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Equilibrium fluctuations in fluid layers: Effects of elastic solid boundaries
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The hydrodynamic theory of the dynamics of equilibrium fluctuations in one-component fluid
layers confined by two identical elastic solid boundaries is presented. The dynamic structure factor
for a fluid layer and the interfacial modes are analyzed under assumptions of continuity of stresses
(no interfacial stress) and velocities ("stick" boundary condition) across the fluid-solid interfaces.
There are four interfacial modes in such a system with dispersion relations which depend on the
component of the wave vector parallel to the interfaces, k l~. In the limit of p/p, ~0, where p and p,
are the mean densities of the fluid and solid, respectively, two of these modes are just the well-known

Rayleigh waves and the remaining two are the interfacial fluid modes found previously in the case of
rigid solid walls [see D. CTutkowicz-Krusin and I. Procaccia, Phys. Rev. Lett. 48, 417 (1982); Phys.
Rev. A 27, 2S85 (1983)]. For finite small values of p/p, the attenuation of the interfacial fluid
modes is due to dissipative interfacial transport and varies as k

~~
p/p„provided that c & c„where c

is the speed of sound in the fluid and c, is the transverse sound speed in the solid. If, however,
c & c„ the energy of the interfacial fluid mode is radiated into the solid and the resulting attenuation
along the interface varies as k~~(p/p, ), for small k ~i. Since the speed of the interfacial fluid modes is
less than c, the corresponding peaks in the dynamic structure factor are better separated from the
unbounded fluid Brillouin peaks and thus easier to observe experimentally than would have been the
case with rigid solid walls.

I. INTRODUCTIGN

Recently' it has been shown that the spectrum of
equilibrium fluctuations (i.e., the dynamic structure fac-
tor) for a fluid layer bounded by rigid solid walls depends
strongly on the energy and tangential momentum trans-
port across the fluid-solid interfaces. In particular, new

l

interfacial modes have been found; these modes are essen-
tially acoustic modes and are due to the additional dissipa-
tion caused by the solid walls. Thus, the interfacial modes
should be a sensitive probe of interfacial transport over a
wide frequency range in the hydrodynamic regime.

The dynamic structure factor is the Fourier transform
of the density autocorrelation function

S(k, k', co)= f dt f d r f d r'exp[ i (cgt+k r+—k' r ')](5p(r, t)5p(r '0)),
(2'�)

where brackets denote the equilibrium average. This
quantity is of great experimental interest since it can be
studied, for example, by light scattering. In the present
paper, the dynamic structure factor and the interfacial
modes are analyzed for a fluid layer bounded by isotropic
elastic solid walls. The boundary conditions on the veloci-
ty field in the fluid layer are derived in Sec. II by assum-
ing continuity of the stress, as well as velocity across the
interface ("stick" boundary conditions), and neglecting
viscous dissipation in and thermal expansion of the solid
walls. Together with the previously obtained boundary
condition on the fluid temperature, one has a complete
set of boundary conditions on the fluctuating hydro-
dynamic variables in the fluid layer. In Sec. III, the gen-
eral expression for the dynamic structure factor given pre-
viously is evaluated for these generalized boundary condi-
tions.

The effects of acoustic excitations in solid walls on the
interfacial modes and on the spectrum of equilibrium fluc-
tuations in the fluid are discussed in Sec. IV. In the limit

of small mass density ratio between the fluid and the solid,
two types of interfacial modes have been found. One of
them is the dissipative fluid mode found previously and
the other is the well-known Rayleigh wave which exists
at the elastic solid-vacuum interface. For finite values of
the fluid-solid density ratio the interfacial fluid modes be-
come modified; not only are there shifts in their speeds,
but their attenuation varies as k~~ (or ~ ) rather than
k

~~
(or ~ ), where k~~ is the wave vector parallel to the in-

terfaces, provided that the sound speed in the fluid c is less
than the transverse sound speed in the solid c, . In this
case the amplitudes of the interfacial modes decrease ex-
ponentially with the distance from the interface. If, how-
ever, c & c„ the decrease is oscillatory and some of the en-
ergy of the interfacial modes is radiated into the solid
walls. These so-called "leaky waves" have an attenuation
coefficient which, in the limit of small k~~, is independent
of dissipative processes and varies as k

~ ~

(pip, ) .
The interfacial fluid modes are of greatest interest in the

case c & c, . Then, their speeds and attenuation depend on

1602 Q01983 The American Physical Society



28 EQUILIBRIUM FLUCTUATIONS IN FLUID LAYERS: 1603

the dissipative interfacial transport and the experimental
study of S(k,co) would enable one to determine the nature
of the tangential momentum transport (the nature of inter-

facial stresses) as well as of the energy transport across the
Auid-solid interfaces over a wide frequency range in the
hydrodynamic regime. Results are summarized in Sec. V.

