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The prediction of the stable configuration of an ideal uniformly volume-pumped electron-hole
cloud involves the rationalization of a “free-boundary” problem. That is to say, there are an infinite
number of degenerate steady-state solutions which satisfy the fluid-dynamical equations and the
boundary conditions. If the stationary states are metastable due to isolation or freedom from large-
scale fluctuations in the cloud, then all states are attainable via differing initial conditions (e.g., vari-
able risetime of the laser pump). On the other hand, if configurational changes can occur by fluctua-
tion, creation, and annihilation of drops at any ‘“‘stationary” state, however slowly, then it is neces-
sary to specify a global thermokinetic optimum if a unique stable solution is to be identified. Both
the uniquely stable and hysteresis cases are experimentally observed. In this contribution we solve
the fluid-dynamical equations for a cloud, explicitly demonstrating the degenerate nature of the
boundary-value problem. The global dissipation rate is evaluated and shown to be a function of the
exciton-gas density as a unique internal order parameter possessing two zeros and a maximum value,
and free of explicit configurational parameters. The hypothesis of a stable maximal state in a topo-
logically fluctuating milieu (already suggested by Onsager’s dissipation principle) leads near the sa-
turation line to strictly linear global and local flux-force relations as Euler-Lagrange equations and
to explicit expressions for the drop density and exciton density which are in good functional and fair
quantitative accord with conventional, low-excitation stripe and cylinder pumped experiments. Our
theoretical expression for the drop radius is less successful, because, we believe, of the inappropriate-
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ness of the available experimental test and the strong experimental artifacts.

INTRODUCTION

In this phenomenological treatment we investigate the
striking low-temperature, laser-pumped steady-state con-
figuration of electron-hole drops and clouds,'™® a
phenomenon which possesses the essential elements and
complexity of a broad range of self-organizing cooperative
systems. We thus see the phenomenon as a paradigm for
this nonlinear class of irreversible processes. Noteworthy
is the fact that there exists a degeneracy or internal degree
of freedom within the steady-state solutions of the field
equations for the cloud at the steady state, i.e., an infinite
number of spatial configurations satisfy the boundary con-
ditions for ideally uniform volume pumping. If one con-
ceives of this spectrum of states as coupled by macroscop-
ic fluctuations or defect mechanisms, then it is natural to
ask whether nature seeks some optimum or stable state
within the spectrum. Onsager raised the same question
obliquely in relation in turbulence in fluids.” The query
has also been raised recently by Nicolis and Prigogine® and
has already been answered positively in relation to analo-
gous model systems which are reviewed in Refs. 9 and 10.
In the following we are led to a qualified positive answer
for the electron-hole—drop problem. The qualification ar-
ises not from a defect in the analysis, but from the fact
that the relevant spatial experiments have invariably had
ill-defined boundary conditions.

In earlier publications™!® it has been argued from the
general form of Onsager’s dissipation theorem that near
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saturation the stability point within the internal degree of
freedom identified here should lie at a maximum in the
dissipation rate.!'”!3 The application of this principle
leads to the required quadratic form for the global entropy
production, to a linear relation between both the global
and local fluxes and forces as Euler-Lagrange equations,
and to a satisfactory closure of the optimal predictions
with the experiments in germanium. It is therefore con-
cluded that if a Markoffian macroscopic fluctuation pro-
cess effecting configuration change is operative within the
cloud, then the maximal character of the stability point
will have been validated. This, of course, is the basic and
successful assumption of classical nucleation theory.

The “free-boundary” problem identified here has been
previously encountered and explored in a variety of
ways.>»*14=16 1t only comes into sharp focus, however,
within the phenomenological structure presented for the
first time in this article.

