p. +o;.u, q. p)j . (4.22)

We note immediately that no new types of terms can be
generated beyond those already present in the first-order
result (4.18). It is equally important to realize that the
coefficients 8, C, y, and p, appearing in (4.22) are simply

and in the T~O limit we recover the results of I. The
most important consequence of higher-order corrections
may be to change the sign of a5 which is negative at low
temperatures since B ~ C.

Using these results for the divergent parts of the viscosi-
ties in (3.60) for the anomalous part of the sound attenua-
tion we obtain (1.5) with f; (0) given by
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fi(~) 3 p p Isbn icos ~[a 1~R +(a2+a4)(~R +BR 2CR )+2a5(CR ~R )]
( —1)'

2poc; (8)[c i (0)—cq(0) ]

—poc;(6)[a&cos 9+(a2+aq)sin 8]I . (4.26)

The higher-order corrections discussed above are, to a
large degree, of a static nature. Those depicted in Fig. 8
are essentially dynamical, and arise from the insertion of
additional correlation function lines into the divergent
bubble. We shall now argue that these graphs also diverge
as 1/co, and that no other graphs, at any order, diverge
more strongly. To do this, it is useful to first show that
any (n +1)-loop graph produced by adding lines to any n

loop graph can diverge no more strongly than the original
n-loop graph. The argument is based on simple power
counting: The most divergent insertion we can add to a
graph is a u-u correlation function which, as shown in
Table II, diverges as e in the dominant frequency and
wave-number regime. The largest such insertion will in-
volve the renormalized three-point vertex I . In making
such an insertion, we also introduce two propagator lines.
The largest such propagator (see Table III) is
G„s —0(e ). Thus the largest correction to the viscosi-

ties involves the insertion of two such propagators, and
hence two I", , which are of 0(e ). In addition to these
factors, we must, in an (n +1)-loop graph, integrate over
one more momentum and frequency (relative to an n-loop
graph). Since the width of the regime of frequencies that
contributes appreciably is of 0(e ), the additional integral
over frequency contributes a factor of 0(e. ). Likewise,
the additional dp, and d pz integrals each contribute a
factor of 0(e ) as well for a net "phase-space" factor of
0 (e ). If we then estimate the value of the first graph in
Fig. 8, relative to Fig. 6(b), we obtain a factor of 0(e )

from the additional C„„correlation function, two factors
of 0(e ) from the vertices, two factors of 0(e ) from the
two Gg „propagators and a factor of 0 (e ) from the addi-

tional phase-space integration. Multiplying these factors
we obtain a contribution of 0(1) relative to Fig. 6(b).
Similarly, all of the graphs in Fig. 8 are of 0 (1) relative to
Fig. 6(b). Taking all of this information together we find
that higher-order graphs diverge, at most, as strongly as
the most divergent one-loop graph, i.e., like 1/co. Further-
more, since all of these higher-order graphs are construct-
ed from the same generalized three-point vertex (4.22),
they contribute to the viscosity matrix with the same ten-
sor structure as the lowest-order results. This implies that
the relation (1.3) continues to hold to all orders of pertur-
bation theory.

C. Logarithmic corrections to viscosities

enter the renormalized vertex I "; given by (4.22), all de-
pend on q in exactly the same way as in Bz ( q ) [or
equivalently CR(q)]. That is, B~(q)=BB~(q)/8 [and
equivalent expressions for Cz ( q ), y~ ( q ), and pz (q)].
This is readily seen by noting that all contributions to
these parameters are proportional either to 8 or C (includ-
ing those that come from the vertex corrections discussed
earlier) or to coefficients of higher powers of the invariant
in the Hamiltonian. The latter are easily shown (by use of
the RG constructed in Sec. II) to have the same wave-
vector dependence as B~ ( q ).

For the four viscosities whose principal divergence is as
I/co the logarithmic corrections are given accurately by
(4.23) provided the vertex parameters 8, C, and y are re-
placed with the wave-vector-dependent quantities
described above. It should be emphasized that these quan-
tities depend only on wave vector, not on frequency, since
they ar'e all derivable from static correlation functions.