II. DYNAMICS OF FLUCTUATIONS IN ELASTIC SOLID BOUNDARIES

Consider a system which consists of a fluid layer of infinite extent in the xy plane for z H [ L/—2,L/2] and of elastic
solid boundaries for zE( —oo, L/2—) and z&(L/2, oo). The initial value problem of hydrodynamic fluctuations can be
solved most easily by taking the Fourier transform of equations of motion in the xy plane, and taking the Laplace
transform of these equations in time. Then a fluctuating hydrodynamic variable L4, in either fluid or solid, is
transformed to

A(kii, z;s) = f dt f dx f dy exp[ st i—(—k„x +key)]53 (r, t),
(2~)2 0 —oo —oo

(2.1)

where

2 2 2k
it

——k„+k„.
The spectrum of equilibrium fluctuations in the fluid layer
can be determined using the general formula from Ref. 2,
provided one has a set of appropriate boundary conditions
on the transformed hydrodynamic variables in the fluid.

It has been shown in Ref. 2 that the assumption of con-
tinuity of the heat and entropy fluxes across the fluid-rigid
solid interface leads to the boundary conditions on the
fluid temperature:

dZ z +L/2

where

+5TT(+L/2) =0, (2.2)

pscps &s5,(ki, ,s) = X4,
pc Ic

A4
——(k

ii +s/~, )'~

(2.3)

(2.4)

p is the mean mass density, Cz is the specific heat at con-
stant pressure; ~=A, /(pc~) is the thermal diffusivity, and
subscript s refers to the solid. The boundary condition Eq.
(2.2) remains valid for the fluid-elastic solid interface pro-
vided that viscous dissipation in and thermal expansion of
the elastic solid boundaries are negligible. This assump-
tion is used throughout this paper.

It is usually assumed that the normal and tangential
momentum fluxes are continuous across the interface; i.e.,
that the normal and tangential stresses are continuous.
Thus, no interfacial stress is associated with the fluid-solid
interface. In order to complete the set of boundary condi-
tions, it is necessary to specify the velocities (or elastic dis-
placements) at the interface. In the absence of interfacial
mass transport, the normal component of the velocity
must be continuous across the interface. In addition, it is
well established experimentally that in the limit of vanish-
ing frequency, the tangential components of the velocity
are also continuous, leading to the so-called stick boun-

I

dary conditions. In the present paper, the consequences of
this assumption for the nature of interfacial modes and for
the dynamic structure factor are studied in detail in the
hydrodynamic frequency regime.

The dynamics of the fluctuations in local displacements
in the solid, 6u„ is governed by the equation

2an. =c, V 5u, +(ct —c, ) V(V 5u, ),
at2

(2.&)

and

2 2d Qg
S Qsz CI

dz
2 2 — 2 2

dA—ci k iiu» + (ct —ci )
dz

(2.7)

2
2 ~& 2 2 2 2 2»s P, =c, —ct king, (ct —c, )kii-

dz2 ' dz
(2.8)

The solutions of Eqs. (2.7) and (2.8) must remain finite as
z~+ oo. Therefore, if

and

k =(k +s /c, )' (2.9)

the solutions are

(2.10)

where cI and c, are the longitudinal and transverse sound
speeds, respectively. After taking the appropriate Laplace
and Fourier transforms, the equations of motion can be
simplified by noting that the static correlation functions
between the fluctuations in fluid density and fluctuations
in solid displacements must vanish in equilibrium. There-
fore the initial values of these displacements, as well as of
their time derivatives, can be set to zero without loss of
generality. Let

05u,„B5u~+ (2.6)
Bx Bp

Then, the transformed variables u» and P, satisfy the
equations

aiexp[ —As(z L/2)]+a k2e6xp[ —A6(z —L/2)], L/2&z & oo—
btexp[A5(z+L/2)] —b2A6exp[A6(z+L/2)], —~ &z & L/2— (2.11)
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and

a, k,exp[ —X,(z L /—2)]+a,k
~

~exp[ —A, 6(z L—/2)], L /2 &z & ~
bi%—exp[f5(z+L/2)]+b2k~~exp[k6(z+L/2)], —~ &z& L—/2 . (2.12)

The components of the fluctuating part of the stress
tensor in an isotropic elastic solid are

aQ
np—+p r, — '+(r. —2v)y' az

(2.14a)

l, aalu„
~, =p, ci +(ci —2ct)4.

az
(2.13a)

aQ aQ.
+ a. xg

——x,y, (2.14b)