IDEAL BOUNDARY-VALUE PROBLEM

Laser pumping of pure, defect-free Ge at frequencies in
excess of the band gap (~0.8 eV) creates an exciton gas
which can condense into a cloud of Fermi (electron-hole)
liquid drops at temperatures below 6.5 K and, which
beyond a certain threshold power, sustains a steady-state
configuration. While the decomposition process should
strictly be treated within the spinodal formalism,!” we

here proceed in accord with the physics literature, which
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EXCITON GAS

FIG. 1. Boundary values for the ideal electron-hole problem.
Note that due to crystallographic effects the drop is almost cer-
tainly not a sphere.

follows the classical nucleation and growth formal-
ism.l_5’16

For a stationary and uniformly volume-pumped region,
the cloud can be approximated as a close-packed lattice,
each cell being spherical of the dimensions indicated in
Fig. 1. Because the recombination times of both exciton
(7) and electron holes (1) are large (~5 and 25 usec,
respectively), a quasiequilibrium phase configuration is
created which scales reasonably well to conventional
metal-vapor systems with a phase diagram and critical
temperature (p~ 10'7/cm? and T, ~6.5 K). The drop sur-
face tension at low temperatures is about 10~* erg/cm?
which implies critical drop radii <O0.1 times the stable
values.® At temperatures where the mean-free path is less
than the drop radius (>3 K), we may represent the
exciton-gas phase as a classical fluid of density p and local
velocity ¥ and solve the steady-state boundary-value prob-
lem defined by Fig. 1. This requires the continuity equa-
tion for the gas (neglecting viscous dissipation)

1
G—f—=r—2537(r2pV), (1)
where G is the creation rate of excitons (proportional to
pump power) and the isothermal Navier-Stokes (force)
equation incorporating the perfect-gas law. Because of the
assumed isotropy of the ideal cloud, we are justified with
many others in neglecting phonon-wind effects*!%1° and
writing the force equation with source term originating in
(1) as
2
_Sp KT _ OV 20V +(G—B v, @)
or m* or r T

where m* is the effective exciton mass. The steady-state
condition in terms of the electron-hole—drop density p, is

4mR> po
3 To ’

47R?| Vg | pr~ 3)

There are two further loose thermokinetic conditions
which must be analytically accomodated, viz.,

GTZpreq» 0< I V& | <Vr/4, 4)
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where p.q is the saturation concentration of excitons and
Vr is the thermal velocity. As Fig. 1 shows, there are five
unspecified boundary values, pgr, pp*» R, R*, and Vy
along with the above four constraints by which they may
be determined. Because there is an internal degree of free-
dom, this representation may be classified with the well-
known “free-boundary” problems.’ 10

Now we may justify a posteriori the conventional ap-
proximation

P=pPpx=PR - (5)
Hence we can integrate (1) to
2 _ 3
v=v Ry L67=p) |, R° ©)
r 3 pr r

Evaluating (6) at r =R*, V=0 with R* >>R, yields the
volume fraction f via (3) as

R3 Gr—p 70
f_R*3= po T

This new result is the kinetic equivalent of the “lever rule”
used for determining volume fractions in equilibrium
chemical thermodynamics and is quite reasonably aug-
mented by the ratio 7o/7> 1. Since (1) applies irrespective
of the value of the mean-free path and (2) does not enter
explicitly, (7) may be regarded as valid for all tempera-
tures.

The degree of freedom remains, as may be seen by ex-
ploration of the special case accommodated by (4), viz.,

)

P=Pg*=PR=Peq > (8)

where the saturation p., is a known function of tempera-
ture (the phase diagram). In this case we obtain one in-
dependent relation in the two unknowns | Vx| and R,
viz.,

P

l Vr lpeqs%R To 9)

We now proceed to calculate the excess free-energy dis-
sipation rate for the continuum model. In principle it is
possible to proceed via the quantum-statistical methods of
Klein and Meijer?® and Chambers.2! However, for con-
ciseness and consistency we proceed here via a chemical
method which attributes the dissipation to a chemical con-
densation reaction. That is to say, we evaluate the iso-
thermal dissipation of free energy as the integral flux
across the surface per unit of cloud volume times the
free-energy change per exciton.