The one viscosity, g3, which does not diverge as 1/co,
diverges logarithmically with co. This divergence comes
from Fig. 7 where the vertices are given by the p terms in
the renormalized vertex I; . We find that the correspond-
ing correction to the viscosity matrix is

ALE'( q, co)= Iq( q, co)[q, 5J +5;,5J, (q —4q, )
4k~ T

+q, (q;5J, +q15;, )],
(4.27)

I2(q, co)= f 3 p p, C„'„'(p,Q)C„'„'(q —p, ~—0) .
(2~)3 2m

(4.29)

As with I(q, co) we can evaluate I2(q, co) in the small-a.
hmit. We frnd

2
s w B(q)b, g3( q, co) = g31ny,
3277 8'( q )

(4.30)

(4.28)

We readily recognize from (3.15) that EL,(' is simply a
correction to the viscosity g3..

The dynamic results presented above neglect logarith-
mic divergences of the static parameters [as given by
(2.30), for example], which enter the dynamic calculation,
as well as intrinsic dynamic logarithmic divergences. We
discuss these corrections here.

We first note that the parameters B, C, y, and p, which

(A2K&/pog3co) for (po/8')' co »q„Aq
y = A,A /q, for q, »(po/8')' co, Xq

A /qi for A,q »q„(po/8')'i co

(4.31a)

(4.31b)

(4.31c)
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and

s =p( q)/8 (q ) (4.32)

is a constant independent of q (as discussed above). As in
our discussion below (4.16), the first limit (4.31a) applies
to propagating sound in all known smectics, except for
second sound almost normal to the smectic layers.

Note that unlike the previous expressions for the other
viscosities, the variable being renormalized appears on the
right-hand side of (4.30). If we are careful then this equa-
tion should really be replaced by a self-consistent equation
in which the dependence of F13 (and, for that matter, w) on

q and ~ is taken into account in the evaluation of I2.
Fortunately, there is a simple way of doing this calcula-
tion. The divergence in (4.30) due to 1ny comes from an
integral f,dx/x. We can think of carrying out this

process in such a way that we replace the lower cutoff y
y

' —1

with a new cutoff b '=e '. As in Sec. II, we can then
define quantities like w(I}, given by (2.22), which corre-
spond to the physical quantity but with all wave numbers
restricted to a shell between A and Ae '. %'e can then
carry out a calculation where we change l by an infini-
tesimal amount 5l. It is clear that the change in g3 can be
written as (X ')„„(X ')„„+X,H'q' . (4.38)

of the rotational invariance of the smectic-A system.
Breaking this symmetry by applying an external magnetic
field H (as is routinely done in experiment} will destroy
this divergence and all the viscosities will approach finite
limits at wave vectors and frequencies q &q, =k/gM and
co ( cl) —Icr]3/gM (where gM will be defined below) as in
conventional hydrodynamics. To recover our earlier re-
sults for the zero-field case, these limiting values must
diverge as H~0. In this section we calculate these diver-
gences.

The starting point of this discussion is the inclusion in
the Hamiltonian of the magnetic field energy:

+=F0+ z&. f H'I ~,u I'd'x,
where X, is the anisotropic part of the susceptibility, H is
the applied external field, and Fo is the Hamiltonian (2.2).

The equations of motion (3.1) and the Poisson brackets
[(3.9)—(3.11)] are valid quite generally, independently of
the precise form of the free energy. Inserting the free en-
ergy (4.43) into (3.1), we find that all of our earlier results
for the nonlinear terms and the correlation functions still
apply, provided we replace the static propagator X„„'by

8 /

'2
e

—'

2
2

s Lo (l) 8 (l)
32~ 8'(I) (4.33b) Qrl;(0, 0)=Caa; vl3wgM /128vrk (8') (4.39)

With this replacement, we can now evaluate 57);(q =O, co

=0) from (4.11) and (4.12). We find for i = 1, 2, 4, and 5
that

(4.34)

with the boundary condition

rI3(q, co) =g3(I =Iny) . (4.35)