, aalu„ aalu„
0~,. =psct + Xg =X,P (2.13b)

The corresponding components of the stress tensor for a
Newtonian fluid are

where 6p is the fluctuating pressure, u is the velocity field
and p is defined in Eq. (2.6) but without the subscript, v
and g are the kinematic shear and bulk viscosities, and
I „=Tv+/ is the longitudinal viscosity. From the con-
tinuity of normal stresses, after taking the appropriate La-
place and Fourier transforms, one obtains

usz
ps

dZ z =ZO
+(c, —2c, )P, ( ) = (c +yl, s) +

yS
'

dZ z =zO
r

21 vs

c'+qr, s

2c——pc T(zo) — &p(zo»
y ps

(2.15)

dP,
psct

dZ Z =Zo
—kiius (zp)

and, from the continuity of tangential stresses one gets
duz

dZ z =+L/2
+c„„us(+L/2)+(1+6„~)P(+L /2)

c 5p(+L /2)
2+Qr„s

(2.19)

dP=pV
Z =Zp

—k ious(zp) (2.16)

where zo ——+L/2, a is the thermal expansion coefficient,
y=C&/C„, c is the adiabatic sound speed in the fluid, and
5p(zp) is the initial value of the density fluctuation at the
interface. Note that the particular form of the boundary
condition in Eq. (2.15) is obtained by using the assumption
of local thermal equilibrium to express the fluctuations in
pressure in terms of those in temperature and density; the
latter can be related to the divergence of the velocity field
through the continuity equation. Finally, the continuity
of velocities across the interface implies

dZ z =+L/2

where
(2.20)

ps S ~6

p v kll —XSA6

ps ct ~5 ~5~6
2 2

&yu—: &+
p sv k~)—

(2.21a)

(2.21b)

+epyP(+L/2)+kii(1+op„) (u+L/2)=0,

and

su (zp)=u (zp) (2.17) c +prp$

/VS ~5

c'+yr„$ &6
"''

(2.21c)

(2.21d)

swiss(zp) =P(zp) . (2.18)

Using Eqs. (2.11) and (2.12) to eliminate the interfacial
values of fluctuations in solid displacements from Eqs.
(2.15)—(2.18), one obtains the boundary conditions on the
velocity field in the fluid layer:

CXC $
uT 2

C +PI ~$
(2.2 le)

Equations (2.2), (2.19), and (2.20) constitute a complete set
of boundary conditions on the hydrodynamic variables in
a Quid layer confined by elastic solid walls.
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III. DYNAMIC STRUCTURE FACTOR FOR A FLUID LAYER BOUNDED BY ELASTIC SOLID %'ALLS

The general solutions for the hydrodynamic variables, as well as for the dynamic structure factor in a fluid layer for
any boundary conditions are given in Ref. 2. For boundary conditions given by Eqs. (2.2), (2.19), and (2.20) the coeffi-
cients C;, necessary to specify the solutions of interest, are determined from the equation:

GC+ g =0, (3.1)

~1(P1+5T) ~1( 1+5T) ~2( 2+5T) ~2( 2+5T)

~1(Pj+5T) ~1( 1+5T) ~2(P2+5T) ~2( 2+5T)
B1(P) —B1($) Bz(P) —Bz(S)

B1(P) B1($) Bz(P) Bz(S)

D1(P) —D1(S) Dz(P) —Dz(S)

D1(P) D1(S) Dz(P) Dz(S)

B3(S)
—B3(S)
D3($)

—D3(S)

—B3(P)
—B3(P)
—D3(P)
—D3(P)

(3.2)

where

R;—:tanh( —,A,;L), i = 1,2, 3

P;—:A.;R;, i =1,2
P3 =—R 3/A, z,
S;—:k;/R;, i =1,2
S3—:1/A, 3R 2,

i ll i

In addition,

(y —1) i =1,2
CX S +QKXi

and, for F=P,S,

B;(F)—:e~pk
~ ~

e~TAi +xi—+e„„F;, i = 1,2

B3(F)=e„p+e„„F3,
D;(F)=k~~(e~~+ep„F;), i =1,2
D3(F)=a&&+(x3+E&„k~~)F3,

where, from Ref. 2,

(3.3)

(3.4)

(3.5a)

(3.5b)

(3.6a)

(3.6b)

and

X) 2=—

SX3=—
V

[c +s(l, +y~)+[(c +sl „+sy~) —4~s(c +yI „s)]'~ I
2~(c +yl „s)

(3.7a)

(3.7b)