47R?

To=|Vg |pAF
[Vrlp T.R%

, (10)

where AF is taken as the ideal-gas expression

AF:kﬂn;”— ) (11)
eq

This neglects loss of coherency of the outgoing radiation.
Introducing (3) and (7) and manipulating, yields
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To=S8T=PrrimnP _jx (12)
T

Peq

the latter expression defining the global flux and force
conventionally as a mass rate and a free-energy difference.
In this we are modeling the reaction such that the excitons
are bled at mean velocity | Vg | into an infinitesimal
reservoir of density p.q at the surface and are instantly ab-
sorbed nondissipatively at their equilibrium density. It is
interesting to note that the form of (12) is similar to that
for a two-level quantum-statistical system which is decou-
pled from the radiation field.2%?! Furthermore, it is signi-
ficant that the configurational parameters do not appear
explicitly.

Now p in (12) is an internal order parameter, surrogate
for internal configurational and surface changes allowed
by the degree of freedom identified earlier. We now sup-
pose, in accord with our earlier discussion, that the stabili-
ty point is at a maximum of To with respect to p. Ap-
proximating (12) near saturation by

To= k—T(Gr—p)(p~p5q) , (13)
TPeq

we find a stable value of
_G7+peq
T2

i.e., the optimum is at a mean of the two possible ex-
tremes. Furthermore, the optimum value of p implies

) (14)

To= — , 15
g 4Tpeq( i peq) (15)
and
Peq
=—X
J T’ (16)

which is to be regarded as the linear Euler-Lagrange equa-
tion for the maximal dissipation principle.

It may be noted now that (12) has two zeros. The con-
ventional (equilibrium) zero lies at the phase boundary and
is defined by

GT=p=peq - (17)

There is a second kinetic zero which can be identified
when R, by a virtual excursion defined by (7) at fixed G,
reaches such a large magnitude that p is pulled down to
Peq by drop recombination (refer to Fig. 1). Via (7) and (3)
this can be represented as a conditional maximum | Vy |
as well as a maximum R virtual state of zero dissipation.
It is a superconducting state in which the functional J—
max as X —0 [cf. Eq. (13)].

It remains to establish the unknown function V. As
previously, we will ignore capillarity (i.e., the possible R
dependence in V). Now from (10) and (12) we can write
for the global flux

=|Vr|pB .

2
AR (18)

J=G—L = |vp|p—"—
- ’Rlpva”

As expected on general grounds, this states that the rate of
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survival of injected excitons per unit volume is proportion-
al to the local flux across a drop boundary, the propor-
tionality factor being the drop area per unit volume (B).
Now we recall that the variational principle acting on (12)
or (13) does not involve the geometric factor explicitly.
This means that the global variation can follow an infinity
of geometric paths. It is convenient to construct the varia-
tional path for | Vx| within this spectrum such that the
area per unit volume

B =B(G), (19)

since this assures that the global and local fluxes are strict-
ly proportional at fixed pump power, and since J is linear
with the force at the optimum, this will also be the case
for the local flux | Vg | p. The optimal principle may thus
be associated with a local flux-force relation in accord
with the principles of near-saturation irreversible thermo-
dynamics.

Now we can identify the maximum possible velocity as
equal to the cosine law averaged thermal velocity Vr/4
where

Vr=(8kT /mm*)!/? , (20)

which, in view of our earlier discussion and reference to
Fig. 1, may only be attained via conditional maximum
states in | Vg | corresponding to p=p.,. Consider such a
state with reference to Fig. 1 and Eq. (3) subjected to a
continuous increase in pump power at R* fixed so that R
and thus | ¥z | must continuously increase until the max-
imum possible value is reached with G >>p.,. Thus we
asymptotically establish

4G
VTpeq
Since B is independent of p, we may write, in general, that

| Vg | follows a virtual path in p, consistent with (3) and
(18), such that

(21)

Vr Peq GT—Q
Ve | =—— , 22
[Vel=— > Gr (22)
which at the near-saturation optimum takes the value
| £ Gr—
| Ve | ==L L 23)

4 Gr+pq GT

Gr—
X' =kT——Pea (24)
Gt
so that
, VTpeq ,
J'= kT X' . (25)

Note that the variational path which may be associated
with (25) [within the general spectrum allowed by (12)]
corresponds to a fixed areal density (B =const), a con-
straint which is now seen to be essential.