Since 8 and 8' rarely differ by more than a tenth of a per-
cent we take 8 (1)/8 (I)= 1 ln (4.34). Substituting w (I)
given by (2.24) in (4.34) we easily solve the resulting dif-
ferential equation to obtain

Notice that the l-dependent quantities ta(I), 8(l), 8'(I),
and F13(l) enter on the right-hand side since they have been
"pulled out" from the integral in (4.33a). We then directly
obtain the differential equation

2
dv13(l) s m (1) 8 (I)

dl 32~ 8'( I )

where gM ——K~/X, H and CH is a temperature-dependent
constant of order unity which approaches 1 as T~O.
Note that these viscosities diverge as 1/H as H~0. This
could be tested in, for instance, smectic-A flow through
broad capillaries in strong magnetic fields.

The wave vectors and frequencies at which these mag-
netic effects become important can be estimated simply by
comparing the divergence found above as a function of
magnetic field with the corresponding zero-field diver-
gences for frequency co and wave vector q, . The crossover
between the finite H, co(or q, )~0 and finite co (or q, ),
H —+0 limits occur when these are roughly equal. This
gives

(4.40)

5w lny
r)3(q, co) =g3 1+

64~

2s /5

(4.36)

for the frequency-field and

q, (H) =A, /g~ (4.41)

and we recall that y is given as a function of q and m by
(4.31). We see that q3 diverges logarithmically with wave
number and frequency with a nonuniversal exponent
2s /5. In the low-temperature limit (where I; ap-
proaches its bare value) 8~8, p, ~B/2, and s = —,'. Thus
the exponent is —,o. In general, however, s is another
system-dependent parameter.

D. Magnetic field effects

The strong divergence found above for the viscosities at
low wave vector and frequency is ultimately a consequence

for the wave-vector-field crossover, respectively.

V. EXPERIMENTAL CQNSEQUENCES

%'e have already discussed ultrasonic attenuation exper-
iments as tests of the theory presented here. The available
ultrasonnd measurements confirm quite clearly our pre-
dictions both for the frequency dependence (1/co) of the
anomaly and the relation (1.3) between the diverging
viscosities.

There are, however, several other possible experimental
tests. Experiments on the propagation and damping of
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second sound (as well as additional data on first sound) at
low frequencies are clearly called for in order to test in de-
tail our predictions for the acoustical properties of smec-
tics. Information from these experiments can be com-
pared with our expressions (4.26) for the anomalous at-
tenuation as well as with those of Grinstein and Pelcovits
and the present work for the logarithmic corrections to the
elastic moduli. The frequency dependence of the viscosi-
ties can also be checked in experiments that measure the
impedance of the smectic to ac compression and shear, de-
tails of which may be found in, for example, Ref. 21.

The viscosity g2 determines the viscous stress set up in
response to a flow whose direction and gradient are
orthogonal, both lying in the smectic layers (Fig. 10).
Therefore, the divergent nature of g2 should be observable
when a macroscopic velocity gradient is imposed on a
smectic-A by, say, forcing the smectic to flow through a
narrow capillary in a suitable geometry. We expect these
divergences to manifest themselves in a singular depen-
dence of the viscosity on the flow rate. Such effects come
about because the shearing fluid enhances the dissipation
of the thermally excited modes which cause the divergence
of the viscosity. A flow in the presence of such a viscosity
will clearly be non-Newtonian, and non-Newtonian
behavior has, in fact, been observed in the decay of pres-
sure in capillary flow experiments on smectics by Kirn
et al. and by Bhattacharya and Letcher. A direct mea-

Z

FIG. 10. Geometry of the shear flow experiment discussed in

the text. Planes represent the smectic layers.

surement of the relation of viscous stress to strain rate in

smectics, as is possible in plane Couette flow experiments,
would also be of great interest. A quantitative comparison
of experiment with theory in either case awaits a detailed
calculation which is now in progress.
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