The vector g depends on the initial density floctuation and is

-Tg:(O,g 10, g, z—OR'3),

where
L/2

g1= —&o&1&2 J dz 5p(z)( kzx1IA. 1cosh[X1(L/2 —z)]+5Tsinh[A, 1(L/2 —z)] I

(3.8a)

—11x2 [ Xzcosh[i 2(L /2 —z) ]+5Tsinh[kz(L /2 —z) ] I ), (3.8b)
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and

L/2
g2

——Ao I dz 5p(z)(A2A2xl [(xi+@„~kii—e„TA1)sinh[i1(L/2 —z)]+@„„klcosh[k1(L/2—z)]I
—A lk lx2 [(x2+e„~k ii

—e„TA2)sinh[A2(L/2 —z)]+@„„A2cosh[A2(L/2 —z)] I ),
L/2

g3
———Aok

ii f dz 5p(z)(A212xl [e~„klcosh[A1(L/2 —z)]+ e&&slnh[A1(L/2 —z)]]
—A lk, lx2 [up„A2cosh[A2(L /2 —z)]+eppsinh[A2(L /2 —z)] I ),

2 1
Ap=

c +yl „s poi, lA, 2(A2xl —Alx2)

(3.8c)

(3.8d)

(3.9)

Therefore, using the general formula from Ref. 2, the I--dependent contribution to the dynamic structure factor is

2( —1)"+"c
SL(k, k ',s) =

(A2x1 —A lx2)(c +yI „s)

A2x 1 Yl(kl, kl )

k —xi2

Alx2 Y2(kJ kJ )

2k —x2
(3.10)

where

Pixy Pi 8'i kj ki 8'2+--
T(U) T(V)

kzkg W4+ +-
T(U) T(V)

Pix]
[A2(P2+5T) —A 1 U2](k') —xl

3 iP2x2
(5T+P, —U, ), —

(k') —x2

xi~2, 2 [A2(S2+5T ) A 1 V2](k') —xl

AiX2 -(5T+S,—V, ),(k') —x2

(3.11)

(3.12)

(3.14)

In the limit of rigid solid walls (i.e., c„cl~ oo,
c, /el=const) E~~, e4,„ccc,, it follows from Eqs. (2.21),
(3.17), and (3.18) that U;~P; —kiiP3 and V;~S;—kiiS3.
Therefore, in this limit one obtains the expression for the
dynamic structure factor for the case of stick boundary
conditions on the fluid velocity, previously derived in Ref.
2. The same results can be obtained even for soft solid
boundaries such that p, /p~ co, in which case @41~ and e~„
are proportional to p, /p.

The expression for the I -dependent contribution to the
dynamic structure factor can be simplified considerably in
the limit of vanishing coefficient of thermal expansion of
the fluid a. Since (y —1)~a, this is the limit of y—+1.
An example is water at 4'C and atmospheric pressure. In
this limit, from Eq. (3.7a),

s 2

xi =—
c +I Us

W3 ——
A2P]x)

(5T+Pl —Ul )(k') —xl

sX2=-
K

P2x2+, , [A2U1 —Al(P1+5T)],(k') —x2

A2X i
W4 —— (5T+S1—Vl )(k') —xl

X2+ 2 [A 2 Vl —A 1 (Sl+5T )],(k') —x2

where

(3.15)

(3.16)

P2
X

U]

khaki

and, since 3
&
~ a~O and A 2 ~ e

1)n+n'&2
SL (k, k', s) =

c +I,s (k —x, )[(k') —x 1 ]

(3.21)

B;(P)D3(P)—B3(P)D;(P)
U;=

e„„D3(P)—ep„k iiB3(P)

B;(S)D3(S)—B3(S)D;(S)
V;=

6 nD3(S) Epnk iiB3(S)

T( U) A 1 (Pl +5T ) U2 A2(P2+5T ) Ul

(3.17)

(3.18)

(3.19)

IV. ANALYTIC STRUCTURE OF S(k, k ', co)

The normal hydrodynamic modes of the fluid layer are
found from the poles of the dynamic structure factor.
The analytic structure of S„(k,co) is well known '. in
the limit of small k the three poles of S (k, co) lead to the
dispersion relation

T( V) =A 1(S1+5T) V2 —A2(S2+5T) Vl . (3.20) co =lKk (4.1)

It is easy to check that the matrix SI (k, k', s) is sym-
metric.

for the diffusive heat mode and

co=+ck +i I k (4.2)
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for the two propagating sound modes where

I"=—,
' [I „+(y—1)lc] (4.3)

is the attenuation coefficient for the bulk sound modes. In
the small k limit S (k, co) is the sum of three Lorentzian
peaks:

S (k, co)

S(k)
1 (y—1)lck 1 I k22+—

~y (Ick ) +co 2 (I k ) +(co—ck)

1 Ik+—
2 (I k ) +(co+ck)

(4 4)

More interesting is the analytic structure of SI (k, k ', co).
The nature of the sound and heat modes in the fluid layer,
and their dispersion relations and amplitudes, are the same
for rigid and elastic solid boundaries, provided that stick
boundary condition is used in the form. er case, and has
been fully discussed in Ref. 2. Only a short summary is
given here.