Note also that J'X' represents the dissipation per unit
area as required, whereas the global JX is per unit volume.
We conclude that the variational principle has generated
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both a global and a local isothermal invariant in the
respective ratios of fluxes to forces [cf. Egs. (16) and (25)],
a result of considerable significance to the general theory
of free boundaries. Indeed, the delicate self-consistency
requirements revealed here are the very essence of
cooperative phenomena.

It may seem unusual at first sight that the quasiequili-
brium quantity p.; dominates both the global and local
rate constants. On the other hand, we can approximate
Peq empirically by

Peq/pPo=exp(—¢/kT) , (26)

where py=2x10"/cm® (Ref. 22) and ¢=2.4 MeV.!®
Since ¢ is close to the value of the binding energy, this
carries essentially the same temperature dependence as the
Dushman equation for evaporation. Since near equilibri-
um the forward and backward rate constants are propor-
tional (detailed balance), Eq. (26) may be expected to
represent the forward reaction as well. Interpreting p, as
the drop-level occupancy, (26) may also be interpreted as a
Boltzmann factor from which the ideal work of formation
of the drop by gas compression is ¢ =KkT Inpy/peq, thus
verifying that the activation barrier and its temperature
dependence for the forward and backward reactions are
equal.

To finally validate the approximation leading to (5) and
(6), we note from (23) that the stable | Vi | <0.043V for
all G7/peq>1. Manipulating (6), (7), and (2) at the inter-
face, we find that dp/dr will, as a result, be vanishingly
small as required for approximation (5).

The five formulas (3), (5), (7), (14), and (23) now
represent a complete, near-saturation solution for the five
independent variables. This result was effected by the use
of the maximal principle to remove the degree of freedom
identified. The predictions are in functional and order-

'o|4

S
o

2]

EXCITON DENSITY (cm-3)

EXPERIMENT

PREDICTED

1
10 L L L
[eX] 03

1I/T (k71

FIG. 2. Exciton density within cloud as function of tempera-
ture and pump power.
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FIG. 3. Drop density as a function of 1/7. Hysteresis effects
associated with risetime are evident in the experiments (see text).

of-magnitude accord with most of the relevant experi-
ments. The directly testable relations are (14), the steady-
state radius

_ 3VrTaPeq (GT—peq)

R
800 Gr , 27)
and the density of drops
Ny 1 __f =64Gp;13 Po 1
$AR*  $7R> 9nVp |70 | (1—peg/GT)*
(28)
In the latter transformation, the optimum
1 (GT—peg) 7
fe=o— 20 (29)

5 po T ’

has been incorporated. It is particularly to be noted that
because p=const, the force balance does not enter explicit-
ly into the testable results. Consequently, the latter are in-
dependent of our omission of a phonon-wind term in the
Navier-Stokes equation (2), depending only on the mass
balance and the entropy production principle.

EXPERIMENTAL CLOSURE

Experiments have yet to be carried out in the ideal, uni-
form volume-pumped configuration. Consequently, we
focus on the experiments which best approximate to this
ideal, those which employ cylindrical and stripe geometry.

Let us now represent the best-fit germanium exciton
phase boundary by (26), with py=7x10'® and ¢=2.2
MeV,'%?3 and consider the comparisons with experiment
given in Figs. 2—4. In these experiments an approach to
uniform volume excitation was achieved in a plane or
cylinder of about 0.2-mm crossdimension. The exciton
density measurements of Fig. 2 were calculated from the
measured absorption and photoconductivity spectra. The
absolute value of the exciton concentration at a given exci-
tation level was evaluated from the absorption coefficient
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FIG. 4. Drop radius as a function of temperature and pump
power. Deviations between theory and experiment are due in
part to experimental artifacts.

in photoionization of the exciton.?> The drop density and

radii measurements of Figs. 3 and 4 were obtained
through Rayleigh scattering and absorption of 3.39u radi-
ation from the cloud.?* In the latter experiments, results
for laser pump rise times of ~1 usec and 100 usec were
obtained. For the theoretical calculations, representative
values of m* ~0.6x 10727 g, 19~25 usec, 7~5 usec, and
Po~2.5%10"7/cm? (Refs. 3, 4, and 22) were used.

Since the threshold line of Gershenzon et al. is very
close to Westervelt’s phase diagram (p=p.,) we have as-
sumed it to be identical and have plotted our near-
saturation prediction from (14) on an abridgment of
Gershenzon’s diagram (Fig. 2). The agreement near sa-
turation is fair. The disagreement further from saturation
is due in part to our theoretical approximation [lineariza-
tion of Eq. (12)], but more significantly to the necessary
expansion of the experimental drop and gas cloud via the
phonon wind at the higher supersaturations.

Figure 3, after Bagaev et al.,>* demonstrates fair quanti-
tative agreement for the prediction of drop density N, as a
function of temperature near saturation. The other densi-
ty observations of Bagaev et al. for the same pump power
(not shown) tend to saturate at 1/7 > 0.4 due apparently
to heating effects. Figure 3 also indicates a hysteresis ef-
fect associated with risetime which we will discuss later.

The agreement between theory and experiment for the
drop radii is the least satisfactory. This we believe is due
to experimental artifacts and complex hysteresis effects.
The hatched experimental band in Fig. 4 represents a
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range of pump powers corresponding to saturation tem-
peratures T3~3.6—4.2 K and rise times of 1 and 100
usec. We conjecture that the observed low-temperature
excess radii (together with the saturation of N,) is due to
overheating of the high-density cloud associated with
sharply increased dissipation following decreasing tem-
perature at fixed pump power [see relation (15) and Refs.
22 and 24]. That is to say, the actual temperature does
not change very much with change in cryostat tempera-
ture for the particular strong pump conditions in the low-
temperature experiments. Zarate and Timusk,??> who took
great care to avoid temperature effects, have observed low
magnitude radii near 2° (Fig. 4).

The strong saturation of the radii at high temperature
(Fig. 4) has evoked considerable discussion in the past.
This is logically related to our underprediction of Ny via
Eq. (28) (cf. Fig. 3). The effect could be attributed to a
rather lengthy time of new drop growth in relation to the
rate of cloud expansion and associated ejection to the sa-
turation line by the phonon wind.*!® Note that no great
significance is to be attributed to the reversals in the
theoretical N; and R curves in the very close approach to
equilibrium, for here the classical quasiequilibrium ther-
modynamic model fails. A more rigorous spinodal
decomposition model avoids this anomoly as demonstrat-
ed by Kirkaldy er al.'”?3

EFFECTS OF DROP PINNING

Martin has demonstrated that doping a germanium
crystal inhibits the expansion of the cloud?® This implies
that crystal defects can pin the drops, presumably by elec-
trical interactions. This kind of observation raises the
possibility of hysteresis effects, phenomena in fact record-
ed by Bagaev et al. (Fig. 3) and Westervelt.?” Strong pin-
ning also raises the possibility that after cloud initiation
the concentration in the pumped region can drop below
the critical value for nucleation and a pinned quasistable
array evolve which “remembers” the nucleation history as
determined by the rise time. Such an array, by its nature,
resists an evolution toward a kinetic optimum. The results
of Bagaev et al. in Fig. 3 reflect this outcome. We may
suppose that more surviving nuclei are generated with a
short rise time leading to a higher metastable density N,
(Fig. 3).
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