The dispersion relation for the propagating bulk sound
modes is determined from

co=+cK(m)+iI K (m),

(2m+1) nK m:—k)~+ L 2
(4.13)

Their amplitudes vanish for sufficiently small values of L,
given by condition (4.7) with k~ replaced by (2m + 1)m IL.
The solutions of Eq. (4.12) are the waveguide heat modes
with dispersion relation

co=ilcK (m); (4.14)

or (4.15)

T(V) =0 .

their amplitudes vanish for small values of L satisfying
the condition (4.10) with kz replaced by (2m + 1)7rlL.

Therefore, for sufficiently small values of L the ampli-
tudes of the bulk sound and heat modes vanish and the to-
tal intensity of density fluctuations is in the interfacial
modes whose dispersion relation is given by the solutions
of

T(U)=0

K =xi, K=k k',
and is, in the limit of small K,

co=+cE +iI K

(4.5)

(4.6)

The amplitudes of these modes vanish unless k =k'. The
contribution from SL (k, k, co) cancels that of S (k, co) so
that in sufficiently thin fluid layers, such that

2 '2

Re( —, A,;L) && 1, i = 1,2, 3

and sufficiently small k~~ so that

(4.16)

In general, the dispersion relation for the interfacial modes
depends on the thickness L of the fluid layer and on k~~,
the component of wave vector parallel to the interfaces.
Analytic results for the dispersion relation can be found in
the limit of L sufficiently large so that

Ik
c

k
kl (4.7) ki~D/c ~(1, (4.17)

is satisfied, the Brillouin peaks disappear.
The dispersion relation for the diffusive heat mode is

found from

where D is any transport coefficient. The assumption
(4.16) leads to

P; =S;=A,;, i =1,2
(4.18)

E =x2, K =k, k'

and is

CO=lKE

(4.8)

(4.9)

P3 -S3- 1/A, 3,
and, since U; —V,-, to

&(U)=T(V) . (4.19)

k4 (y —I)lc
~

I,—Ic~
4 kiL

kq c
(4.10)

These modes also contribute only to the diagonal part of
the dynamic structure factor and the contribution from

Sl (k, k, co) cancels the Rayleigh peak from S (k, co) pro-
vided L is sufficiently small so that

The dispersion relation for the interfacial modes in the
presence of elastic solid boundaries is rather complicated;
therefore, it is useful to consider first the simpler case
with y=1. Then, the L-dependent contribution to the
dynamic structure factor is given by Eq. (3.21) and the
dispersion relation for the interfacial modes is determined
from the condition

There is also an infinite number of poles of SL(k, k ', co)
found from the conditions

Ui- V] ——0 (4.20)

and

P) ——oo

P2 ——oo .

(4.11)

(4.12)

or

(A, )A,s —k
(( )[epp(i, s/A, 6) —ep„k )( ]

+xs I&yy[(%+~its)l4]+2&yak~~ J+&3 =0 . (4.21)

The solutions of Eq. (4.11) are the waveguide sound modes
with dispersion relation

Making explicit the dependence on the density ratio p/p„
Eq. (4.21) is equivalent to
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12

UoFo+ ~F]+
ps ps

where

Uo ——A, ik3 —k II,
2

s+k
s4

Fi ——
4 (A, iA,s+ X3A,6)

C~

k
I
Is S+ (s —2v Up ) 2 +2k

I I

—2ksA, 6
Ct Ct

F2 =
4 (ksA6 k

11
)(s +4k

II
vs —4k

I I

v Up )

(4.22)

(4.23a)

(4.23b)

(4.23c)

(4.23d)

may be written

co= cuo+ik
II

1(j[(1+i)( , vc—)'/ +Qivk
II ]

ps
2'

p
ps

where cop is given in Eq. (4.25),

A6o(A so
—1)

4A so4o —(A so+ 1)

1 —2~so~6o+ ~so

X6o(zso —1)

Xso = (1—c'/c, ')'",

(4.29)

(4.30a)

(4.30b)

(4.30c)

In the limit pjp, ~0 there are four solutions of Eq.
(4.21). The dispersion relation for two of the modes is
determined from X6o=(I —c /cI )

2 2 1/2 (4.30d)

Up(coo) =0 (4.24) If c, )c, A, sp is real and so are li and t/ri. Hence, for small
va ues o kll the speed of the interfacial fluid modes is

a/2

coo ——+ck11+ —,i(I „+v)k11,. (4.25)

this is just the dispersion relation for the interfacial fluid
modes found previously in the case of the rigid solid walls
with stick boundary conditions on the velocity field at the
interfaces. Since in the present case y=1, the bulk sound
attenuation coefficient I =I „/2, while the additional at-
tenuation due to shear created by the boundaries I"=v/2.

The dispersion relation for the remaining two modes
can be found from

~zo=+czkII ~ (4.27)

where the speed of the Rayleigh wave cz is determined
from the equation

Fo(~Ro) =o
which leads to the Rayleigh waves propagating along the
elastic solid-vacuum interfaces; i.e.,

cf =c 1 —z/i
2c ps

(4.31)

i.e., it depends on the wave vector kII, while the attenua-
tion is

Im(co) = lit( —,vc)'/ k
11

ps

+ —,'(r. +v)+1(1(,v p k'„+0
ps ps

(4.32)

Therefore, in general, in the limit of sufficiently small kII
and small p jp„ the attenuation of the interfacial modes
varies as k311/ (or ~3/2) rather than k211 as is usually the
case. In the limit c„ci»c, the above expressions simplify
to

X —8X +8[3—2(c, /ci) ]X—16[1—(c, /ci) ]=0,
(4.28)

where

(c/c, )
Cf C 1—

2 1 —(c, /ci)

1/2

II p+. . .
2c ps

(4.33)
X:—(cR /c, )

depending on the value of the Poisson ratio for the solid
walls4

0.874c, &cg (0.9SSC, .

Since the dissipation in the elastic solid boundaries has
been neglected, the Rayleigh waves are not attenuated to
zeroth order in p!p, . For y=1, the dissipation is due to
the transport of tangential momentum across the fluid-
solid interfaces.

To first order in p/p„ the interfacial fluid modes be-
come modified due to coupling to the acoustic modes of
the solid. The dispersion relation for the interfacial modes

while the attenuation of the interfacial fluid modes be-
comes

2

Im(cp) = — ( —,vc) k11
1 (c/c, ) i i/2 3/2 p

1 —(c, /ci) ps

(c/cI )—'(I +v) —vV 2 II1 —(c, /ci) p,

(4.34)

The leading contribution to the dispersion relation which
depends on the density ratio p/p, and which is of order kII
is
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bttt=+ckiig
Ps

+o(kI(') (4.35)
The dispersion relation for the Rayleigh waves also

changes for finite values of p/p, . Let

Hence, for c, &c, as is the case, for example, for a water
layer at room temperature confined by gold walls, A, 5O is
imaginary so that g is complex. Therefore, the contribu-
tion to the dispersion relation of order (p/p, ) may be the
dominant contribution to the attenuation coefficient in the
limit of small kj~, this contribution is

2

COR = +CR k
~ I
+ l COR 1 +0P

Ps

lR—:[1—(CR/C) ]

ksR = [ 1 —(CR /Ct ) ]

(4.37)

(4.38a)

(4.38b)

2 Re(1(t)lm(1') ck
~~

+ 0 (k
I~

)
Ps

J

(4.36) Then

and thus varies as k~~ (or co) for small frequencies. Note
that this attenuation is not due to the dissipative processes
at the interface or in the fluid but rather to the radiation
of energy into the solid walls; the interfacial modes are
then called leaky waves.

ll
coR ——CR lk~ ~JR +i +(1+i)

2cR

where

PR l

(4.39a)

1
(i'R 1 +

~1R

) 5R(~sR+ I) (~sR —1)

4t(, ,R[2t(,5R(ksR —3)(i,sR+1) +(A,5R+1) +16t(,5R]

4~5R (~lR ~5R ~5R

(X5R+ 1)

(4.39b)

(4.39c)

Since, typically, cR & c, A, lR is imaginary and so is tttR. In
such cases, therefore, it is the Rayleigh wave which is a
leaky wave (radiating energy into the fluid) with an at-
tenuation coefficient which varies as k~I, while the at-
tenuation due to dissipative processes at the interfaces and
in the fluid through the interfacial momentum transport
varies as k

~ ~

. However, when cR & c the attenuation of
the Rayleigh waves is due purely to dissipation and varies
as k~~ . Finally, when c, & cR & c the dominant interfacial
modes are the fluid modes with the attenuation coeffi-
cients ~ k

~~ p/ps whereas the attenuation of the Rayleigh
waves is ~ k~~p/p, and thus much higher for small values
of k~~. On the other hand, if c & c, & cR, the attenuation of
the interfacial fluid modes has contributions which vary
as k~~ p/p, and k~~(p/p, ), while the attenuation of the

Rayleigh waves cck~~ P/p, . Hence, the latter are the
dominant interfacial modes for small k~~. An interesting
case arises if cR & c & c„' in this case the attenuation due to
radiation is unimportant and both the interfacial fluid
modes and the Rayleigh waves are attenuated only due to
dissipative processes with attenuation ~ k

~ ~

p/p, . Hence,
in this case, there should be two distinct new peaks in the
diagonal part of the dynamic structure factor for co&0.
The separation of the two peaks, and thus their observabil-
ity, depends, however, on the various transport and ther-
modynamic coefficients of the two media.

To first order in p/p„ the contribution of the interfacial
fluid modes to the diagonal part of the dynamic structure
factor is

ES+-( k, co)
m.L

1/2
vk

(1+ )+q'
2c Ps

k~+' kIi '"+"kii+-,'(r, +v)k ii+('+')( v') "9
c Ps

(4.40)

vk()

2c [—,(I „+v)k(~+(co+ck)~ )]+—,(1,+v)g k
~~

Ps

If c, & c, then p is real and, since typically k l »vkt~ /c, Eq. (4.40) reduces to
1/2

hS+—(k, co) 2 kii

2

—,(I,+v)k~~+( —,'vc)' ltt k~~ + co+ck~~+( —,'vc)' ttt kI~

2 —1

Hence, the interfacial fluid modes contribute non-Lorentzian peaks to the dynamic structure factor. While the ampli-
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tudes of these peaks are not significantly different in the limit of small p/p, for the two cases of rigid and elastic solid
walls, the decrease in the speed of propagation of the interfacial modes in the latter case leads to the increased separation
of the corresponding peaks from the unbounded fluid Brillouin peaks. Therefore, the interfacial fluid modes should be
easier to study experimentally, for example, by light scattering, than was suggested previously. '

The contribution of the Rayleigh waves to the diagonal part of the dynamic structure factor for small values of p/p, is

ASR (k, co)

S(k)
P k~~(cR/c)'

k'+ [1—(

&( Re 4R /~1R

~+cRk(( —cRk[( 4[ +(vk)[/2cR ) @Rll +( z vcR ) WRPR1
ps ps

(4.42)

For cR &c, as is the case for a water layer confined by gold walls, A, 1R is real and so are gR and QR1. Then Eq. (4.42)
reduces to

bSR~(k, co)

S(k)
P

7Tk
I
IL ps

k
~ ~

(cR /c) ( 2 v&R )

k~+k
II

A

2

g2 g k3/2

2 (4.43)

(TvcR)QR1)/R1 k~~+ ~+cRk~[ 1 '4
ps ps ps

or from Eq. (4.22), but with A, 1 replaced by A, where

A=[kii+A1A2+ys /(c +yl, s)]/(A1+A2) . (4.45)

In the limit of p/p, ~0, the dispersion relation for the in-
terfacial fluid modes is

coo ——+ck~)+i (I +I ')k~),

where

(4.46a)

I = —,[I „+(y—1)~],
I"= —,[3/v+ (y —1)~ic]

To first order in (p/p, ) the dispersion relation is
1/2

r'kll pco=+ckii 1 —g
ps

(4.46b)

(4.46c)

(I ic)1/2q p k3/2
II

ps

+ I +I"+(21"v)' gg1 k~~
ps

(4.47)

Thus, the Rayleigh waves contribute to the dynamic struc-
ture factor Lorentzian peaks whose amplitudes are small
for small values of p/p, .

The situation is not qualitatively different for @&1.
Again, consider the dispersion relation in the limit of
small values of p/p, . Since this typically implies metallic
boundaries, it is consistent to assume that the thermal dif-
fusivity of the solid is much higher than that of the fluid.
In the limit of perfectly conducting solid boundaries, the
dispersion relation is determined from the condition

(4.44)

where g and P1 are defined in Eqs. (4.30). Thus, since for
y~ 1 the sound in the fluid is not isothermal, the attenua-
tion of the interfacial modes increases due to heat conduc-
tion from the fluid to the solid boundaries. In addition,
the effective speed of these modes decreases.

For y & 1 the dispersion relation for the Rayleigh waves
is still given by Eq. (4.37), but QR1(y= 1) defined in Eq.
(4.39b) is now modified to

1/2 2
(CR /C)

1J'R1(l') =&1(1)+()'—1) —
~

«4g)
V 1R

While the analytic expressions for the dispersion rela-
tion for either the interfacial fluid modes or the Rayleigh
waves were obtained in the limit of small density ratio
p/p, and high thermal conductivity of the solid boun-
daries, the exact expression for the dynamic structure fac-
tor, Eq. (3.10), can be easily evaluated for any values of
the parameters. In Fig. 1, the dynamic structure factor is
shown for a layer of water at O'C bounded by stainless-
steel walls for different values of L in the vicinity of the
Brillouin peak of the unbounded fluid. The interfacial
fluid mode is clearly seen for co=7.095& 10 sec '; while
its amplitude increases with decreasing layer thickness, the

amplitudes of the Brillouin and the waveguide modes de-
crease. The interfacial peak is well separated from the
Brillouin peak since the speed of the interfacial modes de-
creases due to the acoustic coupling to the boundaries. In
Fig. 2, the dynamic structure factor shown is the same as
in Fig. 1 but for walls made of Pyrex, which has a higher
value of p/p, than does stainless steel. It is seen that the
interfacial peak, centered at co =7.07S )& 10 sec ' has
similar amplitude and remains well separated from the
Brillouin peak. In addition, an unusual decrease in the
Brillouin peak due to Pyrex boundaries is seen here. The
dynamic structure factor for the water layer bounded by
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FIG. 1. Dynamic structure factor S(k,co} for a water layer
bounded by stainless-steel walls for two values of the layer thick-
ness L. Parameters for water at 277 K are @=1.0, p=1.0
g/cm', c =1.42X10' cm/sec, v=1.57X10 cm'/sec, /=4. 82
)& 10 cm /sec. Parameters for stainless steel are p, =7.9
g/cm, c, =3. 1 && 10' cm/sec, ci ——5.79 )& 10' cm/sec. Com-
ponents of the wave vector are kii ——SX10' cm ', ki ——2vrx 10
cm '

~ The Brillouin peak of the unbounded fluid normalized to
unity at maximum (dashed curve) is shown for comparison. The
peak corresponding to the interfacial fluid mode is centered at
m =7.095 && 10' sec

FIG. 2. Dynamic structure factor S(k,m) for a water layer
bounded by Pyrex walls for three values of the layer thickness L.
The water parameters and the wave vector are as in Fig. 1. Pa-
rameters for Pyrex are p, =-2.32 g/cm, c, =3.28&(10' cm/sec,
c, =5.64)&10 cm/sec. The Brillouin peak of the unbounded

fluid normalized to unity at maximum (dashed curve) is shown

for comparison. The peak corresponding to the interfacial fluid

mode is centered at m=7. 075&10 sec

platinum walls looks very similar to that for Pyrex walls.
However, in the case of gold walls (c, &c), the interfacial
fluid peak disappears but a very small peak due to the
Rayleigh wave appears at co =k

i I
cz .

V. SUMMARY AND CONCLUSIONS

The exact analytic expression for the dynamic structure
factor for a fluid layer confined by elastic solid boundaries
has been given, under assumptions of continuity of stresses
and velocities, as well as entropy and heat fluxes, across
the fluid-solid interfaces. In addition, it has been assumed
that viscous dissipation in and thermal expansion of the
solid boundaries are negligible. In the limit of small ratio
of the mass densities of the fluid and solid, p/p„and
small values of kiI, analytic expressions for the dispersion
relations of various interfacial modes, as well as their con-
tributions to the dynamic structure factor are given. In
this limit, four interfacial modes are found. In the limit
of p/p, ~0 two of these modes are just the Rayleigh
waves and two are the interfacial fluid modes. For small
finite values of p/p„ these modes become coupled and the

nature of the dominant interfacial modes depends on the
values of c, c~, and c„.i.e., the adiabatic speed of sound in
the fluid, the speed of the Rayleigh wave, and the speed of
transverse sound in the solid, respectively. For c &cz (c,
the dominant modes are the interfacial fluid modes with
attenuation cc kii p/p, for small kii due to dissipative
processes whereas the attenuation of the Rayleigh waves
varies as

@ihip/p,

. For ctt & c & c, both the interfacial fluid
modes and the Rayleigh waves have attenuation
~kii p/p, . If, however, c &cz &c„ the interfacial fluid
modes are strongly damped with attenuation cc kii(p/p, );
in this case the Rayleigh waves are the dominant surface
modes. Because the coupling between the acoustic modes
in the solid and fluid results in a decrease of the speed of
the interfacial modes, the corresponding peaks in the
dynamic structure factor should be easier to study experi-
mentally than would have been the case with rigid solid
boundaries. Such study would enable one to determine the
nature of the tangential momentum and energy transport
across the fluid-solid interfaces over a wide frequency
range in the hydrodynamic regime, and thus dependence
of such transport on the nature of interfaces.
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